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Abstract 
In this paper, we construct a backward difference scheme for a class of SIR 
epidemic model with general incidence f. The step size τ  used in our dis-
cretization is one. The dynamical properties are investigated (positivity and 
the boundedness of solution). By constructing the Lyapunov function, the 
general incidence function f must satisfy certain assumptions, under which, 
we establish the global stability of endemic equilibrium when 0 1R > . The 
global stability of diseases-free equilibrium is also established when 0 1R ≤ . 
In addition we present numerical results of the continuous and discrete mod-
el of the different class according to the value of basic reproduction number 

0R . 
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1. Introduction 

In certain epidemiological modeling, the population is generally divided into 
three classes which are susceptible represented by S, infected individual 
represented by I and recovered individual represented by R. This kind of ma-
thematical model is noted SIR. Recently, many authors have studied the dynam-
ical behavior of epidemic models (see [1] [2] [3] and references therein). There 
are two kinds of mathematical models: The continuous-time models described 
by differential equations, and the discrete-time models described by difference 
equations. The simplest forms of these models are Ordinary Differential Equations 
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(ODEs) [4] [5]. In [2], a discrete delay model is given to account for transmis-
sion by vectors (e.g. mosquitoes), where the delay τ  is used to account for a 
latent period in the vector. Allowing the vectors latency periods to vary accord-
ing to some distribution gives a model with a distributed delay [6]. 

The delay appears in the incidence term which is typically the only 
non-linearity, and is therefore the “cause” of all “interesting behavior”. Various 
forms have been used for the incidence term, both for ODEs and for delay equa-
tions. Common forms include mass action SIβ  [6] [7] [8], saturating  

incidence 
1

IS
cI

β
+

 [9] [10], and standard (or proportional) incidence SI
N

β   

[4] ( )N S I= + . Changing the form of the incidence function can potentially 
change the behavior of the system. 

In this paper we study the discrete mathematical model which result from the 
continuous-time model presented and study in [11] by C. Connell McCluskey.  

From this we use the general incidence term ( ) ( )
0

,
h

j
n n

j
k j f S Iβ

=
∑ , where 0h >  

is a time delay. We choose the constant β  so that ( )
0

1
h

j
k j

=

=∑ . The discrete  

model is obtained by using the backward Euler method. 
The studied of discrete epidemic models is motivate by the fact that there oc-

cur situations such that constructing discrete epidemic models is more appro-
priate approach to understand disease transmission dynamics and to evaluate 
eradication policies because they permit arbitrary time-step units, preserving the 
basic features of corresponding continuous-time models [12]. Furthermore, this 
allows better use of statistical data for numerical simulations due to the reason 
that the infection data are compiled at discrete given time intervals. For a dis-
crete epidemic model with immigration of infectives, Jang and Elaydi [13] 
showed the global asymptotic stability of the disease-free equilibrium, the local 
asymptotic stability of the endemic equilibrium and the strong persistence of 
susceptible class by means of the nonstandard discretization method. In he’s re-
cent work, using a discretization called “ mixed type” formula in Izzo and Vec-
chio [14] and Izzo et al. [15], Sekiguchi [16] obtained the permanence of a class 
of SIR discrete epidemic models with one delay and SEIRS (Suscepti-
ble-Latent-Infected-Recovered-Susceptible) discrete epidemic model with two 
delay if an endemic equilibrium of each model exists. 

This paper is organized as follows. In Section 2, we give the discrete model, 
the equilibrium point and the reproduction rate 0R . In Section 3, the positivity 
and boundedness of the solution of system (3) are obtained. In addition we 
proved the existence and uniqueness of disease-free equilibrium 0E  and en-
demic equilibrium *E . In Section 4, we study the stability of disease-free equi-
librium point for 0 1R ≤ . In Section 5, we study the global stability of the en-
demic equilibrium point for 0 1R > . In section 6, we give the numerical result 
and their comment. In the last part we give the conclusion. 
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2. Discrete Mathematical Model 

In this section we describe the discrete mathematical model derived by the con-
tinuous time model study in [11], by C. Connell McCluskey. This continuous 
time model is given by: 

( ) ( )

( ) ( ) ( )
0

0

, d ,

, d ,

,

h
S

h
I

R

S B S k f S I

I k f S I I

R I R

τ

τ

µ β τ τ

β τ τ µ γ

γ µ

 = − −


 = − +

 = −

∫

∫







               (1) 

where ( )I I tτ τ= − . 
1) A population is divided into susceptible, infectious and recovered classes 

with sizes ( )S S t= , ( )I I t=  and ( )R R t=  respectively. 
2) B is the recruitment of new individuals, it is into the susceptible class. 
3) Sµ , Iµ  and Rµ  denote respectively the death rates of susceptible, infec-

tious and recovered class. 
4) The total exit rate for infectious is Iµ γ+ , which, for biological reasons we 

assume is at least as large as Sµ ; that is, I Sµ γ µ+ ≥ . 

5) The incidence at time t is ( ) ( )
0

, d
h
k f S Iτβ τ τ∫  where the maximum delay  

0h > , k is a Lebesgue integral function which gives the relative infectivity of 
vectors of different infection ages. We choose β  so that ( )

0
d 1

h
k τ τ =∫ . It is 

assumed that the support of k has positive measure in any open interval having 
supremum h so the interval of integration is not artificially extended by con-
cluding with an interval for which the integral is automatically zero.  

The form of the function f is of fundamental importance. In this paper we use 
a general incidence function used in one of he’s discrete version. So we use as-
sumption: 

H1 f is a non-negative differentiable function on the non-negative quadrant. 
Furthermore, f is positive if and only if both arguments are positive. 

H2 for all ( ) 2,S I +∈  ( ) ( ),0 0, 0f S f I= = . 
The partial derivative of f are denoted by 1f  and 2f  from the first and 

second variable. 
H3 ( ) ( )0

2, ,0j
n n nf S I f S I≤  for all n. 

H4 
( )
( )

* * * *

1 11 1

,

, j
n nn n

f S I S I
S If S I + ++ +

≤ ≤  for all n. 

Now, we use the backward Euler difference scheme to discretize the model (1). 
The time step size of our discretization is one. Thus, we obtain the following 
discrete SIR epidemic model with nonlinear general incidence given by: 

( ) ( )

( ) ( ) ( )

1 1 1 1
0

1 1 1 1
0

1 1 1

,

,

h
j

n n S n n n
j

h
j

n n n n I n
j

n n n R n

S S B S k j f S I

I I k j f S I I

R R I R

µ β

β µ γ

γ µ

+ + + +
=

+ + + +
=

+ + +

 − = − −

 − = − +


− = −

∑

∑             (2) 
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where ( )jI I t j= − . 
Since R does not appear in the first and second equations of system above, it is 

sufficient to analyses the behavior of solutions of the following system: 

( ) ( )

( ) ( ) ( )

1 1 1 1
0

1 1 1 1
0

,

,

h
j

n n S n n n
j

h
j

n n n n I n
j

S S B S k j f S I

I I k j f S I I

µ β

β µ γ

+ + + +
=

+ + + +
=

 − = − −


 − = − +


∑

∑
         (3) 

The constants , , ,S IB µ µ γ  and the relation between this constants are given 
above. In the discrete model the incidence function at time t is  

( ) ( )1 1
0

,
h

j
n n

j
k j f S Iβ + +

=
∑ , 

where the maximum delay 0h > . Let ( ),E S I  be a equilibrium point model of 
(3) so we have, 

( )
( ) ( )

, 0

, 0
S

I

B S f S I

f S I I

µ β

β µ γ

− − =


− + =
                    (4) 

By adding the equations of system above we get  

( ) 0S IB S Iµ µ γ− − + =  

( ) .I

S

B I
S

µ γ
µ

− +
⇒ =                       (5) 

Let 0E  and *E  be respectively disease-free equilibrium and endemic equi-
librium point of model (3). The disease-free equilibrium correspond to the case 
where the infectious class is nil ( )0I = . Thus, we have ( )0 0 ,0E S= ; with  

0
S

BS
µ

= . The endemic equilibrium *E  is given by: ( )* * *,E S I= ; with  

( ) *
* I

S

B I
S

µ γ
µ

− +
= . 

Proposition 2.1. The basic reproduction number is given by ( )2 0
0

I

f E
R

β
µ γ

=
+

.  

Proof: The Jacobian matrix of system (3) at equilibrium 0E  is define by:  

( ) ( )
( ) ( )0

1 0 2 0

1 0 2 0

.
( )

S
E

I

f E f E
J

f E f E
µ β β
β β µ γ

 − − −
=   − + 

           (6) 

Let 

( ) ( )2 0 ,IA Eβ µ γ= − +                     (7) 

( )2 0 et .IM f E Dβ µ γ= = +                    (8) 

Thus, we have: 
1

0R MD−=                           (9) 

( )2 0
0 .

I

f E
R

β
µ γ

=
+

                       (10) 
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3. Basic Properties 

We suppose that initial condition of system (3) satisfy: 

( ) ( ) ( ) [ ]0 0 and for all ,0 ,S I hθ θ θ> = Φ ∈ −            (11) 

where [ ]( ),0 , ,C h +Φ∈ = −   the space of continuous functions from [ ],0h−  
to +  equipped with the sup norm: [ ] ( ),0sup hθ θ∈ −Φ = Φ . Standard theory of 
functional differential equations [17] can be used to show that the solution of (1) 
exist and are differentiable for all 0t > . We assume any initial condition for 
which the disease is initially present satisfies ( ) 0I θ >  for all [ ],0hθ ∈ − . 

Lemma 3.1. Let ( ),n nS I  be a solution of system (3) with initial condition 
(11), then we have 0nS >  and 0nI >  for all n.  

Proof: Assume that 0nS >  and 0nI > . From system (3) we have the fol-
lowing system: 

( ) ( ) ( )

( ) ( ) ( )

1 1 1
0

1 1 1
0

1 ,

1 , .

h
j

S n n n n
j

h
j

I n n n n
j

S B S k j f S I

I I k j f S I

µ β

µ γ β

+ + +
=

+ + +
=

 + = + −


 + + = +


∑

∑
           (12) 

By using second equation of system above and the fact that 0nI > , we have, 

1 0nI + > . So 0,nI n> ∀ ∈ . From the non-negativity of 1nS +  we used the as-
sumption H4. Thus, , 0n nS I >  for all n. 

Lemma 3.2. Any solution ( ),n nS I  of system (3), with initial condition (11) 
satisfy  

( )lim .sup n n
n S

BS I
µ→+∞

+ ≤  

Proof: Let n n nN S I= +  and 1 1 1n n nN S I+ + += + ; for biological reasons we as-
sume is at least as large as Sµ ; that is, I Sµ γ µ+ ≥ . 

By adding the different equation of system (3) we get: 

( )

( )

1 1 1

1 1

1 1

1

n n S n I n

S n S n

S n n

S n

N N B S I
B S I
B S I
B N

µ µ γ
µ µ

µ

µ

+ + +

+ +

+ +

+

− = − − +

≤ − −

≤ − +

≤ −

 

1 1S n n nN N N Bµ + ++ − ≤                      (13) 

1 1 1lim limsup supS n n n S n
n n

N N N Nµ µ+ + +
→+∞ →+∞

+ − =              (14) 

1lim sup S n
n

N Bµ +
→+∞

⇒ ≤  

1lim .sup n
n S

BN
µ+

→+∞
⇒ ≤                      (15) 

Hence, we have  

( )lim .sup n n
n S

BS I
µ→+∞

+ ≤                     (16) 

Proposition 3.1. 
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1) When 0 1R < , then model (3) has only a unique disease-free equilibrium 

( )0
0 ,0E S= . 
2) When 0 1R > , then model (3) has only a unique endemic equilibrium 

( )* * *,E S I= .  
Proof: Any equilibrium point ( ),E S I=  of system (3) verified the following 

system: 

( )
( ) ( )

, 0

, 0.
S

I

B S f S I

f S I I

µ β

β µ γ

− − =


− + =
                  (17) 

By using the second equation of system above we have: 

( ) ( ),
.I

f S I
I

β µ γ= +                     (18) 

So we can consider the function G defined by,  

( ) ( )

0 ,
.

I

S
I

f S I I
G I

I

µ γ
µ

β µ γ

 +
− 

 = − +             (19) 

Hence we have  

( ) ( ) ( )

( )
( )

( )( )

0

0

0
2

0

lim ,0

,0
1

1 .

I
I

I
I

I

fG I S
I

f S

R

β
µ γ

β
µ γ

µ γ

µ γ

+→

∂
= − +

∂
 
 = + −
 + 

= + −

             (20) 

And also we have,  

( ) ( )
0

, where .S
I

I

SG I I µ
µ γ

µ γ
= − + =

+
            (21) 

when 0 1R ≤ , we have ( )0
lim 0

I
G I+→

≤ . Consequently, there is not any * 0I >   

such that ( )* 0G I = . Therefore, model (3) has a unique disease-free equilibrium 

0E . 
When, 0 1R > , we have ( )0

lim 0
I

G I+→
> . Therefore, there exists a unique 

* 0;I I ∈   such that ( )* 0G I = . 

This implies that model (3) has unique endemic equilibrium ( )* * *,E S I= . 
Remark 3.1. The space K += ×   is positively invariant and attracting 

domain for system (3).  
Now, let us analyze the behavior of system (3) when the basic reproduction 

rate 0R  is less than one. 

4. Stability of the Disease-Free Equilibrium 

In this section, we study the stability of diseases-free equilibrium ( )0
0 ,0E S= , 

with 0

S

BS
µ

= . 
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Theorem 4.1. If 0 1R ≤ , then the diseases-free equilibrium 0E  of system (3) 
is locally asymptotically stable.  

Proof: The linearization of system (3) at diseases-free equilibrium point 0E  
is given by: 

( ) ( )
( ) ( ) ( )

1 1 0 1 2 0 1

1 1 0 1 2 0 1.
n n S n n

n n n I n

S S f E S f E I

I I f E S f E I

µ β β

β β µ γ
+ + +

+ + +

  − = − − −  


 − = + − +  
        (22) 

Thus, we have: 

( ) ( )
( ) ( ) ( )

1 0 1 2 0 1

1 0 1 2 0 1

1

1 .
S n n n

n I n n

f E S f E I S

f E S f E I I

µ β β

β β µ γ
+ +

+ +

 + + + = 


 − + − + + =  
        (23) 

The matrix M associate of the linearization (23) is given by: 

( ) ( )
( ) ( ) ( )

1 0 2 0

1 0 2 0

1
,

1
S

I

f E f E
M

f E f E
µ β β
β β µ γ

 + +
=   − − + + 

        (24) 

and the linearization system can be rewrite by:  
1

1 ,n nX M X−
+ =                        (25) 

with ( ), t
n n nX S I= . 

The model (3) is locally asymptotically stable at diseases-free equilibrium 
point 0E  if all eigenvalue of matrix M is greater than one. 

Let ( )P X  be characteristic polynomial associate of matrix M. We have,  

( ) ( )
( )( ) ( ) ( )( )

( )( ) ( )( )

2

1 0 2 0

1 0 2 0

1 1

.
S I

P X det M XI

f E X f E X

f E f E

µ β β µ γ

β β

= −

= + + − − + + −

+

  (26) 

Let λ  be a eigenvalue of matrix M, thus ( ) 0P λ = . This implies that:  

( )( ) ( ) ( )( ) ( )( ) ( )( )1 0 2 0 1 0 2 01 1 0.S If E f E f E f Eµ β λ β µ γ λ β β+ + − − + + − + = (27) 

From the Equation (27) we have 

( )( ) ( ) ( )( ) ( )( ) ( )( )1 0 2 0 1 0 2 01 1 .S If E f E f E f Eµ β λ β µ γ λ β β+ + − − + + − = − (28) 

By using the second member of (28), the fact that 0 1R <  and we assume that 
the matrix M have a eigenvalue which is less than one. So we have: 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

1 0 2 0 1 0 2 0

1 0 2 0

1 0 2 01 1
S I

S I

f E f E f E f E

f E f E

f E f E

β β β β

µ β β µ γ

µ β λ β µ γ λ

− = −

≤ + − + +

< + + − − + + −

        (29) 

as a result of, the Equation (28) cannot have roots which is less than one. Hence, 

0E  is locally asymptotically stable according to the theorem 2 in [18]. 
Theorem 4.2. When 0 1R ≤ , the disease-free equilibrium 0E  of system (3) is 

globally asymptotically stable in K.  
Proof: In this proof we used the comparison theorem [19]. By using the 

second equation of system (3) and the assumption H3; we get: 
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( )( ) ( ) ( )1 1 1
0

1 ,
h

j
n I n n n

j
I I k j f S Iµ γ β+ + +

=

= + + − ∑            (30) 

( ) ( ) ( )0
1

0
1 ,0 .

h

I n
j

k j f S Iµ γ β +
=

 
≥ + + − 
 

∑              (31) 

Hence we have:  

( ) ( )( )0
2 11 ,0 .n I nI f S Iµ γ β +≥ + + −                 (32) 

Thus,  

( ) ( )1 0
1 2with 1 ,0 .n n IM I I M f Sµ γ β−
+≥ = + + −           (33) 

By using the fact 0 1R ≤  we have ( )0
2 ,0 0I f Sµ γ β+ − ≥ . So the constant M 

is greater than one. we conclude that the linearized Equation (32) is stable whenever 

0 1R ≤ . By a standard comparison theorem [19], 0nI →  as n →+∞  for Equa-
tion (32) and substituting 0nI =  in system (3) we get 0

nS S→ , 0nI →  as 
n →+∞ . Thus, ( ) ( )0, ,0n nS I S→  as n →+∞  for system (3), when 0 1R ≤ . 
Therefore 0E  is globally asymptotically stable in the positively invariant set K if 

0 1R ≤ . 

5. Global Stability of the Endemic Equilibrium 

In this section, we study the stability the stability of endemic equilibrium 

( )* * *,E S I= , with  

* 0 *.I

S

S S Iµ γ
µ
+

= −                       (34) 

Theorem 5.1. If 0 1R > , then the endemic equilibrium *E  of system (3) is 
globally asymptotically stable.  

Proof: From the equation of system (3), at endemic equilibrium *E , we 
have: 

( ) ( )* * *

0
,

h

S
j

B S k j f S Iµ β
=

= + ∑                 (35) 

and 

( ) ( )* * *, ,I I f S Iµ γ β+ =                    (36) 

which will be used as substitutions in the calculations below. Let 
( ) 1 lng x x x= − −  and 

( ) *
*
n

S
SV n S g
S

 =  
 

                     (37) 

( ) *
*
n

I
IV n I g
I

 =  
 

                     (38) 

( ) ( ) *
0

,
h

n j

j

I
V n j g

I
α −

+
=

 
=  

 
∑                  (39) 

where  
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( ) ( ) ( )* *, .
h

s j
j k s f S Iα β

=

= ∑                   (40) 

We will study the behavior of the Lyapunov functional 

( ) ( ) ( ) ( );S IV n V n V n V n+= + +                 (41) 

which satisfies 0nV ≥  with equality if and only if  

* * 1n nS I
S I

= =  and * 1n jI
I
− =  

for all [ ]0,j h∈ . For clarity, the difference ( ) ( )1S SV n V n+ − , ( ) ( )1I IV n V n+ −  
and ( ) ( )1V n V n+ ++ −  will be calculated separately and then combined to ob-
tain ( ) ( )1V n V n+ − . 

Calculation of the variation ( ) ( )1S SV n V n+ − : in this calculation, we used the 
value theorem and we assume that 1n nS S+ > . Note that we have the same result 
when 1n nS S +> .  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

* *1
* *

*
* 1

1 1
1 1

*

1 1 1
01

*
* * *

1
0 01

1

ln ln
1 1

1 ,

1 ,

n n
S S

n n
n n n n

n n n

h
j

S n n n
jn

h h

S S n n
j jn

S SV n V n S g S g
S S

S S SS S S S S
S S S

S B S k j f S I
S

S S f S I k j S k j f S
S

µ β

µ β µ β

+

+
+ +

+ +

+ + +
=+

+ +
= =+

   + − = −   
   

   −
= − − ≤ − −   
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∑      (42) 

Let us calculate of the variation ( ) ( )1I IV n V n+ − : in this calculation we used 
the mane value theorem and we assume that 1n nI I+ > . Note that we have the 
same result when 1n nI I +> . 

( ) ( ) * *1
* *1 n n

I I
I I

V n V n I g I g
I I
+   + − = −   
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   (43) 

Let now evaluate the variation ( ) ( )1V n V n+ ++ − : 
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By adding Equations (42)-(44) we obtain 
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By adding and subtracting 
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we obtain:  
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(46) 

By using the assumption H4 and the fact that the function g is increasing on 
] [1,+∞ , we have  
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( )
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, ,
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so we have ( ) 0Q j ≤ . This implies that ( ) ( )1 0V n V n+ − ≤ . Hence, by the 
Lyapunovs theorems on the global asymptotical stability for difference equations 
[20], we obtain that the endemic equilibrium *E  is globally asymptotically sta-
ble. 

6. Simulation and Comments 

In this section, we presented a numerical result of continuous-time model (1) 
and the discrete one (2) study above. From this we used a particular incidence  

function define by ( ),
1

SIf S I
cI
τ

τ

β
=

+
, which is the saturating incidence. In  

addition we discuss from the different value of the basic reproduction number 

0R . We have the case 0 1R ≤  and 0 1R > . The parameters values used in the 
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simulation are:  

100; 0.1; 0.02; 0.03; 0.2; 0.00021; 0.2;S I RB cµ µ µ γ β= = = = = = =  

from this value we have 0 0.095 1R = < . 
When we change the value of β  by 0.021β = , we get 0 9.54 1R = > . It’ is 

important to notice that the software used is Scilab and the time is in term of 
weeks or months. In our graphic the red curve give the evolution of the class in 
the discrete model and the dashed ones give the evolution of the class in conti-
nuous-time model. 

Figure 1 present the evolution of the susceptibles population through the time, 
the dashed cuve represent the discrete model and the red one the continuous 
model when 0 1R ≤ . 

Figure 2 give dynamic of the infected population along the time, the dashed 
cuve represent the discrete model and the red one the continuous model when 

0 1R ≤ . 
Figure 3 show the evolution of the recovered population through the time, the 

dashed cuve represent the discrete model and the red one the continuous model 
when 0 1R ≤ . 

Figure 4 (Susceptibles population), Figure 5 (Infected population) and Figure 6 
(Recovered population) represent the evolution through the time of the popula-
tion when 0 1R > . The dashed cuves represent the discrete model and the red 
one the continuous model. 

For all these cuves, we can see the convergence of the red cuves (the discrete 
model) and the dashed ones (the continuous model) 

7. Conclusion 

In this paper, we have studied a discrete SIR epidemic model with general  
 

 
Figure 1. Graphic of susceptibles class, when 0 1R > . 
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Figure 2. Graphic of infectious class, when 0 1R ≤ . 

 

 
Figure 3. Graphic of recovered class, when 0 1R ≤ . 

 

 
Figure 4. Graphic of susceptibles class, when 0 1R ≤ . 
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Figure 5. Graphic of infectious class, when 0 1R > . 

 

 
Figure 6. Graphic of recovered class, when 0 1R > . 

 
incidence. We have proved the global stability of discrete SIR epidemic model by 
using the comparison theorem from the global stability of disease free equili-
brium, when 0 1R ≤ , on the positive invariant set K and we have also proved the 
local stability of disease free equilibrium. The technique of Lyapunov function is 
used to proved the global stability of endemic equilibrium, when 0 1R > . We 
have made the numerical simulation to corroborate theoretical results. From the 
results obtained in this paper, we can conclude that the Euler backward differ-
ence scheme, that is, the discrete dynamical model (2), is obtained with excellent 
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dynamical properties for the step size 1τ =  in the local and global stability of 
equilibra. These properties are nearly the same as the corresponding conti-
nuous-time model (1). In our future work, it shall be important for us to study 
the same model, but with general positive step size τ  and see how bifurcation 
can happen. 
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