
Applied Mathematics, 2018, 9, 1225-1237 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2018.911080  Nov. 20, 2018 1225 Applied Mathematics 
 

 
 
 

On Existence of Periodic Solutions of Certain 
Second Order Nonlinear Ordinary Differential 
Equations via Phase Portrait Analysis 

Olaniyi S. Maliki1, Ologun Sesan2  

1Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria 
2Department of Mathematics, University of Uyo, Uyo, Nigeria 

 
 
 

Abstract 
The global phase portrait describes the qualitative behaviour of the solution 
set of a nonlinear ordinary differential equation, for all time. In general, this 
is as close as we can come to solving nonlinear systems. In this research work 
we study the dynamics of a bead sliding on a wire with a given specified 
shape. A long wire is bent into the shape of a curve with equation ( )z f x=  
in a fixed vertical plane. We consider two cases, namely without friction and 
with friction, specifically for the cubic shape ( ) 3f x x x= − . We derive the 
corresponding differential equation of motion representing the dynamics of 
the bead. We then study the resulting second order nonlinear ordinary diffe-
rential equations, by performing simulations using MathCAD 14. Our main 
interest is to investigate the existence of periodic solutions for this dynamics 
in the neighbourhood of the critical points. Our results show clearly that pe-
riodic solutions do indeed exist for the frictionless case, as the phase portraits 
exhibit isolated limit cycles in the phase plane. For the case with friction, the 
phase portrait depicts a spiral sink, spiraling into the critical point.  
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1. Introduction 

Nonlinear dynamical systems exhibiting oscillating limit cycles are found in a 
large variety of fields including biology, chemistry, mechanics and electronics, [1] 
[2]. The historical development of the study of periodic solutions of ordinary 
differential equations began in a series of articles published in the 19th century. It 
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was Henri Poincare that initiated the qualitative theory of differential equations. 
This qualitative approach was intended both to guide and bring to light the lim-
its of numerical methods, such as the series solutions, which was quite popular 
at the time. Most of the qualitative investigations were generally of a local cha-
racter. Thus, the behaviour of solution is studied in a sufficiently small neigh-
borhood of a given solution, for example in a neighborhood of stationary point 
or of a periodic solution. 

A bead sliding on a wire is a classic problem in theoretical dynamics [3]. Our 
interest in this problem is from the point of view of studying the resulting non-
linear differential equations. We seek in particular periodic solutions as well as 
stability properties, using phase portrait analysis. Furthermore, the shape of our 
wire is specified by a general curve ( )z f x= , and hence we can study different 
configurations of the given problem.  

The temporal evolution of a dynamical system is usually described by points 
in space and time. The line joining all these points is called the trajectory. A tra-
jectory that comes back upon itself to form a closed loop in phase space is called 
an orbit [4]. An orbit for a system usually indicates that the dynamical system 
under consideration is conservative. We also note that each plotted point along 
any trajectory has evolved directly from the preceding point. As we plot each 
successive point in phase space, the plotted points migrate around. Orbits and 
trajectories therefore reflect the movement or evolution of the dynamical system.  

The phase space plot is a world that shows the trajectory and its development. 
Depending on various factors, different trajectories can evolve for the same sys-
tem. The phase space plot and such a family of trajectories together are a phase 
space portrait, phase portrait, or phase diagram. 

2. Limit Cycles and Other Closed Paths 

The world we live in can be described more accurately by systems of nonlinear 
differential equations. Furthermore, in nonlinear systems there is particular in-
terest in the existence of periodic solutions, as well as their amplitudes, periods, 
and phases. If the system is autonomous, and ( )x t  in any solution, so is 
( )x t τ+  for any value of τ , which means that phase is not significant since the 

solutions map on to the same phase paths. In the phase plane, periodic solutions 
appear as closed paths [5]. Conservative systems and Hamiltonian systems are 
essentially energy systems, and often contain nests of closed paths forming cen-
tres, which we might expect since they are generally non-dissipative; meaning 
that friction is absent. 

A limit cycle is an isolated periodic solution of an autonomous system [6], 
represented in the phase plane by an isolated closed path. The neighbouring 
paths are, by definition, not closed, but spiral into or away from the limit cycle. 
Furthermore, for a stable limit cycle, the device represented by the system, which 
might be, for example, an electronic circuit, will spontaneously drift into the 
corresponding periodic oscillation from a wide range of initial states. The exis-
tence of limit cycles is therefore a feature of great practical importance. 
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3. Statement of the Problem 

We derive the differential equation of motion of a bead of mass m, sliding on a 
wire of given shape ( ) 3z f x x x= = −

 
in the vertical plane. We consider two 

cases, namely without friction and with friction. For both cases we perform si-
mulation of the derived differential equations. Our interest is to study the re-
sulting nonlinear ordinary differential equations, and investigate the existence of 
periodic solutions for this dynamics in the neighbourhood of the critical points. 
This will be depicted by their corresponding phase portraits.  

4. Gradient and Hamiltonian Systems 

Let E be an open subset of 2n�  and let ( )2H C E∈  where ( ),H H x y=  with 
, nx y∀ ∈� . A system of the form 

,     H Hx y
y x

∂ ∂
= = −
∂ ∂

� �                        (1) 

where 

  and  x y
H HH H
x y

∂ ∂
= ∇ = ∇

∂ ∂
 

is called a Hamiltonian system with n degrees of freedom on E. For example, the 
Hamiltonian function 

( ) ( )2 2 2 2
1 2 1 2

1,
2

H x y x x y y= + + +                   (2) 

is the energy function for the spherical pendulum 

1 1 2 2,x y x y= =� �  

1 1 2 2,y x y x= − = −� �  

This system is equivalent to the pair of uncoupled harmonic oscillators; 

1 1 2 20, 0x x x x+ = + =�� ��  

All Hamiltonian systems are conservative in the sense that the Hamiltonian 
function or the total energy ( ),H x y  remains constant along trajectories of the 
system. 

5. Theorem (Conservation of Energy) 

The total energy ( ),H x y  of the Hamiltonian system (1) remains constant 
along its trajectories. 

Proof  
The total derivative of the Hamiltonian function ( ),H x y  along a trajectory 
( ) ( ),x t y t  of (1) 

d 0
d
H H H H H H Hx y
t x y x y y x

∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ = ⋅ − ⋅ =
∂ ∂ ∂ ∂ ∂ ∂
� �  

Thus, ( ),H x y  is constant along any solution curve of (1) and the trajecto-
ries of (1) lie on the surfaces ( ),H x y  = constant. 
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6. Remark 

We now establish some very specific results about the nature of the critical 
points of Hamiltonian systems with one degree of freedom. Note that the equili-
brium points or critical points of the system (1) correspond to the critical points 
of the Hamiltonian function ( ),H x y  where 0H x H y∂ ∂ = ∂ ∂ = . We may, 
without loss of generality, assume that the critical point in question has been 
translated to the origin. 

7. Lemma  

If the origin is a focus of the Hamiltonian system 

( ) ( ), , ,y xx H x y y H x y= = −� �                    (3) 

then, the origin is not a strict local maximum or minimum of the Hamiltonian 
function ( ),H x y . 

8. Definition  

A critical point of the system ( )x f x=�  at which ( )0Df x  (Jacobian) has no 
zero eigenvalues is called a non-degenerate critical point of the system, otherwise, 
it is called a degenerate critical point of the system. 

9. Remark  

We note that any non-degenerate critical point of a planar system is either a 
hyperbolic critical point of the system or a center of the linearized system. 

10. Hamiltonian with One Degree of Freedom 

One particular type of Hamiltonian system with one degree of freedom is the 
Newtonian system with one degree of freedom, 

( )x f x=�                            (4) 

where ( )1 ,f C a b∈ . This differential equation can be written as a system in 
2� : 

( )1 2 2 1,x x x f x= =� �                        (5) 

The total energy for this system ( ) ( ) ( )1 2 2 1,H x x T x V x= +  where  
( ) 2

2 2 2T x x=  is the kinetic energy and 

( ) ( )1

0
1 d

x

x
V x f s s= −∫  

is the potential energy. With this definition of ( )1 2,H x x  we see that the New-
tonian system (4) can be written as a Hamiltonian system. It is not difficult to 
establish the following facts for the Newtonian system (4).  

11. Theorem  

The critical points of the Newtonian system (4) all lie on the x-axis. The point 
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( )0 , 0x  is a critical point of the Newtonian system (4) if and only if it is a critical 
point of the function ( )1V x , i.e., a zero of the function ( )f x . If ( )0 , 0x  is a 
strict local maximum of the analytic function ( )1V x , it is a saddle for (4). If 
( )0 , 0x  is a strict local minimum of the analytic function ( )1V x , it is a center 
for (4). If ( )0 , 0x  is a horizontal inflection point of the function ( )1V x , it is a 
cusp for the system (4). Finally, the phase portrait of (4) is symmetric with re-
spect to the x-axis. 

12. Existence of Periodic Solutions 

The existence of periodic solutions or otherwise of a system of ODE is settled in 
the following theorem. 

13. Theorem 

Consider the 2-dimensional autonomous system ( )u u= f�  where  
( ) ( )1 2u C∈f � . Let 2Ω∈�  be simply connected, such that u∀ ∈Ω , we have 

( )div 0u =f . We now show that the ODE system has no periodic solutions in 
Ω. 

Proof 
Towards a contradiction, assume ODE system has a periodic solution in Ω. 

Let ∂Ω be a boundary on Ω. 

( )
( )
( )

1 1 1 2

2 2 1 2

,
      

,

u f u u
u u

u f u u

== ⇒ 
=

f
�

�
�  

( ) ( )1 2 2 1, ,n n u u≡ = −n � �  is the normal to ∂Ω. Recall then Divergence Theorem: 
 

 
 

d ds div f A
∂Ω Ω

⋅ =∫ ∫∫f n�  

Let u be a periodic solution with period T, i.e. ( ) ( )u t T u t+ = . Then, a path 
traversed by a solution starting from t a=  to t a T= +  is ∂Ω. Then, ∂Ω is a 
closed curve. 

( ) ( )1 1 2 2 1 2 2 1d d d 0
a T

a

s f n f n s u u u u t
+

∂Ω ∂Ω

⋅ = + = − =∫ ∫ ∫f n � � � ��

        d 0div A
Ω

⇒ =∫∫ f  

However, by hypothesis, ( ) 0div u ≠f  and 1C∈f . Therefore, 0 div C∈f , 
and either  0div >f  or  0div <f  on Ω. Thus,  d 0div A

Ω
>∫∫ f  or  

 d 0div A
Ω

<∫∫ f , a contradiction. 
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14. Remark 

We can now state formally a theorem on the Bendixson criterion for the exis-
tence or otherwise of periodic solutions [7].  

15. Theorem (Bendixson Criterion) 

Suppose that the domain 2D ⊂ �  is simply connected; ( ),f g  is continuous-
ly differentiable in D.  

Then the equations 

( ) ( ), ,   ,x f x y y g x y= =� �  

can only have periodic solutions if ( ),f g∇ ⋅  changes sign in D or if ( ), 0f g∇ ⋅ =  
in D.  

16. Example 

We know that the damped linear oscillator contains no periodic solutions. 
Consider now a nonlinear oscillator with nonlinear damping represented by 

the equation 

( ) ( ) 0x p x x q x+ + =�� �  

We assume that ( )p x  and ( )q x  are smooth and that ( ) 0p x > , x∈�  
(damping). The vectorized system is  

( ) ( )1 2 2 1 1 2,   x x x q x p x x= = − −� �  

( ) ( ) ( ) ( )( ) ( )1 2
1 2 2 1 1 2 1

1 2 1 2

 , f fdiv f x x x q x p x x p x
x x x x
∂ ∂ ∂ ∂

= + = + − − = −
∂ ∂ ∂ ∂

 

Thus the divergence of the vector function is ( )p x−  which is negative defi-
nite. It follows from Bendixson’s criterion that the equation has no periodic so-
lutions.  

17. Derivation of the Main Models 

Case 1: Smooth wire (no friction) 
The bead and wire are shown in Figure 1. The components of the velocity of 

the bead are given by ( )( ),x z f x x′=� �� . The kinetic and potential energies are 
 

 
Figure 1. Bead sliding on frictionless wire. 
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( ) ( )( )22 2 21 1 1
2 2

T m x z m f x y′= + = +� � , ( )V mgy mgf x= =  

where y x= � . 
Hence the Hamiltonian (total energy) H of the bead is 

( )( ) ( )2 21 1
2

H T V m f x y mgf x′= + = + +               (6) 

The equation of motion of the bead can now be derived from the conservation 
principle of the total energy, i.e. d d 0H H t= =� . Hence assuming ( )f x′  and 

( )f x′′  are continuous, 

( )( ){ } ( )2 21 d d1 0
2 d d

H m f x y mg f x
t t

′= + + =�  

( )( ) ( ) ( ) ( )2 2    1 0f x y f x f x y gf x′ ′ ′′ ′⇒ + + + =�  

Hence the differential equation of motion of the bead is; 

( )( ) ( ) ( ) ( )2 21 0f x x f x f x x gf x′ ′ ′′ ′+ + + =�� �              (7) 

Case 2: Non-smooth wire (friction) 
Let R be the normal reaction of the bead on the wire and let F be the frictional 

force opposing the motion as shown in Figure 2. The horizontal and vertical 
equations of motion are 

sin cosmx R Fθ θ= − −��                        (8) 

cos sinmz R mg Fθ θ= − −��                     (9) 

where θ is the inclination of the tangent of the curve at the bead. Since  
( )z f x= , then ( )z f x x′= ��  and ( ) ( )2z f x x f x x′′ ′= +� ���� . Eliminating R be-

tween (12) and (13) gives;
  

( ) ( )( ) ( )( )2 cos sinm f x x f x x mx mg kxf x Fθ θ′′ ′ ′+ + = − + −� �� �� �  

where ( ) ( )( )
1

2 2sin 1f x f xθ
−

′ ′= +  and ( )( )
1

2 2cos 1 f xθ
−

′= + . 
The frictional force F is proportional to the velocity and opposes the motion, 

hence 

( ) ( )2cos sin 1F k x z kx f xθ θ ′= − + = − +� ��             (10) 

 

 
Figure 2. Bead sliding on rough wire. 
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Therefore, the equation of motion is  

( )( ) ( ) ( ) ( )( ) ( )2 221 1 0m f x x mf x f x x kx f x mgf x′ ′′ ′ ′ ′+ + + + + =�� � �   (11) 

We observe that we obtain Equation (7) when we set 0k =  for the friction-
less wire. 

18. Results: Bead Sliding on a Cubic Shaped Wire 

Consider the case without friction, and the initial shape of the wire is a simple 
cubic given by ( ) 3f x x x= − . The equation of motion of the bead is written; 

( )( ) ( ) ( ) ( )( ) ( )2 221 1 0m f x x mf x f x x kx f x mgf x′ ′′ ′ ′ ′+ + + + + =�� � �  

with ( ) 23 1f x x′ = − , and ( ) 6f x x′′ = . We examine two cases, viz; 
1) For the frictionless case 0k = , and setting 1m = , 10g =  we get 

( ) ( ) ( )4 2 3 2 29 6 2 18 6 10 3 1 0x x x x x x x+ + + − + − =�� �           (12) 

2) For the case with friction 1k = , and the equation of motion reads; 

( ) ( ) ( ) ( )4 2 3 2 4 2 29 6 2 18 6 9 6 2 10 3 1 0x x x x x x x x x x+ + + − + + + + − =�� � �   (13) 

Vectorizing Equations (12) and (13), we obtain respectively; 

( ) ( )
1 2

3 2 2
1 1 2 1

2 4 2
1 1

18 6 10 3 1

9 6 2

x x

x x x x
x

x x

=


− + −
= − + +

�

�
             (14) 

and 

 

( ) ( ) ( )
1 2

3 2 4 2 2
1 1 2 2 1 1 1

2 4 2
1 1

18 6 9 6 2 10 3 1

9 6 2

x x

x x x x x x x
x

x x

=


− + + + + −
= − + +

�

�
      (15) 

19. Simulation of the Models Using MathCAD [8] 

Case 1 (without friction) 
We consider the vectorized systems of differential Equations (14) 
Define a function that determines a vector of derivative values at any solution 

point (t, Y): 

( ) ( ) ( ) ( )

( ) ( )

1
23 2

0 0 0

4 2
0 0

18 6 3 1 10, :

9 6 2

Y

Y Y YD t Y

Y Y

 
 

    ⋅ − ⋅ + ⋅ − ⋅=     −
  ⋅ − ⋅ +  

 

Additional arguments for the ODE solver are: 
0 : 0t =  Initial value of independent variable; 
1: 10t =  End value of independent variable;  

0.001
0 :

0.001
Y  

=  
 

 Vector of initial function values; 
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3: 2 10N = ×  Number of solution values on [t0, t1]. 
Solution matrix: 

( )1: Rkadapt 0, 0, 1, ,S Y t t N D=  
0: 1t S=  Independent variable values; 

11: 1x S=  First solution function values; 
22 : 1x S=  Second solution function values. 

We have the following graphical profiles (Table 1). 
Case 2 (with friction) 
We now consider the vectorized nonlinear systems of differential Equations 

(15)  
The vector of derivatives for this case is: 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1
23 4 2 22

0 0 1 1 0 0 0

4 2
0 0

, :

18 6 9 6 2 3 1 10

9 6 2

D t Y

Y

Y Y Y Y Y Y Y

Y Y

 
 

      ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ + + ⋅ − ⋅=       −
  ⋅ − ⋅ +  

 

Employing the same additional arguments for the MathCAD ODE solver as 
previously, we obtain the solution matrix in Table 2, and the following graphical 
profiles. 
 
Table 1. Solution matrix for the ODE system (14). 

  0 1 2 

S1= 

0 0 1 × 10-3 1 × 10-3 

1 5 × 10−3 1.005 × 10−3 8.998 × 10−4 

2 0.01 1.009 × 10−3 7.991 × 10−4 

3 0.015 1.013 × 10−3 6.98 × 10−4 

4 0.02 1.016 × 10−3 5.965 × 10−4 

5 0.025 1.019 × 10−3 4.948 × 10−4 

6 0.03 1.021 × 10−3 3.928 × 10−4 

7 0.035 1.023 × 10−3 2.906 × 10−4 

8 0.04 1.024 × 10−3 1.883 × 10−4 

9 0.045 1.025 × 10−3 8.588 × 10−4 

10 0.05 1.025 × 10−3 −1.658 × 10−4 

11 0.055 1.024 × 10−3 −1.19 × 10−4 

12 0.06 1.023 × 10−3 −2.214 × 10−4 

13 0.065 1.022 × 10−3 −3.237 × 10−4 

14 0.07 1.02 × 10−3 −4.258 × 10−4 

15 0.075 1.018 × 10−3 ∙∙∙ 
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Table 2. Solution matrix for the ODE system (15). 

  0 1 2 

S2= 

0 0 1 × 10−3 1 × 10−3 

1 5 × 10−3 1.067 × 10−3 0.026 

2 0.01 1.259 × 10−3 0.051 

3 0.015 1.575 × 10−3 0.075 

4 0.02 2.013 × 10−3 0.1 

5 0.025 2.574 × 10−3 0.124 

6 0.03 3.257 × 10−3 0.149 

7 0.035 4.061 × 10−3 0.173 

8 0.04 4.986 × 10−3 0.197 

9 0.045 6.031 × 10−3 0.221 

10 0.05 7.196 × 10−3 0.245 

11 0.055 8.479 × 10−3 0.269 

12 0.06 9.881 × 10−3 0.292 

13 0.065 0.011 0.316 

14 0.07 0.013 0.339 

15 0.075 0.015 … 

20. Discussion 

We considered the case of a bead sliding on a smooth wire with shape  
( ) 3f x x x= −  (Figure 3).  
The resulting nonlinear differential equation was computed to give  

( ) ( ) ( )4 2 3 2 29 6 2 18 6 10 3 1 0x x x x x x x+ + + − + − =�� �             (16) 

For the case with friction 1k = , and the dynamics is given by the nonlinear 
ODE; 

( ) ( ) ( ) ( )4 2 3 2 4 2 29 6 2 18 6 9 6 2 10 3 1 0x x x x x x x x x x+ + + − + + + + − =�� � �   (17) 

For the former case, Figure 4 depicts the trajectory of the bead against time, 
on smooth wire with shape ( ) 3f x x x= − . Figure 5 provides the velocity profile. 
Both graphs are periodic in nature. Correspondingly, the phase portrait shown 
in Figure 6 depicts an irregular shaped closed curve, in the phase plane. 

For the frictional case analysis of the nonlinear ODE (17) provided us with the 
trajectory of the bead against time, Figure 7, moving on a rough wire with shape 
( ) 3f x x x= − .

 
The corresponding velocity profile is depicted in Figure 8, and 

for both cases we observe constrained oscillations which die out very fast as a 
result of friction. The dotted lines placed on the graph shown in Figure 7 is 
meant to indicate that the bead performs oscillations with decreasing amplitude 
about the minimum point of the function ( ) 3f x x x= − , with x1-coordinate 

1 3 0.577= = . The phase portrait for this situation, Figure 9, depicts as ex-
pected, a spiral sink which actually spirals to the minimum point with x1-coordinate 
= 0.577. 
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Figure 3. Bead sliding on a wire with shape ( ) 3f x x x= − . 

 

 
Figure 4. Trajectory of bead against time, on smooth wire. 

 

 
Figure 5. Velocity of bead against time, on smooth wire. 

 

 
Figure 6. Phase portrait of the dynamics of bead on smooth wire. 

 

 
Figure 7. Trajectory of bead against time, on rough wire. 
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Figure 8. Velocity of bead against time, on rough wire. 

 

 
Figure 9. Phase portrait of the dynamics of bead on rough wire. 

21. Conclusion 

The present research study is of practical importance in the field of stability 
analysis as well as existence of periodic solutions of nonlinear ordinary differen-
tial equations. In general, nonlinear dynamical systems exhibiting oscillating 
limit cycles can be found in a large variety of fields including biology, chemistry, 
mechanics and electronics. Our contribution to the existing body of knowledge 
in this field is analyzing highly nonlinear ordinary differential equations, with-
out the possibility of solving them analytically, and obtaining important qualita-
tive properties. We employ instead the phase portrait method which is a numer-
ical method, but with the added advantage of providing a pictorial (graphical) 
view of the inherent dynamics. Another important aspect of the problem consi-
dered, is that the geometry of the curve can be prescribed arbitrarily in the ver-
tical plane by the equation ( )z f x= . This then makes it possible to study the 
dynamics of the bead for any given configuration. 
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