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Abstract 
In this paper, an efficient computational algorithm is proposed to solve the 
nonlinear optimal control problem. In our approach, the linear quadratic op-
timal control model, which is adding the adjusted parameters into the model 
used, is employed. The aim of applying this model is to take into account the 
differences between the real plant and the model used during the calculation 
procedure. In doing so, an expanded optimal control problem is introduced 
such that system optimization and parameter estimation are mutually inter-
active. Accordingly, the optimality conditions are derived after the Hamilto-
nian function is defined. Specifically, the modified model-based optimal con-
trol problem is resulted. Here, the conjugate gradient approach is used to 
solve the modified model-based optimal control problem, where the optimal 
solution of the model used is calculated repeatedly, in turn, to update the ad-
justed parameters on each iteration step. When the convergence is achieved, 
the iterative solution approaches to the correct solution of the original optim-
al control problem, in spite of model-reality differences. For illustration, an 
economic growth problem is solved by using the algorithm proposed. The 
results obtained demonstrate the efficiency of the algorithm proposed. In 
conclusion, the applicability of the algorithm proposed is highly recom-
mended. 
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1. Introduction 
Recently, the integrated optimal control and parameter estimation (IOCPE) al-
gorithm has been proposed [1] in solving the nonlinear optimal control problem, 
both for discrete time deterministic and stochastic cases (see for more detail in 
[2]-[9]). In essence, the concept of the IOCPE algorithm is come from the dy-
namic integrated system optimization and parameter estimation (DISOPE) al-
gorithm, which was developed by [10]. By using the DISOPE algorithm, optimal 
control of the deterministic dynamical systems, not only for continuous time but 
also for discrete time, has been widely discussed [10] [11]. On this point of view, 
the applications of the DISOPE algorithm have been well-defined. Date back to 
the 70s, [12] and [13] proposed the integrated system optimization and parame-
ter estimation (ISOPE) algorithm, which is for solving the static optimization 
problems. Since then, the development of ISOPE algorithm in the dynamic ver-
sion is rapidly growing up till today. 

In fact, the basic idea for ISOPE, DISOPE and IOCPE algorithms is the prin-
ciple of model-reality differences [1] [10] [13]. Because the structure of the non-
linear optimal control problem is complex and solving such problem is compu-
tationally demanding, the simplified model for the original optimal control 
problem is proposed to be solved iteratively. By adding the adjusted parameters 
into the model used, the differences between the model used and the real plant 
can be measured. This measurement is done repeatedly, in turn, to update the 
optimal solution of the model used. Once the convergence is achieved, the itera-
tive solution approximates to the true optimal solution of the original optimal 
control problem, in spite of model-reality differences [1] [10] [13]. Besides, for 
solving the discrete time nonlinear stochastic optimal control problem, the Kal-
man filtering theory is associated with the principle of model-reality differences 
in order to do state estimation and system optimization [2] [3] [4] [6]. 

By virtue of the evolution of these algorithms, the feedback optimal control 
law is provided in solving the nonlinear optimal control problems, and their ef-
fectiveness has been well-confirmed. Nevertheless, the applicability of the 
open-loop optimal control law in these algorithms shall be investigated such that 
the popularity of these algorithms could be promoted. This is because of the 
open-loop optimal control sequences could be generated by taking the advantage 
of the power of the state-of-the-art nonlinear programming (NLP) solver. Thus, 
as an efficient optimization technique, the conjugate gradient method [14] [15] 
has been explored to solve the optimal control problem [16] [17] [18] since last 
few decades. Thereby, the use of the conjugate gradient method inspires us to 
explore this method in the IOCPE algorithm practically. 

Hence, the application of the conjugate gradient method is discussed in this 
paper for solving the nonlinear optimal control problem, where the mod-
el-reality differences are considered. Apparently, the model-based optimal con-
trol problem, which is simplified from the nonlinear optimal control problem, is 
constructed. Follow from this, the Hamiltonian function is defined and the 
augmented cost function is obtained. Then, the set of the necessary conditions 
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for optimality is derived. Consequently, the modified model-based optimal con-
trol problem is converted to be a nonlinear optimization problem. By applying 
the conjugate gradient approach, the nonlinear optimization problem is solved 
and the optimal control sequences are generated. With this open-loop control 
law, the dynamical system is optimized and the cost function is evaluated. For 
illustration, optimal control of an economic growth problem [19] is discussed. 
The results obtained show the applicability of the algorithm proposed. 

The structure of the paper is organized as follows. In Section 2, the problem 
statement is described briefly, where the simplified model from the nonlinear 
optimal control problem is discussed. In Section 3, system optimization with 
parameter estimation is further discussed. The use of the conjugate gradient ap-
proach in solving the model-based optimal control problem is presented and the 
calculation procedure is summarized as an iterative algorithm. In Section 4, an 
economic growth problem is solved and the results are obtained. Finally, the 
concluding remarks are made. 

2. Problem Statement 

Consider a general discrete-time optimal control problem, given by 

( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

0
0

0

min , , ,

subject to 1 , , , 0

N

u k k
J u x N N L x k u k k

x k f x k u k k x x

ϕ
−

=

= +

+ = =

∑
           (1) 

where ( ) , 0,1, , 1mu k k N∈ℜ = −  and ( ) , 0,1, ,nx k k N∈ℜ =   are, respectively, 
the control sequences and the state sequences. Here, : n m nf ℜ ×ℜ ×ℜ→ℜ  
represents the real plant, : n mL ℜ ×ℜ ×ℜ→ℜ  is the cost under summation 
and : nϕ ℜ ×ℜ→ℜ  is the terminal cost, whereas 0J  is the scalar cost func-
tion and 0x  is the known initial state vector. It is assumed that all functions in 
Equation (1) are continuously differentiable with respect to their respective ar-
guments. 

This problem is regarded as the real optimal control problem, and is referred 
to as Problem (P). Note that the structure of Problem (P) is complex and nonli-
near, solving Problem (P) requires the efficient computation techniques. On this 
point of view, the simplified model of Problem (P) is probably suggested to be 
solved in order to approximate the true optimal solution of Problem (P). There-
fore, let us define this simplified model-based optimal control problem as fol-
lows: 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

T
1

1 T T

0

0

1min
2

1
2

subject to 1 , 0

u k

N

k

J u x N S N x N N

x k Qx k u k Ru k k

x k Ax k Bu k k x x

γ

γ

α

−

=

= +

+ + +

+ = + + =

∑         (2) 

where ( ) , 0,1, ,k k Nγ =   and ( ) , 0,1, , 1k k Nα = −  are introduced as the ad-
justed parameters, whereas A is an n n×  transition matrix and B is an n m×  con-
trol coefficient matrix. Besides, ( )S N  and Q are n n×  positive semi-definite 
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matrices, and R is a m m×  positive definite matrix. Here, 1J  is the scalar cost 
function. 

This problem is referred to as Problem (M). 
Notice that, due to the different structures and parameters, only solving Prob-

lem (M), without the adjusted parameters, would not obtain the optimal solu-
tion of Problem (P). However, by adding the adjusted parameters into Problem 
(M), the differences between the real plant and the model used can be calculated. 
In such a way, solving Problem (M) iteratively could give the correct optimal 
solution of Problem (P), in spite of model-reality differences. 

3. System Optimization with Parameter Estimation 
Now, introduce an expanded optimal control problem, which is referred to as 
Problem (E), given by 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

1T T T
2

0

2 2
1 2

0

T

1 1min
2 2

1 1
2 2

subject to 1 , 0
1 ,
2

N

u k k
J u x N S N x N N x k Qx k u k Ru k

k r u k v k r x k z k

x k Ax k Bu k k x x

z N S N z N N z N N

γ

γ

α

γ ϕ

−

=

= + + +

+ + − + −

+ = + + =

+ =

∑

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

T T1 , ,
2

, ,

z k Qz k v k Rv k k L z k v k k

Az k Bv k k f z k v k k

v k u k

z k x k

γ

α

+ + =

+ + =

=

=

      (3) 

where ( ) , 0,1, , 1mv k k N∈ℜ = −  and ( ) , 0,1, ,nz k k N∈ℜ =   are intro-
duced to separate the sequences of control and state in the optimization problem 
from the respective signals in the parameter estimation problem, and ⋅  de 

notes the usual  Eucl idean norm. The term ( ) ( ) 2
1

1
2

r u k v k−  and 

( ) ( ) 2
2

1
2

r x k z k−  with 1 2,r r ∈ℜ  are introduced to improve the convexity and  

to facilitate the convergence of the resulting iterative algorithm. Here, it is classi-
fied that the algorithm is designed such that the constraints ( ) ( )v k u k=  and 
( ) ( )z k x k=  are satisfied upon termination of the iterations, assuming that 

convergence is achieved. Moreover, the state constraint ( )z k  and the control 
constraint ( )v k  are used for the computation of the parameter estimation and 
matching scheme, while the corresponding state constraint ( )x k  and control 
constraint ( )u k  are reserved for optimizing the model-based optimal control 
problem. By virtue of this, system optimization and parameter estimation are 
mutually integrated. 

3.1. Necessary Conditions for Optimality 

Define the Hamiltonian function for Problem (E) by 
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( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

T T
2

2 2
1 2

T

T T

1
2

1 1
2 2

1

H k x k Qx k u k Ru k k

r u k v k r x k z k

p k Ax k Bu k k

k u k k x k

γ

α

λ β

= + +

+ − + −

+ + + +

− −

            (4) 

where ( ) , 0,1, , 1mk k Nλ ∈ℜ = − , ( ) , 0,1, ,nk k Nβ ∈ℜ =   and  
( ) , 0,1, ,np k k N∈ℜ =   are modifiers. Then, the augmented cost function be-

comes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
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J u x N S N x N N p x p N x N

N z N N z N S N z N N

x N z N H k p k x k k v k k z k

k L z k v k k z k Qz k v k Rv k k

k f z k v k k Az k Bv k k

γ

ξ ϕ γ

λ β

ξ γ

µ α

−

=

′ = + + −

 + − − 
 

+ Γ − + − + +

 + − + − 
 

+ − − −

∑

(5) 

where ( ) ( ) ( ) ( ) ( ), , , ,p k k k k kξ λ β µ  and Γ  are the appropriate multipliers 
to be determined later. 

Applying the calculus of variation [20] [21] [22], the following necessary con-
ditions for optimality are obtained: 

1) Stationary condition: 

( ) ( ) ( ) ( ) ( )( )T
11 0Ru k B p k k r u k v kλ+ + − + − =            (6a) 

2) Co-state equation: 

( ) ( ) ( ) ( ) ( ) ( )( )T
21p k Qx k A p k k r x k z kβ= + + − + −          (6b) 

3) State equation: 

( ) ( ) ( ) ( )1x k Ax k Bu k kα+ = + +                    (6c) 

4) Boundary conditions: 

( ) ( ) ( )p N S N x N= + Γ  and ( ) 00x x=               (6d) 

5) Adjusted parameter equations: 

( )( ) ( ) ( ) ( ) ( )T1,
2

z N N z N S N z N Nϕ γ= +               (7a) 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )T T1, ,
2

L z k v k k z k Qz k v k Rv k kγ= + +         (7b) 

( ) ( )( ) ( ) ( ) ( ), ,f z k v k k Az k Bv k kα= + +               (7c) 

6) Modifier equations: 

( ) ( ) ( )z N S N z NϕΓ = ∇ −                      (8a) 
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( ) ( ) ( )( ) ( ) ( )
T

ˆ 1v k
fk L Rv k B p k

v k
λ

 ∂
= − ∇ − − − +  ∂ 

          (8b) 

( ) ( ) ( )( ) ( ) ( )
T

ˆ 1z k
fk L Qz k A p k

z k
β

 ∂
= − ∇ − − − +  ∂ 

          (8c) 

with ( ) 1kξ =  and ( ) ( )ˆ 1k p kµ = + . 
7) Separable variables: 

( ) ( )v k u k= , ( ) ( )z k x k= , ( ) ( )p̂ k p k= .             (9) 

Notice that the parameter estimation problem is defined by Equation (7) and 
the computation of multipliers is given by Equation (8). Indeed, the necessary 
conditions, which are defined by Equations (6a) to (6d), are the optimality for 
the modified model-based optimal control problem. 

3.2. Modified Model-Based Optimal Control Problem 

The modified model-based optimal control problem, which is referred to as 
Problem (MM), is given by 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

T T
3

1 T T

0

2 2
1 2

T T

0

1min
2

1
2

1 1
2 2

subject to 1 , 0

u k

N

k

J u x N S N x N x N N

x k Qx k u k Ru k k

r u k v k r x k z k

k u k k x k

x k Ax k Bu k k x x

γ

γ

λ β

α

−

=

= + Γ +

+ + +

+ − + −

− −

+ = + + =

∑

       (10) 

with the specified ( ) ( ) ( ) ( ) ( ), , , , ,k k k k v kα γ λ β Γ  and ( )z k , where the 
boundary conditions are given by 0x  and ( )p N  with the specified multiplier 
Γ . 

3.3. Open-Loop Optimal Control Law 

For simplicity, define Problem (MM) as an equivalent nonlinear optimization 
problem with the initial control ( ) ( )00u u k= , given by 

( )
( )3min

u k
J u  subject to mu∈ℜ  for 0,1, , 1k N= −          (11) 

where the admissible control variable u is set to be 

( )( ) ( )( ) ( )( )T T T
0 , 1 , , 1u u u u N = −  

 . 

Let this problem as Problem (N). To proceed, it is noticed that solving Prob-
lem (N) could be done once the state Equation (6c) is solved forward and the 
costate Equation (6b) is solved backward with the corresponding control se-
quences u. In addition, the gradient function for the objective function ( )3J u  
is evaluated from 
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( ) ( )3 u kJ u H∇ =∇                        (12) 

which can be calculated from the Hamiltonian function (4) and the stationary 
condition (6a) once the necessary conditions for optimality, given by Equations 
(6) - (9), are satisfied. 

Suppose the gradient function (12) is represented as 

( ) ( )u kg u H= ∇ .                         (13) 

Then, for arbitrary initial control ( )0u , the initial gradient and the initial di-
rection are, respectively, given by 

( ) ( )( )0 0g g u=  and ( ) ( )0 0d g= − .                 (14) 

By using the line search equation [14] [16], the control sequences can be gen-
erated from 

( ) ( ) ( )1i i i
iu u a d+ = + ⋅                         (15) 

where ia ∈ℜ  is determined from the one-dimensional search, that is, 

( ) ( )( )3
0

arg min i i
i

a
a J u a d

≥
= + ⋅ .                   (16) 

Later, the gradient and the direction are updated as follow: 
( ) ( )( )1 1i ig g u+ +=                          (17) 

( ) ( ) ( )1 1i i i
id g b d+ += − + ⋅                       (18) 

with the coefficient 
( ) ( )

( ) ( )

1 T 1

T

i i

i i i

g gb
g g

+ +

=                          (19) 

where 0,1,2,i =   represents the iteration numbers. 
Thus, we present the result on the obtaining optimal control law discussed 

above as a proposition, given below: 
Proposition 1. Consider Problem (N). The control sequences ( )iu , which is 

defined in Equation (15) and is represented by 
( ) ( )( ) ( )( ) ( )( )T T T

0 , 1 , , 1iu u u u N = −  
 , 

is generated through a set of the direction vectors ( )id  whose components are 
linearly independent. Also, the direction ( )id  is conjugacy. 

Proof: Refer [14]. 
Here, the conjugate gradient algorithm for obtaining the optimal control law 

is summarized below: 
Algorithm 1: Conjugate gradient algorithm 
Data Choose the arbitrary initial control ( )0u . Compute the initial gradient 
( )0g  and the initial direction ( )0d  from Equation (14). Set i  = 0. 
Step 1 Solve the state Equation (6c) forward in time from k  = 0 to k  = N  

with the initial condition (6d) to obtain ( ) , 0,1, ,ix k k N=  . 
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Step 2 Solve the costate Equation (6b) backward in time from k  = N  to k  
= 0 with the boundary condition (6d), where ( )ip k  is the solution obtained. 

Step 3 Calculate the value of the cost functional ( )( )3
iJ u  from Equation (10). 

Step 4 Determine the step size ia  from Equation (16). 
Step 5 Update the control ( )1iu +  from Equation (15). 
Step 6 Update the gradient ( )1ig +  from Equation (17). If the gradient 
( )1 0ig + = , stop, else go to Step 7. 
Step 7 Compute the coefficient ib  from Equation (19). 
Step 8 Update the direction ( )1id +  from Equation (18). Set 1i i= + , go to 

Step 1. 
Remarks: 
1) The initial control ( )0u  can be any valued-vectors, including the zero vec-

tor. 
2) The gradient function ( )g u  for Problem (N) defined by Equation (11) is 

calculated from the stationary condition (6a). This is the turning point of using 
the conjugate gradient algorithm for solving Problem (M) defined by Equation 
(2) and Problem (MM) defined by Equation (10). 

3) The optimal control sequences generated by the line search equation in 
Equation (15) is known as the open-loop control law. 

4) The necessary conditions (6b) and (6c) shall be satisfied in solving Problem 
(N) defined by Equation (11). 

3.4. Iterative Procedure 

Accordingly, from the discussion above, a summary of the calculation procedure 
for the integrated system optimization and parameter estimation is made as fol-
lows: 

Algorithm 2: Iterative procedure 
Data ( ) 0 1 2, , , , , , , , , , , , ,v z pA B Q R S N N x r r k k k f L . Note that A and B could be 

determined based on the linearization of f  at 0x  or from the linear terms of f . 
Step 0 Compute a nominal solution. Assume that ( ) 0, 0,1, , 1k k Nα = = −  

and 1 2 0r r= = . Solve Problem (M) defined by Equation (2) to obtain 
( )0 , 0,1, , 1u k k N= −  and ( ) ( )0 0, , 0,1, ,x k p k k N=  . Then, with  
( ) 0, 0,1, , 1k k Nα = = −  and using 1 2,r r  from the data. Set 0i = , 
( ) ( )0 0v k u k= , ( ) ( )0 0z k x k=  and ( ) ( )0 0p̂ k p k= . 
Step 1 Compute the parameters ( ) , 0,1, ,ik k Nγ =   and  
( ) , 0,1, , 1ik k Nα = −  from Equation (7). This is called the parameter estima-

tion step. 
Step 2 Compute the modifiers ( ), ii kλΓ  and ( ) , 0,1, , 1ik k Nβ = −  from 

Equation (8). Notice that this step requires taking the derivatives of f and L with 
respect to ( )iv k  and ( )iz k .  

Step 3 With ( ) ( ) ( ) ( ) ( ), , , , ,i i i i iik k k k v kγ α λ βΓ  and ( )iz k , solve Problem 
(N) by using Algorithm 1. This is called the system optimization step.  

a) Use Equation (15) to obtain the new control ( ) , 0,1, , 1iu k k N= − . 
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b) Use Equation (6c) to obtain the new state ( ) , 0,1, ,ix k k N=  . 
c) Use Equation (6b) to obtain the new costate ( ) , 0,1, ,ip k k N=  . 
Step 4 Test the convergence and update the optimal solution of Problem (P). 

In order to provide a mechanism for regulating convergence, a simple relaxation 
method is employed: 

( ) ( ) ( ) ( )( )1i i i i
vv k v k k u k v k+ = + −                 (20a) 

( ) ( ) ( ) ( )( )1i i i i
zz k z k k x k z k+ = + −                 (20b) 

( ) ( ) ( ) ( )( )1ˆ ˆ ˆi i i i
pp k p k k p k p k+ = + −                (20c) 

where ( ], , 0,1v z pk k k ∈  are scalar gains. If ( ) ( )1 , 0,1, , 1i iv k v k k N+ = = −  
and ( ) ( )1 , 0,1, ,i iz k z k k N+ = =  , within a given tolerance, stop; else set 

1i i= + , and repeat the procedure starting from Step 1. 
Remarks: 
1) The variable ( )kα  is zero in Step 0. The calculated value of ( )kα  changes 

from iteration to iteration during the calculation procedure. 
2) The conjugate gradient algorithm is applied to generate the control se-

quences ( )u k  for Problem (M) and Problem (MM), respectively. 
3) Problem (P) is not necessary to be linear or to have a quadratic cost func-

tion. 
4) The conditions ( ) ( )1i iu k u k+ =  and ( ) ( )1i ix k x k+ =  are required to be sa-

tisfied for the converged optimal control sequence and the converged state se-
quence. The following averaged 2-norms are computed and then they are com-
pared with a given tolerance to verify the convergence of ( )u k  and ( )x k : 

( ) ( )
1 21 11

2 0

1
1

N i ii i

k
u u u k u k

N

−
++

=

 − = − − 
∑            (21a) 

( ) ( )
1 2

11

2 0

1 N i ii i

k
x x x k x k

N
++

=

 − = − 
 

∑             (21b) 

5) The convergence result on the conjugate gradient algorithm can be referred 
to [14], and the convergence result for Algorithm 2 is presented in [4] and [10]. 

4. Illustrative Example 

Consider a basic economic growth model [19] [23], which is a discrete time mi-
nimization problem, given by 

( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

0
0

min , ,

subject to 1 , , , 0 5

N
k

u k k
J u L x k u k k

x k f x k u k k x

ρ
−

=

=

+ = =

∑
 

where the payoff function and dynamics system are, respectively, defined by 

( ) ( )( ) ( ) ( )( ), , lnL x k u k k x k u kν= − Λ −  and ( ) ( )( ) ( ), ,f x k u k k u k= . 

Here, x is the capital stock, x  is the control variable, ρ  is the discount fac-
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tor, whereas xνΛ  is a production function with constants 0Λ > , 0 1ν< < . 
The difference between the output and the next period’s capital stock is the 
consumption. 

Let us refer this problem as Problem (P). In literature, the exact solution of 
Problem (P) is known [24], and is given by 

( ) ( )ln ,V x C D x= +  

with 

( )( ) ( )ln 1 ln
1

D
C

ν ρ ρ ν ρ
ρ

− ⋅ ⋅Λ + ⋅ ⋅ ⋅ ⋅Λ
=

−
 and 

1
D ν

ν ρ
=

− ⋅
. 

The unique optimal equilibrium for Problem (P) is given by 

( )
*

1

1x
ν ν ρ−

=
⋅ ⋅Λ

. 

By using the specified parameters 5Λ = , 0.34ν =  and 0.95ρ = , the op-
timal equilibrium is * 2.0673x ≈  [23]. 

In the following, we introduce a simplified model-based optimal control mod-
el, which is derived from Problem (P) and is referred to as Problem (M), given 
below: 

( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

30 2 2
1

0

1min 0.1 10
2

subject to 1 , 0 5.

u k k
J u x k u k k

x k x k u k k x

γ

α
=

 = ⋅ + ⋅ + 
 
+ = + + =

∑  

Note that Problem (M) and Problem (P) are different from the structures and 
the parameters used.  

After running the algorithm proposed within the tolerance (10−6), the result is 
shown in Table 1. The initial cost, which is 13.072, is the cost spent before tak-
ing into account system optimization with parameter estimation. At the end of 
implementing the algorithm proposed, the final cost is 22.198. There are 41 ite-
rations with 7.84 seconds to reach the convergence. 

The graphical results for this economic growth model illustrate the applica-
tion of the algorithm proposed. Figure 1 shows the final control trajectory and 
Figure 2 shows the final state trajectory, respectively. With this final control so-
lution, it is observed that the final state towards to the steady state at x = 2.0673. 
Figure 3 shows the final costate trajectory, while Figure 4 and Figure 5 show, 
respectively, the adjusted parameters γ(k) and α(k). Overall, these solutions are 
in the optimal sense, which are verified by the satisfaction of the stationary con-
dition shown in Figure 6. 

5. Concluding Remarks 

The use of the conjugate gradient approach in solving the nonlinear optimal 
control problem with model-reality differences was discussed in this paper. Es-
sentially, the simplified model of the original optimal control problem, which is 
the linear optimal control problem by adding the adjusted parameters, is  
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Table 1. Simulation result. 

Iteration Number Initial Cost Final Cost Elapsed Time (s) 

41 13.072 22.198 7.84008 

 

 
Figure 1. Final control trajectory ( )u k . 

 

 
Figure 2. Final state trajectory ( )x k  (--) and state equili-

brium *x  (⋅⋅⋅⋅⋅). 
 

 
Figure 3. Final costate trajectory ( )p k . 
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Figure 4. Adjusted parameter ( )kγ . 

 

 
Figure 5. Adjusted parameter ( )kα . 

 

 
Figure 6. Stationary condition g. 

 
formulated. In solving this model-based optimal control problem, the conjugate 
gradient approach is employed to generate the open-loop control sequences such 
that the optimal solution is obtained. Here, the stationary condition is used to be 
the gradient function in the conjugate gradient approach. On the other hand, 
due on the different structure of the problems, the differences between the real 
plant and the model used, which is measured by the adjusted parameters re-

https://doi.org/10.4236/am.2018.98064


S. L. Kek et al. 
 

 

DOI: 10.4236/am.2018.98064 952 Applied Mathematics 
 

peatedly, are taken into consideration during the iteration calculation procedure. 
At the convergence, the optimal solution of the model used approximates to the 
true optimal solution of the original optimal control problem, in spite of mod-
el-reality differences. For illustration, the application of the algorithm proposed 
was discussed for solving a basic economic growth model. The results obtained 
show the efficiency of the algorithm proposed. In conclusion, the applicability of 
the algorithm is highly recommended. 
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