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Abstract 
Utilizing translation operators we get the powers sums on arithmetic pro-
gressions and the Bernoulli polynomials of order m under the form of diffe-
rential operators acting on monomials. It follows that ( )d d d dn z−  applied 
on a power sum has a meaning and is exactly equal to the Bernoulli poly-
nomial of the same order. From this new property we get the formula giving 
powers sums in term of sums of successive derivatives of Bernoulli polynomi-
al multiplied with primitives of the same order of n. Then by changing the 
two arguments ,z n  into ( )1Z z z= − , λ  where λ  designed the 1st order 
power sums and proving that Bernoulli polynomials of odd order vanish for 
arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for pow-
ers sums in term of polynomials in λ  having coefficients depending on Z. 
These coefficients are found to be derivatives of odd powers sums on integers 
expressed in Z. By the way we obtain the link between Faulhaber formulae for 
powers sums on integers and on arithmetic progressions. To complete the 
work we propose tables for calculating in easiest manners possibly the Ber-
noulli numbers, the Bernoulli polynomials, the powers sums and the Faulha-
ber formula for powers sums. 
 

Keywords 
Bernoulli Numbers, Bernoulli Polynomials, Powers Sums, Faulhaber Conjecture, 
Shift Operator, Operator Calculus 

 

1. Introduction 

The problem of calculating the sums of the mth powers of n first integers 
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is investigated from antiquity by mathematicians around the world. 
We learn for examples in the thesis of Coen [1] as so as in Edwards [2] that at 

the beginning of the 11th century ibn al-Haytham had developed the formulae 
2

2 2
n nn = +∑ , 

3 2
2

3 2 6
n n nn = + +∑ , 

4 3 2
3

4 2 4
n n nn = + −∑      (1.2) 

In 15th century his successors had found 
5 4 3

4

5 2 3 30
n n n nn = + + −∑                    (1.3) 

About two centuries quietly passed until the day in 1631 when Faulhaber [3] 
published at Ulm the prodigious results for sums of odd powers from n∑  un-
til 17n∑  in term of powers of n∑ . One may find more details on the works 
of Faulhaber in the reference [4]. 

After Faulhaber, in 1636 French mathematicians Fermat utilizing the figurate 
numbers and in 1656 Pascal utilizing results of arithmetic triangle, found also 
recurrence formulae for calculating mn∑  from lower-order sums [5]. 

Then in 1713 in his posthumous Ars conjectandi, Jacob Bernoulli [6], men-
tioning Faulhaber, published the lists of ten first mn∑ . It is plausible that from 
this list he observed that mn∑  may be written in terms of the numbers kB  
which are the same for all m 

( ) 1

0

11 .
1

m jm m j
j

j

m
n B n
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+ −

=

+ 
= −  +  

∑ ∑               (1.4) 

This famous conjectured formula of Bernoulli was proven in 1755 based on 
the calculus of finite difference by Euler [7], a researcher working with the Ber-
noulli brothers at Zurich. As informed by Raugh [8], Euler had followed de 
Moivre in given kB  the denomination Bernoulli numbers, introduced the Ber-
noulli polynomials in 1738 via the generating function 

( )
0

1e
!e 1
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t B z t
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=

=
−

∑                    (1.5) 

Returning to the Faulhaber conjecture saying that ( )mS n  is a polynomial in 
( )1S n  for all m 

( ) ( ) ( )1
1

m
m j

m j
j

S n A S n
=

= ∑                     (1.6) 

we know that Jacobi [9] has the merit of giving the right proof for this conjecture 
and moreover calculating the first six Faulhaber coefficients ( )m

jA  although he 
did not get a formula for obtaining all of them. Another merit of Jacobi consists 
in pioneering the use of the derivative with respect to n when observing that 

( ) ( )( )1 1
1 1 0

1
m

m mn B n B
m + += + −
+∑               (1.7) 

( ) 1d
d

m m
m mn B n m n B

n
−= = +∑ ∑                (1.8) 

Long years passed until Edwards [10] showed how to obtain the Faulhaber 
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coefficients by matrix inversion and Knuth [4] by identification of coefficients of 
odd powers of n in Bernoulli formula with those in Faulhaber conjecture. Nev-
ertheless the methods of Edwards and Knuth are not easy to apply. 

Following Coen, we know the existence of the work Bernoulli numbers: bibli-
ography (1713-1990) of Dilcher [11] which contained 1956 references by 839 
authors! 

Concerning the more general problem of powers sums on arithmetic progres-
sions 

( ) ( ) ( )( ), 1 1
mmm

mS z n z z z n= + + + + + −             (1.9) 

we remark the recent formula given by Dattoli, Cesarano, Lorenzutta [12] in 
term of Bernoulli polynomials 

( ) ( ) ( )( )1 1
1,

1m m mS z n B z n B z
m + += + −
+

            (1.10) 

and the formula of Chen, Fu, Zhang [13] in term of sums of powers of ( )1 ,S z n  

( ) ( ) ( )( ) ( )2
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∑  (1.11) 

which are not easy to apply. 
After these authors we have proposed a method leading to the formula [14] 

( ) ( ) ( ) ( )( )
1

2 1 2 1 1
1
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!
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j
S z n S Z S z n

j

+

+ +
=

= ∑             (1.12) 

where ( )1Z z z= −  and ( ) ( )ˆ
m mS Z S z≡ . 

The Faulhaber formula is thus obtained but we see that the method for ob-
taining it is cumbersome and the practice calculations of ( ) ( )ˆ

m mS Z S z≡  for 
obtaining the Faulhaber coefficients fastidious. 

Rethinking the problem, we observe that an arithmetic progression is a matter 
of translation, that there is a somehow symmetry between ,n z  and ( )1 ,S n Z  
and ,n z∂ ∂  so that finally we found a more concise method for resolving the 
problem and theoretically and practically that we will expose in the following 
paragraphs. 

2. Representation of a Power Sums and Bernoulli  
Polynomials by Differential Operators 

Let 

( ) ( ) ( )( )
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, 1 1
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= + ∈∑



            (2.1) 

be the powers sums on an arithmetic progression and 

( ) ( ) ( )0, 0 1 1 mm m
m mS n S n n≡ = + + + −              (2.2) 

the powers sums of the first integers. 
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We may utilize the shift or translation operator 

( ) ( )e za f z f z a∂ = +                      (2.3) 

to get the differential representation 

( ) ( )( )1 e 1, 1 e e ,
e 1
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= + + + = ∀ ∈
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       (2.4) 

which gives directly the relations 

( ) e 1,
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m
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∂
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−
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−
                   (2.5) 

( ) ( )1, ,z m mS z n mS z n−∂ =                    (2.6) 

and the generating function 
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Because (2.4) is valid for all integers n it is also valid for all real and complex 
values so that we may write 

( ) e
,

e 1

z
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n mS z n z
∂

∂

∂
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−
                    (2.8) 

Defining now the set of polynomials ( )mB z  by the differential representa-
tion 

( )
e 1z

mz
mB z z∂

∂
=

−
                      (2.9) 

we see that ( )mB z  verify 

( ) ( )1 m
m m zB z B z z+ − = ∂                   (2.10) 

( ) ( )1m mB z mB z−′ =                     (2.11) 

and have the generating function 
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  (2.12) 

allowing the identification of them with Bernoulli polynomials defined by Euler 
[7] and giving the first of them 

( )0 1B z = , ( )1
1
2

B z z= − .                 (2.13) 

The Bernoulli polynomials are linked to powers sums according to formulae 
(2.5), (2.8), (2.9) by the relations 

( ) ( ) ( ) ( ) ( ) ( ), e 1 e 1
e 1

z z
z

n nmz
z m m m mS z n z B z B z n B z∂ ∂

∂

∂
∂ = − = − = + −

−
  (2.14) 

( ) ( ) ( ), e nz
n m m mS z n B n B z n∂∂ = = +              (2.15) 

which lead to the followed beautiful formula where the second member does not 
depend on n 
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( ) ( ) ( ),n z m mS z n B z∂ − ∂ =                  (2.16) 

Besides it leads also to the formula 

( ) ( ) ( )1, ,n m m mS z n mS z n B z−∂ = +               (2.17) 

which jointed with (2.15) gives rise to the historic Jacobi conjectured formula [9] 

( ) ( ) ( ) ( )1 0n m m m mS n mS n B B n−∂ = + =             (2.18) 

From (2.18) we see that ( )0mB  are identifiable with Bernoulli numbers mB . 

3. The Powers Sums 

1) Powers sums in terms of Bernoulli polynomials and powers of n 
From the Equation (2.16) and the boundary condition ( ),0 0mS z =  we get 

immediately the solution of (2.16) 

( ) ( )
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S z n B z
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                 (3.1) 

which may be put under the algorithmic form very easy to remember 
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or taking into account (2.11) 
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Putting 0z =  in (3.2) and replacing ( )0m kB −  with m kB −  we recognize the 
famous Bernoulli formula [6] 

( )
1 1

01 1

k m

m m m k

m n nS n B n B B
k k m

+ +

−
 

= + + + +  + + 
            (3.3) 

2) The Faulhaber formula on powers sums 
In ( ),mS z n  instead of utilizing z and n for arguments let us utilize 

( )1Z z z= −  and ( )
2

1
1,
2 2

nS z n z nλ  = = − + 
 

          (3.4) 

Because 

( ) ( )1 1
d d d d2 , 0, ,
d d d d
Z ZB z B z n n
z n n z

λ λ
= = = + =         (3.5) 

we have 

( )( )1n B z n λ∂ ≡ + ∂                      (3.6) 

( )12z ZB z n λ∂ ≡ ∂ + ∂                      (3.7) 
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( ) ( )
( )( )

1 1

1

2

2
n z Z
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∂ − ∂ ≡ ∂ − ∂

≡ ∂ − ∂
                 (3.8) 

Equation (2.16) becomes 

( ) ( ) ( ) ( )1
12 ,Z m mS z n B z B zλ
−∂ − ∂ =                (3.9) 

Happily from the definition of ( )mB z  by differential operators (2.9) we may 
write down 

( ) ( )

( )

( ) ( )
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e
1 e

1
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z
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m
m

B z z

z

B z

−∂

∂
∂

−∂
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−
−∂

= −
−
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                  (3.10) 

which jointed with (2.10) leads to the important properties 

( ) ( ) ( )2 1 2 1 2 1 2 1 ,0
1 0, 1 0 0
2k k k k kB B B B δ+ + + +

  = = − = + 
 

       (3.11) 

( )12 0 1B = −                        (3.12) 

( ) ( )1
1 2 1 0 for 0, 1, 0kB z B z z z k−

+ = = = >           (3.13) 

As an polynomial of order 2k having 0 1,z z for roots may be put by identifica-
tion of coefficients under the form of a homogeneous polynomial of order k in 
( )( )0 1z z z z− −  we obtain the important property: 

( ) ( )1
1 2 1kB z B z−

+  is a homogeneous polynomial of order k in ( )1Z z z= −  0k >  (3.14) 

By the way we notify that because ( )2 1 0kS n+ =  for 0,1n =  it is also a ho-
mogeneous polynomial of order ( )1k +  in ( )1u n n= − as conjectured Faulha-
ber and proven somehow by Jacobi. 

Moreover the calculations of the quoted polynomials in Z or in u may be done 
thank to the hereinafter Table 3. 

Jointed (3.14) with the formula came from the Jacobi formula (2.18) 

( ) ( ) ( )1
2 1 1 2 12 Z k kS z B z B z−

+ +∂ =                 (3.15) 

we may define a polynomial ( )ˆ
kS Z  of order k depending on Z such that 

( ) ( )1 2 1
ˆ

k kS Z S z+ +≡                      (3.16) 

( ) ( ) ( )1
1 1 2 1

ˆ2 Z k kS Z B z B z−
+ +∂ ≡                 (3.17) 

The definition of ( )ˆ
kS Z  by (3.16) differs a little in index with its definition 

in [15]. 
Thank to these considerations we get the solution of (3.9) corresponding to 

the boundary condition ( ),0 0mS z =  under the form 

( ) ( ) ( )

( ) ( )

1
2 1 1

1
1 2

0

ˆ, 2 2

ˆ 2

k Z k

k
j j
Z k

j

S z n S Z

S Z

λ

λ λ

−
+ +

+ −
+

=

′= ∂ − ∂

= ∂ ∂∑
             (3.18) 

or under the algorithmic form 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 2 1
1

2 1 1 1 1

2 2 2ˆ ˆ ˆ,
1! 2! 1 !

k
k

k k k kS z n S Z S Z S Z
k

λ λ λ +
+

+ + + +′ ′′= + + +
+


  (3.19) 

where we see that the Faulhaber coefficients are successive derivations beginning 
from the first one of the power sums on integers writing under the form 

( ) ( )1 2 1
ˆ

k kS Z S z+ +≡ . 
Curiously by replacing z with n and consequently Z with ( )1u n n= −  in the 

definition ( ) ( )1 2 1
ˆ

k kS Z S z+ +≡  we get the very important and very interesting 
formula linking the Faulhaber powers sums on integers and on arithmetic pro-
gressions 

( ) ( )2 1 1
ˆ

k kS n S u+ +=                      (3.20) 

For examples 

( ) ( )
3 2 3 2 6 5 4 2

3 5
5ˆ

6 12 6 12 6 2 12 12
Z Z u u n n n nS Z S n= − ⇒ = − = − + −     (3.21) 

( ) ( )
4 3 2 4 3 2

7 4
ˆ

8 6 12 8 6 12
u u u Z Z ZS n S Z= − + ⇒ = − +          (3.22) 

4. Obtaining Practically Bernoulli Numbers,  
Bernoulli Functions and Powers Sums 

4.1. Calculations of Bernoulli Numbers 

For calculating mB  we remark that from 

( ) ( ) ( ) ( ) ( ) ( )0
1e
!

yz kk m
m m m mB z y B y B y z B y z B y

k
∂+ = = + + + +   

( ) 0
k m

m m m k

m
B z B z B z B

k −
 

= + + + + 
 

              (4.1) 

and (2.10) we get the recursion relation 

( ) ( ) 1 1 01 0
1m m m m m k

m m
B B B B B

k
δ − −

   
− = = + + + +   

   
        (4.2) 

which may be written under the matrix form 

0

1

2

3

1
1

1 2
0

1 3 3
0

1 4 6 4
0

1 1 1
0

0 1 m

B
B
B
B

m m m
B

m

=

+ + +     
     
     









    

 



         (4.3)

 

This matrix equation may be resolved by doing by hand or by program linear 
combinations over lines from the second one in order to replace them with lines 
each containing only some non-zero rational numbers. 

For instance for calculating successively { }0 1 2 4 6 18, , , , , ,B B B B B B  we may 
utilize the matrix equation 
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Matrix equation for calculating mB . 

1
1 2
0 1 3
0 0 1 5
0 0 1 0  7
0 0 9 5 0  0 9
0 0 5 0 0 0 11

610 3 0 0 0  0 13
105

0 35 0 0 0 0 0 0 15
0 240 0 17 0 0 0 0 0 17
0 2052 0 0 775 0 0 0 0 0 19

−

−
−

−

0

1

2

4

6

8

10

12

14

16

18

B
B
B
B
B
B
B
B

B
B
B

 = 

1
0
0
0
0
0
0
0

0
0
0

        (4.4)

 

We remark that the last line of this matrix has replaced the line  
19

, 0,1,2,4,6,8,10,12,14,16,18i
i

   =  
   

 Some results are 

0 1B = , 0 12 0B B+ = , 1 23 0B B+ = , 2 67 0B B− + =  

1 6 18 18 18
1026 775 438672052 775 19 0
19 19 42 798

B B B B B− + = = − − + = − +
×

 

4.2. Calculations of Bernoulli Polynomials 

For calculating Bernoulli polynomials, we remark that (2.11) and the Jacobi 
formula (2.18) give rise to the relations 

( ) ( )10
d

z
m m mB z m B t t B−= +∫                   (4.5) 

( ) ( )
0

d
n

m mS n B t t= ∫                      (4.6) 

which, knowing ( )0 1B z = , permits the easy calculations of all the Bernoulli po-
lynomials and the powers sums on integers ( )mS n  from the set of Bernoulli 
numbers { }0 1, , , mB B B  as we may see hereafter in Table 1. 

4.3. Calculations of Powers Sums as Polynomials in n 

For calculating ( ),mS z n  we utilize the algorithmic formula (3.2) and get the re-
sults shown in Table 2. 

4.4. Calculations of Faulhaber Powers Sums 

Practically for transforming ( )2 1kS z+  into ( )1
ˆ

kS Z+  from which one obtains the 
Faulhaber coefficients let us remark that 

( )2 2 1 2 1 2 11 1 1
1 2 1

kk k k k kk k k
z Z z z z

k
+ + + ++ + +     
= + − + + −     +     

         (4.7) 

so that we may replace the first term 2 2kz +  of ( )2 1kS z+  with 1kZ +  minus a po-
lynomial in z. The polynomial in z so obtained must begin with a term in 2kz  
and not 2 1kz +  so that we may continue to replace in it 2kz  with a term in kZ   
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Table 1. Obtaining ( )mB z , ( )mS n  from mB . 

10 0

0 0 0

2

1 1 1

3 2
2

2 2 2

2 4 3 2
3

3 3 3

5 4 3
4 3 2

4 4 4

( ) ( ) ( ) ( )

1 ( ) 1 ( )
1

1 1( ) ( )
2 2 2 2

1 1( ) ( )
6 6 3 2 6

30 ( ) ( )
2 2 4 2 4

1 1( ) 2 ( )
30 30 5 2 3 3

z n

m m m m m mB B z m B z B S n B n

nB B z S n

n nB B z z S n

n n nB B z z z S n

z z n n nB B z z S n

n n n nB B z z z z S n

−= + =

= = =

= − = − = −

= = − + = − +

= = − + = − +

−
= = − + − = − + −

∫ ∫

6 5 4 2
5 4 3

5 5 5

2 7 6 5 3
6 5 4

6 6 6

8 7 6 4 2
7 6 5 3

7 7 7

0
5 5 50 ( ) ( )
2 3 6 6 2 12 12

1 5 1( ) 3 ( )
42 2 2 42 7 2 12 36 42

7 7 7 1 7 70 ( ) ( )
2 2 6 42 8 2 12 24 84

z n n n nB B z z z z S n

z n n n n nB B z z z z S n

n n n n nB B z z z z z z S n

= = − + − = − + −

= = − + − + = − + − +

= = − + − + = − + − +

 

 
Table 2. Obtaining ( ),mS z n  from ( )mB z . 

2 1
( )

0 0

2

1 1

2 3
2 2

2 2

2 2 2
3 3 2

3 3

( ) ( , ) ( ) '( ) ... ( )
2! ( 1)!

( ) 1 ( , )
1 1( ) ( , ) ( )
2 2 2!

1 1( ) ( , ) ( ) (2 1) 2
6 6 2! 3!

3 3 1( ) ( , ) ( ) (3 3 )
2 2 2 2 2 2!

m
m

m m m m m
n nB z S z n B z n B z B z

m

B z S z n n
nB z z S z n z n

n nB z z z S z n z z n z

z z z z nB z z S z n z n z z

+

= + + +
+

= =

= − = − +

= − + = − + + − +

= − + = − + + − +

3 4

(6 3) 6
3! 4!
n nz+ − +

 

 
minus a polynomial in z. The operations continue so on until finish. 

By this operation we observe that we may omit all odd powers terms in z  be-
fore and during the transformation of ( )2 1kS z+  into ( )1

ˆ
kS Z+  for 0k > . From 

these remarks we may establish Table 3 of transformation. 
This algorithm for obtaining ( )1

ˆ
kS Z+  gives rise astonishingly to the easy 

calculation of the Faulhaber formula for ( )2 1 ,kS z n+ . 
As examples we have 

• ( ) ( ) ( )
2 2

1 1 1̂2 2 2 2
z z z ZS z S z S Z−= − → = → =  

( )1
1, 2
2

S z n λ λ= =                      (4.8) 

• ( ) ( ) ( )
4 3 2 4

2
3 3 2

1ˆ
4 2 4 4 4
n n n zS n S z S Z Z−= − + → = → =  
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Table 3. Change of 2 2kz +  in change of ( )2 1kS z+  into ( )1
ˆ

kS Z+ . 

2
0

4 2

6 3 4 3 2

8 4 6 4 4 3 2

10 5 8 6 5 4 3 2

12 6 10 8 6

14 7 12 10 8

16 8 14 12 10 8

18 9 16 14 1

3
3

2

4 4
6 17

2 4

10 5 10 55 95
15 15
21 35 7
28 70 28
36 126 84

kz Z

z Z

z Z z Z Z

z Z z z Z Z Z

z Z z z Z Z Z Z
z Z z z z
z Z z z z
z Z z z z z
z Z z z z

δ→

→

 
→ − = − 

 
   

→ − − = − +   
   

→ − − = − + −

→ − − −

→ − − −

→ − − − −

→ − − − 2 109z−

 

 

( )
2

2
3

2 1 4,
2 1! 2 2!
ZS z n Zλ λ λ λ= + = +                (4.9) 

• ( ) ( )
6 5 4 2 6 4

5 5
5 5

6 2 12 12 6 12
n n n n z zS n S z−= − + − → = +  

( ) 3 2
3

1 1ˆ
6 12

S Z Z Z= −
 

( ) 3 2
5

1 1
6 12

S n u u= −
 

( ) ( ) ( ) ( )
2 3

5 3 3 3

2 2 3

2 4 8ˆ ˆ ˆ,
1! 2! 3!

1 42
3 6 3

S z n S Z S Z S Z

ZZ Z

λ λ λ

λ λ λ

′ ′′ ′′′= + +

   = − + − +   
   

         (4.10) 

• ( ) 7 6 5 3
7

7 7 7 1
2 2 6 42

B z z z z z z= − + − +  

( ) ( )
8 7 6 4 2 8 6 4

7 7
7 7 7 7

8 2 12 24 84 8 12 24
n n n n n z z zS n S z−= − + − + → = + −

 

( ) ( ) ( )4 3 2 3 2 2
4

4 3 2

1 7 7ˆ 6 17 3
8 12 24
1 1 1
8 6 12

S Z Z Z Z Z Z Z

Z Z Z

= − + + − −

= − +
 

( ) 4 3 2
7

1 1 1
8 6 12

S n u u u= − +
 

( ) ( ) ( ) ( )
2 3 4

7 4 4
2 4 8 16ˆ ˆ, 3 1 3
1! 2! 3! 4!

S z n S Z S Z Zλ λ λ λ′ ′′= + + − +      (4.11) 

5. Formula for Even Powers Sums ( )kS z n2 ,  

By derivation of ( )2 1 ,kS z n+  with respect to z and remarking that 

2 1z Z z∂ = − , z nλ∂ =                     (5.1) 
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we obtain the formulae giving ( )2 ,kS z n  in function of , , ,Z z nλ  

( ) ( ) ( ) ( )( ) ( )2 2 1 1 2 2 12 1 , , 2k z k Z kk S z n S z n B z n S zλ+ ++ = ∂ = ∂ + ∂     (5.2) 

( )( ) ( ) ( ) ( )1

1 2 1
1

2
2

!

jk
j

Z k
j

B z n S Z
jλ

λ+

+
=

= ∂ + ∂ ∑                 (5.3) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2
2 3

1 1 1

0 1
1 2

1 1

2 2
2

1! 2!

2 2
2

0! 1!

k k

k k

B z S Z S Z

n S Z S Z

λ λ

λ λ

+ +

+ +

 
 = + +
 
 

 
 + + +
 
 





          (5.4) 

For examples 

• ( ) 2
2

1ˆ
4

S Z Z= , ( )2
1ˆ
2

S Z Z′ = , ( )2
1ˆ
2

S Z′′ =  

( ) ( ) ( ) ( ) ( )
( ) ( )

2 1 2 2 23 , 2 2 2 2 2

2 1 2

S z n B z S Z nS Z nS Z

z Z n

λ λ

λ λ

′′ ′ ′′= + +

= − + +
       (5.5) 

• ( ) ( ) ( ) ( )
3 2 2

3 3 3 3
1ˆ ˆ ˆ ˆ, , , 1

6 12 2 6 6
Z Z Z ZS Z S Z S Z Z S Z′ ′′ ′′′= − = − = − =   

( ) ( ) ( )( ) ( ) ( )( )2 2
4 1 3 3 3

ˆ ˆ ˆ5 , 2 2 2 2 2 2S z n B z S Z n S Z S Zλ λ λ λ′′ ′ ′′= + + + +   (5.6) 

6. Remarks and Conclusions 

The main particularity of this work consists in obtaining ( ),mS z n  as the trans-
form of mz  by a differential operator, as so as the Bernoulli polynomial ( )mB z , 
from which we deduce the new formula ( ) ( ) ( ),n z m mS z n B z∂ − ∂ =  and get 
immediately ( ),mS z n  as polynomials in n. From which we get also the proper-
ty saying that ( ) ( )1

1 2 1kB z B z−
+  is a homogeneous polynomial of order k in 

( )1Z z z= − . 
The second particularity consists in performing the change of arguments from 

z into ( )1Z z z= −  and n into ( )1 ,S z nλ =  in order to get the relation
( ) ( )( )1 2n z ZB z λ∂ − ∂ = ∂ − ∂  which gives rise to the Faulhaber formula of ( ),mS z n . 
From this formula we see that the Faulhaber coefficients are successive deriva-
tives of the function ( ) ( )1 2 1

ˆ
k kS Z S z+ +≡  where ( )2 1kS n+  are powers sums on 

integers. 
The relation ( ) ( )1 2 1

ˆ
k kS Z S z+ +≡  leads also to the Faulhaber formula 

( ) ( )2 1 1
ˆ

k kS n S u+ +≡  where ( )1u n n= − . 
The third particularity of this work is proposing a method for obtaining easily 

the Bernoulli numbers mB  from a matrix equation, then of 

( ) ( )10

z
m m mB z m B z B−= +∫  

( ) ( )
0

z
m mS z B z= ∫  

( ) ( ) ( ) ( )
2

1,
2!m m m
nS z n B z n B z= + +  
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( ) ( ) ( ) ( ) ( ) ( )1 2
2

2 1 1 1

2 2ˆ ˆ,
1! 2!k k kS z n S Z S Z
λ λ

+ + +′= + + . 

( ) ( )2 1 1
ˆ

k kS n S u+ +=  

As conclusion we think that the calculations of powers sums are greatly facili-
tated by the utilization of derivation operators ,z n∂ ∂  and the translation oper-
ator ( )exp za∂ , parts of Operator Calculus. 

Operator calculus, which is very different from Heaviside operational calculus, 
is thus merited to be known and introduced into Mathematical Analysis. More-
over it just had a solid foundation and many interesting applications for instance 
in the domains of Special functions, Differential equations, Fourier, Laplace and 
other transforms, quantum mechanics [14]. 
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