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Abstract 
Let G be a primitive strongly regular graph of order n and A is adjacency ma-
trix. In this paper we first associate to A a real 3-dimensional Euclidean Jor-
dan algebra   with rank three spanned by nI  and the natural powers of A 
that is a subalgebra of the Euclidean Jordan algebra of symmetric matrix of 
order n. Next we consider a basis   that is a Jordan frame of  . Finally, 
by an algebraic asymptotic analysis of the second spectral decomposition of 
some Hadamard series associated to A we establish some inequalities over the 
spectra and over the parameters of a strongly regular graph. 
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1. Introduction 

Good surveys on Euclidean Jordan algebras can be found in books such as A 
Taste of Jordan Algebras of Kevin McCrimmon [1], Analysis on Symmetric 
Cones of Faraut and Korányi [2] and in the Koecher’s Minnesota Notes on Jor-
dan Algebras and Their Applications [3]. Euclidean Jordan algebras become a 
good tool for the analysis of primal dual interior point methods [4] [5] [6] and 
[7]. But they have also a lot of applications on other branches of mathematics 
namely on the formalism of quantum mechanics [8], on combinatorics [9]-[15], 
and on statistics [16]. Recently, many authors had extended some properties of 
matrix theory to the Euclidean Jordan Algebras, see for example [17] [18] and [19]. 

In this paper we analyse the spectra of Hadamard series associated to the ad-
jacency matrix of a strongly regular graph to deduce asymptotic inequalities on 
the spectra and on the parameters of a strongly regular graph in the environ-
ment of Euclidean Jordan algebras. 
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The plan of this paper is as follows. In Section 2 we expose the principal defi-
nitions and results on Euclidean Jordan algebras. Next, in Section 3 we present 
the more relevant definitions and results on strongly regular graphs necessary 
for a clear exposition of this paper. Finally, in Section 4 we associate a three di-
mensional real Euclidean Jordan algebra A to a strongly regular graph and next 
we establish asymptotic inequalities on the spectra and on the parameters of a 
strongly regular graph, see (10) and (20) of Theorem 4 and 5 respectively. 

2. A Short Introduction to Euclidean Jordan Algebras 

Herein, we make an introduction to Euclidean Jordan algebras and present the 
definitions and the more relevant results needed for this paper without present-
ing the proofs of the results presented in this paper, since they are very well de-
duced in the monograph Analysis on symmetric cones of Faraut and Korányi, 
see [2]. 

Let   be a vector space of finite dimension over a field   with the bili-
near mapping ( ): ,u v u v• •  from ×   to  . Then,   is called a 
power associative algebra if for any x∈  the subalgebra of   spanned by 
the powers of x is associative. If for all u and v in   we have ( 1J ) u v v u• = •  
and ( 2J ) ( ) ( )2 2u u v u u v• • = • • , with 2u u u= • , then   is called a Jordan 
algebra. 

If   is a Jordan algebra with unit element, then   is power associative (cf. 
[2]). 

Example 1. Let n be a natural number and A and B be two real matrices of 
order n. Then it is well known that in general AB BA≠  where AB and BA 
represents the usual products of the matrices A by B and the usual product of the 
matrix B by A. Nevertheless, the multiplication •  define such that  

( )1
2

A B AB BA• = +   

for all real matrices A and B of order n verifies A B B A• = • . Now, we will 
show that, for any two real square matrices A  and B  of order n, we have 

( ) ( )2 2A A B A A B• • = • • . Indeed, we have that  

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( )

2 2 2 2 2

2 2 2 2

2 2 2 2

2 2

2

4

4 .

A A B A A B BA A B BA A

A A B A BA A B A BA A

A AB AB A A BA BA A

A AB BA AB BA A

A A B

• • = + + +

= + + +

= + + +

= + + +

= • •

 

And, therefore we have ( ) ( )2 2A A B A A B• • = • • . Hence, the vector space 
( )n=    over the field of the real numbers with the operation •  is a Jor-

dan algebra. But, we must also say that with this operation, • , the square of a 
real matrix of order n is such that A A AA• =  where AA represents the usual 
product of matrices. One proves by induction that the power of order n relative-
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ly to the product •  of a matrix A  is equal to the usual power of order n of A. 
The subalgebra ( )Sym ,n   of   formed by the real symmetric matrices of 
order n of   with the operation •  is also a Jordan algebra.  

Remark 1. If   is a vector space over a field   with characteristic distinct 
from 2 with the operation   from ×   onto   such that   with this 
operation is an associative algebra, then   becomes a Jordan algebra when  

equipped with the operation •  such that1 
2

x y y xx y +
• =

  .  

From now on, we only deal with real Jordan algebras with finite dimension 
and with unit and we will denote it by e , and when we say let   be a Jordan 
algebra we are meaning that we are saying that   is a real Jordan algebra with 
the element e  and is of finite dimension. 

Let   be a Jordan algebra with the operation •  of multiplication of two 
elements of   with unit element e. If there is an inner product ,⋅ ⋅  on   
such that , ,u v w v u w• = • , for any u, v, w in   then   is called an Euc-
lidean Jordan algebra. 

Sometimes, we will say let   be an Euclidean Jordan algebra and we will use 
the notation x y•  to represent the product of the elements x and y and ,x y  
to represent the inner product of x and y. Or, we will say let ( ), , , ,A • − − e  be 
an Euclidean Jordan algebra.  

Remark 2. Let   be an algebra over a field   equipped the operation of 
multiplication •  from ×   to   and with a inner product ,− − . Some-
times one defines for any u∈  the linear operator ( ) ,L u v u v v= • ∀ ∈  to 
express that ( ), , <,>•  is an Euclidean Jordan algebra if and only if 
( ) ( ) , ,L x y L y x x y= ∀ ∈  and ( ) ( ) ( ) ( )2 2 ,L x L x L x L x x= ∀ ∈  and 
( ) ( ), , , , ,L x y z y L x z x y z= ∀ ∈ .  

Some examples of Euclidean Jordan algebras over the real numbers are:   
1) the n dimensional Euclidean Jordan algebra n=   endowed with the 

product x y•  and ,x y  defined in the following way: for  

( )1 2, , , n
nx x x x= ∈   and for ( )1 2, , , n

ny y y y= ∈    

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , ,n n n nx y x x x y y y x y x y x y= • =     

and 1, n
i iix y x y

=
= ∑ . The unit element of   is ( )1,1, ,1=e  .  

2) the Euclidean Jordan algebra n=  , with 2n ≥  and with the opera-
tions x y•  and ,x y  defined in the following way: for ( )1 2, , , nx x x x=   
and ( )1 2, , , ny y y y=  ,  

( )T
1 2 1 2 1 3 1 3 1 1, , , , n nx y x y x y y x x y y x x y y x• = + + +  

and 1, n
i iix y x y

=
= ∑ . The unit element of   is ( )1,0, ,0= e .  

3) the Euclidean Jordan algebra of real symmetric matrices of order n,  

( )Sym ,n=   endowed with the Jordan product 
2

xy yxx y +
• =  and the  

 

 

1We must note that x y• ∈ , since we have 

( ) ( ) ( )2 2 2

2 2 2
x y x y x y x y x x y y x y y x+ − − + + − − +

= =
      
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inner product defined by ( ), trx y x y= • , where tr denotes the usual trace of 
matrices. The unit element of   is the identity matrix of order n, nI .  

4) The Euclidean Jordan algebra of self adjoint complex matrices of order n, 
( )nH C  with  

2
xy yxx y +

• =   

and ( )( ), Re trx y x y= •  for x and ( )ny H C∈ .  
5) the Euclidean Jordan algebra of self adjoint quaternionic matrices of order 

n, ( )nH H  with  

2
xy yxx y +

• =   

and ( )( ), Re trx y x y= •  for x and ( )ny H H∈ .  
6) the Euclidean Jordan algebra of self adjoint octonionic matrices of order 3, 
( )3H O  with  

2
xy yxx y +

• =   

and ( )( ), Re trx y x y= •  for x and ( )3y H O∈ .  
From now on, we will suppose that when we say let   be an Euclidean Jor-

dan algebra we suppose that   is a real finite dimensional Euclidean Jordan 
algebra with unit element, that we will denote by e and for a more explicit writ-
ing sometimes we will say let ( ), , , ,• − − e  be an Euclidean Jordan algebra 
for meaning that   is an Euclidean Jordan algebra with the operation •  of 
two elements of   and equipped with the inner product ,− −  and that   
has the unit element e.  

Let consider the Euclidean Jordan algebra ( ), , , ,• − − e . An element 
b∈  is an idempotent if 2b b= . Two idempotents c and d in   are ortho-
gonal if 0c d• = . Herein, we must say that if two elements of the Euclidean 
Jordan algebra   are orthogonal relatively to the product •  of the Euclidean 
Jordan algebra   then they are also orthogonal relatively to the inner product 
of this Euclidean Jordan algebra. Indeed, if 0x y• =  then we have  

, , , 0, 0.x y x y y x= • = • = =e e e  

Let l be a natural number. The set { }1 2, , , lf f f  is a complete system of or-
thogonal idempotents if the following three conditions hold: 1) 2

i if f= , for 
1, ,i l=  , 2) 0i jf f• = , if i j≠ , and 3) 1

l
ii f

=
=∑ e . An idempotent f is primi-

tive if it is a non-zero idempotent of   and cannot be written as a sum of two 
orthogonal non-zero idempotents. We say that { }1 2, , , lf f f  is a Jordan frame 
if { }1 2, , , lf f f  is a complete system of orthogonal idempotents such that each 
idempotent is primitive.  

Example 2. Let consider the Euclidean Jordan algebra ( )Sym 3,=   with  
the Jordan product  

, ,
2

xy yxx y x y+
• = ∀ ∈   

https://doi.org/10.4236/am.2018.99071


L. Vieira 
 

 

DOI: 10.4236/am.2018.99071 1059 Applied Mathematics 
 

and the inner product ( ), trx y x y= • . We will show that  

{ }
1 0 0 0 0 0

, 0 1 0 , 0 0 0
0 0 0 0 0 1

c d
    
    = =     
        

   

is a complete system of orthogonal idempotents of  . First, we must note that  

2 2

2
xx xxx x x xx x+

= • = = = .  

So the Jordan square of an element of   is the usual square of a symmetric 
matrix. Now since 2c c= , 2d d= , 0c d• =  and 3c d I+ = , then   is a 
complete system of orthogonal idempotents of  , but S is not a Jordan frame 
of   since c f g= +  with  

1 0 0
0 0 0
0 0 0

f
 
 =  
  

 and 
0 0 0
0 1 0
0 0 0

g
 
 =  
  

,  

and 2f f=  and 2g g=  and  

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0

f g
     
     • = • =     
          

.  

Let consider the Euclidean Jordan algebra ( ), , , ,• − − e . The rank of an 
element x in   is the least natural number l, such that the set { }, , , le x x  is 
linearly dependent (where 2x x x= •  and 1k kx x x −= • ), and we write 

( )rank x l= . This concept is expanded by defining the rank of the algebra   as 
being the natural number  

( ) ( ){ }rank max rank :r u u= = ∈  .  

The elements of   with rank equal to the rank of   are the regular elements 
of  . This set of the regular elements of   is an open and dense set in  . If 
u is a regular element of  , with ( )rankr u= , then the set { }2, , , , re u u u  is 
linearly dependent and the set { }2 1, , , , re u u u −

  is linearly independent. Thus, 
we may conclude that there exist unique real numbers ( ) ( )1 , , ra u a u , such that  

( ) ( ) ( )1
1 1 0rr r

ru a u u a u e−− + + − = ,  

where 0 is the null vector of  . Making the necessary adjustments we obtain 
the polynomial in λ , ( ),p u −  such that  

( ) ( ) ( ) ( )1
1, 1 .rr r

rp u a u a uλ λ λ −= − + + −               (1) 

The polynomial ( ),p u −  is called the characteristic polynomial of u, where 
each coefficient ia  is a homogeneous polynomial of degree i in the coordinates 
of u in a fixed basis of  . Although the characteristic polynomial ( ),p u −  is 
defined for a regular element of  , we can extend the definition of characteristic 
polynomial to all elements of   by continuity since each polynomial ia  is 
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homogeneous and the set of regular elements of   is dense in  . Herein, we 
must say that the characteristic polynomial of a regular element of   coincides 
with his minimal polynomial and for a non regular element the minimal poly-
nomial of this element divides its characteristic polynomial. 

Herein, we will justify the reason to call the polynomial ( ),p x −  the charac-
teristic polynomial of x when x is regular. Let x be a regular element of the Euc-
lidean Jordan algebra  , ( )0L x  represent the restriction of the operator 
( )L x  to the space [ ]x  and let ( )rankr A= . Now since x is a regular ele-

ment of   then we can say that { }2 3 1, , , , re x x x −=   is a basis of [ ]x . Now, 
let express the images of the elements of the basis   by the linear application 

( )0L x  on the basis  . Hence, we present the following calculations:  

( )( )
( )
( )( )

( )( )
( ) ( ) ( ) ( ) ( ) ( )

1
0

2 2 1
0

2 3 2 3 1
0

2 1 2 1
0

11 1
0 1 1

0 1 0

0 0 1 0

0 0 0 1 0

0 0 0 1

1 1 .

r

r

r

r r r

r rr r r
r r

L x x x x

L x x x x x x

L x x x x x x x

L x x x x x x

L x x a x a x x a x x

−

−

−

− − −

−− −
−

= = + + +

= = + + + +

= = + + + + +

= = + + + +

= = − − − − − +

e e

e

e

e

e













 

Therefore the matrix of the operator ( )0L x  on the basis   is  

( )

( ) ( )
( )( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )( )

0

1
1

2
2

1

1
1

1

0 0 0 0 1

1 0 0 0 1 1

0 1 0 0 1

0 0 0 1

0 0 0 0 1

1 0 0 0 0 1
.0 1 0 0 0

0 0 0 1

r
r

r
r

r
L x r

r
r

r
r

a x

a x
M a x

a x

a x

a x

a x

−
−

−
−

−
−

 − −
 
 − − −
 = − − 
 
 
  
 − −
 
 − −
 =  
 
 

− −  







     









     



 

Now, we have  

( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )

( )
0

1
1

2
2

1

0 0 0 1

1 0 0 1
, .0 1 0 1

0 0 0 1

r
r

r
r

r
r L x r

a x

a x
I M p xx a x

a x

λ

λ
λ λλ

λ

−
−

−
−

− −

− −
− = =− −

−







     



 

The roots of the characteristic polynomial of ( ) 1 2 1, , , , , , rx p x λ λ λ −−   and 

rλ , are called the eigenvalues of x. Furthermore, the coefficients ( )1a x  and 
( )ra x  of the characteristic polynomial of x, are called the trace and the deter-

minant of x, respectively. We most note that when x is regular element of   
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then ( )( ) ( )
0 1trace L xM a x=  and that ( ) ( )

0 rL xM a x= . 
Remark 3. For a clear understanding of the theory of Euclidean Jordan alge-

bras a very good readable survey is the chapter 5, An Introduction to Formally 
Real Jordan Algebras and Their Applications in Optimization written by Farid 
Alizadeh in the book [20].  

Theorem 1. ([2], p. 43). Let   be a real Euclidean Jordan algebra. Then for 
u in   there exist unique real numbers l∈ , 1 2, , , lλ λ λ , all distinct, and a 
unique complete system of orthogonal idempotents { }1 2, , , lf f f  such that  

1 1 2 2 .l lu f f fλ λ λ= + + +                     (2) 

The numbers jλ ’s of (2) are the eigenvalues of u and the decomposition (2) is 
the first spectral decomposition of u. 

Example 3. Let A be a matrix of the Euclidean Jordan algebra ( )Sym ,n=   
If A is a matrix with l distinct eigenvalues 1 2 1, , , lλ λ λ −  and lλ , then the com-
plete system of orthogonal idempotents associated to A is the set 

{ }1 2, , , lf f f=   where each idempotents if  for 1, ,i l=   is the projector 
on the eigenvector space of A associate to the eigenvalue iλ  defined by the 
equalities (3)  

( )
( )

1,

1,

l
j nj j i

i l
j ij j i

I A
f

λ

λ λ
= ≠

= ≠

−
=

−

∏
∏

                     (3) 

for 1, ,i l=  . We must say, that they are unique. We first note that since if s 
are projectors then we have 1 2n lI f f f= + + + , { }0, , , 1, ,i jf f i j i j l= ∀ ≠ ∈   
then 0i jf f• =  and 2

i if f=  for 1, ,i l=   and we have 1
l

i iiA fλ
=

=∑  is the 
first spectral decomposition associated to A.  

But there is another way, for a clear exposition of this method of calculation 
see [20], to construct the idempotents if ’s on a more practically way. So will 
describe the method of construction of the idempotents. We have 

1 , 0, , 1lj j
i iiA f j lλ

=
= ∀ = −∑  . So we obtain the following system 

1 2

1 1 2 2
2 2 2 2

1 1 2 2

1 1 1 1
1 2 2

n l

l l

l l

l l l l
l l

I f f f
A f f f
A f f f

A f f f

λ λ λ
λ λ λ

λ λ λ− − − −

= + + +
 = + + + = + + +



= + + +











                 (4) 

Since the matrix of the coefficients of the system (4), considering if  for 
1, ,i l=   as unknowns and 2, ,nI A A  and 1lA −  as constants, is a non singular 

matrix since this is the transpose of the Vandermond matrix2, then using the 
Crammer rule we obtain that  

 

 

2We must note that  

{ }
( )1 1 1

, 1, , ,

1 1 1 1 1
1 1 1

1 1 1 1 1

.i i i l
j i

i j l j i

l l l l l
i i i l

λ λ λ λ λ
λ λ

λ λ λ λ λ

− +

∈ >

− − − − −
− +

= −∏


 

 

      

 
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1 1 1

1 1 1 1 1
1 1 1

1 1 1

1 1 1 1 1
1 1 1

1 1 1 1

1 1 1 1 1

n

i i l

l l l l l
i i l

i

i i i l

l l l l l
i i i l

I
A

A
f

λ λ λ λ

λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

− +

− − − − −
− +

− +

− − − − −
− +

=

 

 

      

 

 

 

      

   

 

for 1, ,i l=  . 
Let now present a practical example. Let consider an element of the Euclidean  

Jordan algebra ( )Sym 3,=  , 
1 2 0
2 1 0
0 0 1

A
 
 =  
  

. We have that the characteristic 

polynomial of A is ( ) ( )( )( )3 1 1 3Ap I Aλ λ λ λ λ= − = − + − . Let consider the 
notation 1 21, 1λ λ= = −  and 3 3λ = . Now a complete system of orthogonal 

idempotents associated to A is { }1 2 3, ,f f f=  with  

3

2 2
3

1

1 1
1 3

0 0 0
1 9 12 8 4

0 0 0 ,
1 1 1 16

0 0 1
1 1 3
1 1 9

I
A
A I A Af

−
 

− − +  = = =  −
  −

 

3

2 2
3

2

1 1 1 1 01 3 2 2
1 9 6 8 2 1 1 0 ,
1 1 1 16 2 2

0 0 01 1 3
1 1 9

I
A
A I A Af

 − 
 

− + −  = = = − −
 

−  
  

 

3

2 2
3

3

1 1 1 1 01 1 2 2
1 1 2 0 2 1 1 0 .
1 1 1 16 2 2

0 0 01 1 3
1 1 9

I
A
A I A Af

 
 −
 

− −  = = =  −
 

−  
  

 

Theorem 2. ([2], p. 44). Let   be a real Euclidean Jordan algebra with 
( )rank r= . Then for each u in   there exists a Jordan frame { }1 2, , , rf f f  

and real numbers 1 1, , rλ λ −  and rλ  such that  

1 1 2 2 .r ru f f fλ λ λ= + + +                      (5) 

The decomposition (5) is called the second spectral decomposition of u.  
Remark 4. Now, let suppose that the n-finite dimensional real Euclidean Jor-

dan algebra   verifies ( )rank n= . Since the set of regular elements of   
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is dense in  , then let x be one of his regular elements. So, there exists a unique 
complete system of orthogonal idempotents { }1 2, , , nf f f=   such that 

1
n

i iix fλ
=

=∑ . But now we have that   is3 a linear independent set of  , 
therefore   is a basis of  .  

Example 4. Let   be the Euclidean Jordan algebra such ( )Sym ,n=    

equipped with the •  operation such that 
2

XY YXX Y +
• =  and equipped with  

the inner product ( ), trX Y X Y= •  and let B be a symmetric matrix of   
and let { }1, , nv v=   be an orthonormal basis of n  of eigenvectors of B 
with i i iBv vλ= , for 1, ,i n=  . We suppose that we are using the column nota-
tion, this is we consider the notation  

1

, 1, , .
i

i

in

v
v i n

v

 
 = ∀ = 
  

   

Let consider T
i i if v v=  for 1, ,i n=  . Then { }1 2, , , nf f f  is a Jordan 

frame of  . Indeed, let i be a natural number less or equal n, we have  

( )2 T T T T T T1 .i i i i i i i i i i i i i i i i i if f f f f v v v v v v v v v v v v f= • = = = = = =  

Let i and j be two natural numbers such that 1 ,i j n≤ ≤  and such that i j≠ . 
Then we have  

( ) ( )
( ) ( )

( ) ( )

T T

T T T T

T T
2

0 0
2

.

i j i i j j

i i j j j j i i

i j j i

n

f f v v v v

v v v v v v v v

v v v v

O

• = •

+
=

+
=

=

 

where nO  is the real null matrix of order n.  
So, we have proved that two any distinct idempotents if s are orthogonal. Fi-

nally, since { }1 2, , , nv v v  is an orthonormal basis of n  then we have 
T T T

1 1 2 2 n n nv v v v v v I+ + + = , therefore we have 1 2 n nf f f I+ + + = . Hence, we 
have proved that   is a Jordan frame of the Euclidean Jordan algebra  . Fi-
nally, since i i iBv vλ=  for 1, ,i n=   then we have  

( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 2

T T T
1 1 2 2

T T T
1 1 2 2

T T T
1 1 1 2 2 2

T T T
1 1 2 2

1 1 2 2 .

n n

n n

n n

n n n

n n n

n n

B BI B f f f

B v v v v v v

Bv v Bv v Bv v

v v v v v v

v v v v v v
f f f

λ λ λ

λ λ λ
λ λ λ

= = + + +

= + + +

= + + +

= + + +

= + + +

= + + +













 

Then the second spectral decomposition of B is 1
n

i iiB fλ
=

=∑ .  

 

 

3Note that any two distinct elements of   are orthogonal relatively to the inner product of the 
Euclidean Jordan algebra  . 

https://doi.org/10.4236/am.2018.99071


L. Vieira   
 

 

DOI: 10.4236/am.2018.99071 1064 Applied Mathematics 
 

3. Some Notions on Strongly Regular Graphs 

A graph G non complete and non null is a strongly regular graph with parame-
ters ( ), ; ,n k λ µ  if G is k-regular if for any two adjacent vertices of G have ex-
actly λ  common neighbors and any two non-adjacent vertices have µ  com-
mon neighbors. 

We will say, sometimes that G is a ( ), ; ,n k λ µ  strongly regular graph if G is a 
strongly regular graph with parameters ( ), ; ,n k λ µ . 

Let G be a ( ), ; ,n k λ µ  strongly regular graph. It is well known that the adja-
cency matrix of G, ijA a =   , that is a binary matrix of order n such that 1ija = , 
if the vertex i is adjacent to j and 0 otherwise, satisfies the equation  

( )2
n n nA kI A J A Iλ µ= + + − − ,  

where nJ  is the all one matrix of order n. The eigenvalues of G, see for instance 
[21], are k, θ  and τ , where θ  and τ  are given by  

( ) ( )( )2 4 2kθ λ µ λ µ µ= − + − + −  and  

( ) ( )( )2 4 2kτ λ µ λ µ µ= − − − + − , (see [21]). 

We must observe that G is a ( ), ; ,n k λ µ  strongly regular graph if and only if 
the complement graph of G, G  is a ( ), 1; 2 2, 2n n k n k n kµ λ− − − + − − +  
strongly regular graph. We must also note that the multiplicities of the eigenvalues  
θ  and τ  of G are: 

n k
mθ

τ τ
θ τ
+ −

=
−

 and 
n kmτ

θ θ
θ τ
+ −

=
−

 respectively. 

From now on, we will present some well known admissibility conditions on 
the parameters of a strongly regular graph. 

We now present in Theorem 3 an admissibility relationship between the pa-
rameters of a strongly regular graph. 

Theorem 3. Let G be a ( ), ; ,n k λ µ  strongly regular graph. Then 
( ) ( )1 1k k n kλ µ− − = − − .  
L.L. Scott in [22] established the Krein admissibility conditions (6) and (7).  

( )( ) ( )( )21 2 1k kθ θ θτ θ τ+ + + ≤ + +                (6) 

( )( ) ( )( )21 2 1 .k kτ τ θτ τ θ+ + + ≤ + +                (7) 

Finally, we couldn’t help of presenting the admissibility conditions on the or-
der of a strongly regular graph G and on the multiplicity of each eigenvalue dis-
tinct from the regularity of G, known as the absolute bounds introduced by Del-
sarte, Goethals and Seidel [23], which we present on the inequalities (8) and (9).  

( )3
,

2
m m

n θ θ +≤                        (8) 

( )3
.

2
m m

n τ τ +≤                        (9) 
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A strongly regular graph G is called primitive if G and G  are connected. A 
strongly regular graph that is not primitive is called an imprimitive strongly reg-
ular graph. But, we must say, that a ( ), ; ,n k λ µ  strongly regular graph G is im-
primitive if and only if 0µ =  or kµ = , since we analyse only non complete 
strongly regular graphs then we can conclude that if G is a primitive strongly 
regular graph then 0 kµ< < . In this paper we consider only primitive strongly 
regular graphs. In the section 4 we present some admissibility conditions on the 
spectra and on the parameters of a strongly regular graph but obtained on 
asymptotic algebraic way. 

4. Binomial Hadamard Series and Inequalities over the  
Spectra of a Strongly Regular Raph 

Let G be a ( ), ; ,n k λ µ  strongly regular graph with 0 1k nµ< < < −  and let A 
be its adjacency matrix with the distinct eigenvalues, namely k, θ  and τ . Now 
let   be 3 dimensional real Euclidean subalgebra, with ( )rank 3A = , of the 
Euclidean Jordan algebra ( )Sym ,n=   spanned by nI  and the natural 
powers of A.  

Now, we consider the unique complete system of orthogonal idempotents 
{ }1 2 3, ,E E E=  of   associated to A, with  

( )1 1 1 1n n nE nI nA n J A I= + + − − , 

( ) ( )( ) ( ) ( )( )
( ) ( )( )( )

2

       
n

n n

E n k n I n k n A

k n J A I

τ τ θ τ τ θ τ

τ θ τ

= + − − + + − −

+ − − − −
,  

and  

( ) ( )( ) ( ) ( )( )
( ) ( )( )( )

3

       
n

n n

E n k n I n k n A

k n J A I

θ θ θ τ θ θ τ

θ θ τ

= + − − + − + − −

+ − − − −
.  

Let ,i j  be natural numbers such that 1 , 3i j≤ ≤  and i j≠ . So, since the 
idempotents iE  and jE  are orthogonal relatively to the Jordan product of 
matrices, then they are orthogonal relatively to the inner product  

( ), tr , ,X Y X Y X Y= • ∀ ∈   

they are also orthogonal to the inner product ( )1, trX Y XY= , for all 
,X Y ∈ . Therefore we conclude that { }1 2 3, ,S E E E=  is a basis of  . 
Now, we will consider some notation for defining the Hadamard product and 

the Kronecker product of two matrices. We denote the space of real square ma-
trices of order n by ( )n   and we define the Hadamard product and the 
Kronecker product of two matrices E and F of order n of ( )n   in the fol-
lowing way: if ijE e =    and ijF f =   , then we define ij ijE F e f =    and 

ijE F e F ⊗ =    for all { }, 1, ,i j n∈  . For any natural number l and for any 
matrix ( )nH M∈   we define lH   like as follows: 0 1,nH J H H= =   and 
for 2l ≥  we define ( )1llH H H−= 



  (see [24]). 
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Let x be a real number such that 0 1x≤ < , herein we analyze different Ha-
damard series from the one used on the publication [9] but we use a algebraic 
method similar to the method that was used in the paper [9]. Let consider the 
binomial Hadamard series  

( )
2

0 1
j

j
x j

x AS
j k τ

+∞

=

 − 
= −    +  
∑



.  

Then 3
1x ix iiS q E
=

= ∑  is the spectral decompositions of xS  respectively to the 
Jordan frame { }1 2 3, ,E E E=  of  . Now, we will show that the eigenvalues 

ixq s of xS  are positive. We have  

( ) ( ) ( )( )( ) ( )1 2 1
1 1

!
j jx x x x x j

j j
− − − − − − − − + 

− = − 
 



 

and therefore  

( ) ( ) ( )( )( ) ( )2 1 2 1
1 1 0.

!
j jx x x x x j

j j
− + + + − 

− = − ≥ 
 



 

We denote the partial sum of order n of the Hadamard series  

( )
2

0 1
j

j
j

x A
j k τ

+∞

=

 − 
−    +  

∑


  

by nxS . Hence  

( )
2

0 1
j

jn
nx j

x AS
j k τ=

 − 
= −    +  
∑



  

and let consider the notation 1 1 2 2 3 3nx n x n x n xS q E q E q E= + + . 

Now we must note the eigenvalues of 
2A

k τ+
 are positive and that for any  

two real matrices E and F of order n we have ( ) ( ) ( )min min minE F E Fλ λ λ≤  , 
and we must also observe that since   is a Jordan frame of the Euclidean Jor-
dan algebra   that is a basis of   and this Euclidean Jordan algebra is 
closed for the Hadamard product then we conclude that the eigenvalues of nxS  
are all positive. 

Since 1 1limx n n xq q→+∞= , 2 3limx n n xq q→+∞= , 3 3limx n n xq q→+∞=  then we have 

1 20, 0x xq q≥ ≥  and 3 0xq ≥ . 
We have 1 1 1 2 2 2,x x x xS E q E S E q E= =  and 3 3 3x xS E q E= , and  

( )1
1 1 1 1

1 1 1
x x x xq k n k

k
k k k

λ µ
τ τ τ

= + + − −
     
− − −          + + +     

,  

( )2
1 1 1 1

11 1
x x x xq

k
kk k

θ θ
θλ
µτ τ

= + + − −
     

−− −         ++ +     

,  
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( )3
1 1 1 1

1 1 1
x x x xq

k
k k k

τ τ
λ µ

τ τ τ

= + + − −
     
− − −          + + +     

. 

By an asymptotical analysis of the eigenvalues 2xq  and 3xq  we establish the 
inequalities (10) and (20) of Theorem 4 and of Theorem 5 respectively. 

Theorem 4. Let G be a ( ), ; ,n k λ µ -strongly regular graph with 
0 1k nµ< < < −  and with the distinct eigenvalues ,k θ  and τ . If µ λ>  then  

.
k k

k

θ
τ µ τ λ
τ τ µ

 + − + −
≥   + − 

                  (10) 

Proof. Let write the binomial series  

( )
2

0 1
j

j
j

x A
j k τ

+∞

=

 − 
−    +  

∑


  

on the basis { }, ,n n nI A J A I= − −  of the Euclidean Jordan algebra  . 
Since ( )2

n n nA kI A J A Iλ µ= + + − −  then we have  

( )

( ) ( )

( ) ( )

( ) ( )

2

0

0

0 0

0

1

1 ,

1 1

1 .

j
j

x
j

j
j

n n n
j

j j
j j

n
j j

j
j

n n
j

x AS
j k

x k I A J A I
j k k k

x xk I A
j jk k

x
J A I

j k

τ

λ µ
τ τ τ

λ
τ τ

µ
τ

+∞

=

+∞

=

+∞ +∞

= =

+∞

=

 − 
= −    +  

 − 
= − + + − −   + + +  

   − −   
= − + −         + +      

 − 
+ − − −   +  

∑

∑

∑ ∑

∑





 



   (11) 

Therefore, we conclude that  

( )1 1 1 .

1 1 1
x n n nx x xS I A J A I

k
k k k

λ µ
τ τ τ

= + + − −
     
− − −          + + +     

  (12) 

Since 2 2 2x xS E q E=  then  

( )2
1 1 1 1 .

1 1 1
x x x xq

k
k k k

θ θ
λ µ

τ τ τ

= + + − −
     
− − −          + + +     

     (13) 

Since 2 0xq ≥  and λ µ<  then rewriting (13) we obtain  

1 1 1 1 0
11 1 1

x x x x
k

kk k k

θ
λµ µ
θτ τ τ

 
 
 

− − − ≥ 
        −− − −              + + + +      

. 

And therefore  
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1 1 1 1 .

1 1 1 1
x x x x

k
k k k k

θ
µ µ λ

τ τ τ τ

 
 
 

− ≥ − 
        
− − − −               + + + +        

    (14) 

After some algebraic manipulation of (14) we obtain the inequality (15). 

1 1 1
1 .

1 1 1

x x x

x x x

k
k k k

k
k k k

λ µ
τ τ τ

θ
λ µ
τ τ τ

     
− − − −          + + +     ≥ ⋅

     
− − − −          + + +     

           (15) 

Now, applying limits as x tends to zero to both hand sides of (15) we obtain (16). 

0

1 1 1
1 lim .

1 1 1

x x x

x x xx

k
k k k

k
k k k

λ µ
τ τ τ

λ µ
τ τ τ

→

     
− − − −          + + +     ≥

     
− − − −          + + +     

          (16) 

Recurring to the rule of L’Hopital to the second factor of the right hand side 
of (16) we obtain (17)  

ln 1 ln 1
1 .

ln 1 ln 1

k k

k
k k

λ µ
τ τ

θ
µ
τ τ

   
− − −      + +   ≥

   
− − −      + +   

               (17) 

Recurring to the properties of logarithms on the right hand side of the inequa-
lity (17) we deduce (18). 

ln
1 .

ln

k
k

k

τ λ
τ µ

θ
τ µ
τ

 + −
  + − ≥
 + −
  
 

                     (18) 

Rewriting (18) we obtain the inequality (19)  

.
k k

k

θ
τ µ τ λ
τ τ µ

 + − + −
≥   + − 

                   (19) 

Theorem 5. Let G be a ( ), ; ,n k λ µ -strongly regular graph with 
0 1k nµ< < < −  and with the distinct eigenvalues ,k θ  and τ . If λ µ>  then  

.
k k

k

τ
τ µ τ µ
τ τ λ

 + − + −
≥   + − 

                  (20) 

Proof. Since 3 0xq ≥ , µ λ<  and  

( )3
1 1 1 1 0

1 1 1
x x x xq

k
k k k

τ τ
λ µ

τ τ τ

= + + − − ≥
     
− − −          + + +     
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then, we have (21). 

1 1 1 1 0.

1 1 1 1
x x x x

k
k k k k

τ
µ λ µ

τ τ τ τ

 
 
 

− + − ≥ 
        
− − − −               + + + +        

 (21) 

After some algebraic manipulation of (21) we obtain (22).  

1 1 1 1 .

1 1 1 1
x x x x

k
k k k k

τ
µ λ µ

τ τ τ τ

 
 
 

− ≥ − 
        
− − − −               + + + +        

  (22) 

After a rewriting of the inequality (22) we deduce (23). 

1 1 1
1 .

1 1 1

x x x

x x x

k
k k k

k
k k k

µ λ
τ τ τ

τ
λ µ
τ τ τ

     
− − − −          + + +     ≥ ⋅

     
− − − −          + + +     

        (23) 

Applying limits as x tends to zero to both hand sides of (23) we obtain inequa-
lity (24).  

0

1 11
1 lim .

1 1 1

x x
x

x x xx

k
k kk

k
k k k

µ λ
τ τθ τ

λ µ
τ τ τ

→

     − − −   −     + ++     ≥
     
− − − −          + + +     

       (24) 

Applying the rule of l’Hopital to the second factor of the right hand side of (24) 
as x tends 0 we deduce (25). 

ln 1 ln 1
1 .

ln 1 ln 1

k k

k
k k

µ λ
τ τ

τ
µ
τ τ

   
− − −      + +   ≥

   
− − −      + +   

              (25) 

Recurring to the properties of logarithms we deduce from (25) the inequality 
(26).  

ln
1 .

ln

k
k

k

τ µ
τ λ

τ
τ µ
τ

 + −
  + − ≥
 + −
  
 

                    (26) 

And, finally from (26) we conclude that 
k k

k

τ
τ µ τ µ
τ τ λ

 + − + −
≥   + − 

.  

Now, considering the elements of  ,  
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( )
2

3 0 1
j

j
j

x AS E
j kθ τ

+∞

=

  −  = −     +   
∑



  

and ( )
2

3 0 1
j

j
j

x AS E
j kτ θ

+∞

=

 −    = −    +   
∑



   

and analysing the eigenvalues 1q θ  and 1q τ  of the spectral decompositions 

1 1 2 2 3 3S q E q E q Eθ θ θ= + +  and 1 1 2 2 3 3S q E q E q Eτ τ τ τ= + +  respectively, and 
making similars algebraic asymptotic analysis to that done on the proofs of 
Theorems 4 and 5 we deduce the inequalities (27) and (28) of Theorem 6. 

Theorem 6. Let G be a ( ), ; ,n k λ µ -strongly regular graph with  
0 1k nµ< < < −  and with the distinct eigenvalues ,k θ  and τ . If 

2
nk <  and 

λ µ>  then  
2 1

,
k

k k
k

θ
τ µ τ µ
τ τ λ

+
   + − + −

≥      + −   
               (27) 

2 1

.
kk k

k

θθ µ θ µ
θ θ λ

++ − + −   ≥   + −   
                (28) 
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