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Abstract 

The differential quadrature method based on Fourier expansion basis is ap-
plied in this work to solve coupled viscous Burgers’ equation with appropriate 
initial and boundary conditions. In the first step for the given problem we 
have discretized the interval and replaced the differential equation by the Dif-
ferential quadrature method based on Fourier expansion basis to obtain a sys-
tem of ordinary differential equation (ODE) then we implement the numeri-
cal scheme by computer programing and perform numerical solution. Finally 
the validation of the present scheme is demonstrated by numerical example 
and compared with some existing numerical methods in literature. The me-
thod is analyzed for stability and convergence. It is found that the proposed 
numerical scheme produces a good result as compared to other researcher’s 
result and even generates a value at the nodes or mesh points that the results 
have not seen yet. 
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1. Introduction 

1.1. Background of the Study 

In the field of computational mathematics, numerical methods are most widely 
utilized to solve equations arising in the field of physics, engineering and other 
sciences. Numerical analysis plays a significant role and helps us to find an ap-
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proximate solution for problems which are difficult to solve analytically. The de-
sign and computation of the numerical algorithm is one of the mathematical 
challenges faced nowadays, but scientists in the field of computational mathe-
matics are trying to develop numerical methods by using of computers for fur-
ther application. One of those numerical methods is quadrature method. 

A differential quadrature method is a numerical method for evaluating deriv-
atives of sufficiently smooth function as proposed by [1]. The basic idea of diffe-
rential quadrature came from Gauss Quadrature [2], which is a useful numerical 
integration method. Gauss Quadrature is characterized by approximating a defi-
nite integral with weighting sum of integrand value of a group at Gauss point. 
Extending it to find the derivatives of various orders of sufficiently smooth func-
tion gives rise to DQ [1]. In other words the derivatives of smooth function are 
approximated with weighted sum of the function values at a group of so called 
nodes. Differential quadrature can be formulated through either approximation 
theory or solving a system of linear equations. However, the rapid development 
over the recent years on problems involving nonlinear, discontinuity, multiple 
scales, singularity and irregularity are challenges in the field of computational 
science and engineering of the various numerical solutions. DQ method has dis-
tinguished themselves because of their high accuracy, straight forward imple-
mentation and generality in variety of problems [3].  

Coupled Viscous Burgers’ Equation 
Coupled Viscous Burgers’ equation is the nonlinear partial differential equa-

tion, wildly applicable in the theory of shock waves, mathematical modeling of 
turbulent fluid and in continuous stochastic processes. 

And this equation has a wide application in the various areas of applied ma-
thematics, such as fluid mechanics, nonlinear acoustic gas dynamics and traffic 
flow. The coupled viscous Burgers’ equation was studied for the first time by [4] 
to model polydisperse sedimentation or evaluate scaled volume concentration of 
two kinds of particles in fluid suspensions or colloid under the effect of gravity. 

The viscous Burgers’ equation was presented in 1940 and in 1950 Hopf and in 
1951 Cole independently introduced the method that has come to be known as 
the Cole-Hopf transformation to solve the Viscous Burgers’ Equation [3]. 

The Coupled Viscous Burgers’ Equation which is a nonlinear partial differen-
tial equation of the form 

( ) [ ] [ ]0, , , 0,t xx x xu u uu uv x a b t Tη α− + + = ∈ ∈  

( ) [ ] [ ]0, , , 0,t xx x xv v vv uv x a b t Tε β− + + = ∈ ∈           (1.1) 

with initial condition 

( ) ( ) ( ) ( )1 2,0 , ,0 , 0 1u x x v x x xφ φ= = ≤ ≤             (1.2) 

The boundary condition 

( ) ( ) ( ) ( )1 1, , , , ,u a t f a t v a t g a t= =               (1.3) 

( ) ( ) ( ) ( )2 2, , , , , , 0u b t f b t v b t g b t t T= = ≤ ≤  
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where η, ε, α and β are constants depending on the system parameters. 
Differential Quadrature Method (DQM) 

Differential quadrature method first introduced by [1] is one of the most effi-
cient numerical method to solve partial differential equations. The key proce-
dure in differential quadrature approximation is to determine the weighting 
coefficient. 

[5] and [6] obtain explicit formulations to compute the weighting coefficient 
of the first and second order derivative. [3] presented a simple algebraic formu-
lation to compute the weighting coefficient of the first order derivative without 
any restriction on the choice of the grid points and a recurrence relationship to 
compute the weighting coefficient of the DQ method and its applications were 
rapidly developed after the late 1980s, thanks to the innovative work in the 
computation of the weighting coefficients by other researchers and the author. 
As a result, the DQ method has emerged as a powerful numerical discretization 
tool in the past decade. As compared to the conventional low order finite differ-
ence and finite element methods, the DQ method can obtain very accurate nu-
merical results using a considerably smaller number of grid points and hence 
requiring relatively little computational effort. So far, the DQ method has been 
efficiently employed in a variety of problems in engineering and physical 
sciences. 

Based on the analysis of function approximation and the analysis of linear 
vector space, the DQ method can be classified as polynomial-based DQ (PDQ) 
and Fourier series expansion-based DQ (FDQ) methods. PDQ is usually applied 
to non-periodic problems while FDQ can be applied to both periodic and 
non-periodic problems. But its performance for periodic problems is much bet-
ter. The details of PDQ and FDQ methods and their application in engineering 
can be referred to the book of [3] which is the first book in the area to systemat-
ically describe the DQ method and its application in engineering. 

Fourier Expansion Basis 
The polynomial approximation is suitable for most of the engineering prob-

lems, but for some problems, especially for those with periodic behaviors, 
Fourier series expansion could be a better choice for the true solution instead of 
polynomial approximate the interval [0, 2π] [7] and [4], the Fourier series ex-
pansion can be given by 

( ) ( )0
1

cos sink k
k

f x a c kx d kx
∞

=

= + +∑
              

 (1.4) 

where the coefficient 0 , ka c  and kd  are expressed as 

( )2π
0 0

1 d
2π

a f x x= ∫ ,                     (1.5) 

( )2π

0

1 cos d
πkc f x kx x= ∫

                  
 (1.6) 

( )2π

0

1 sin d
πkd f x kx x= ∫ ,                   (1.7) 
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For practical application, the truncated Fourier series expansion is usually 
used. Thus Equation (1.4) can be described as  

( ) ( ) ( )1 0
1 1

cos sin
N N

N k k
k k

f x F a c kx d kx+
= =

= = + +∑ ∑           (1.8) 

Moreover, the convergence of the above Equation (1.8) of ( )f x  as N →∞  
is guaranteed by Weirstrass’s second theorem. i.e. 

The function ( )f x  be continuous on the interval [ ]0,2π . Then for any 
0ε >  there exists an integer n and a trigonometric Sn such that the inequality 

[ ] ( ) ( )0,2πmax Nx f x s x ε∈ − <  is satisfied for all values of x.   (1.9) 

where 

( )
1 1

cos sin
N N

n o k k
k k

s x a a kx b kx
= =

= + +∑ ∑              (1.10) 

1.2. Statement of the Problem 

Consider the Coupled Viscous burgers’ Equation in Equations (1.1)-(1.3) is a 
nonlinear partial differential equation, by using Fourier basis based on weighted 
average differential quadrature method one can expect to find its’ solution nu-
merically by using some approximation method. 

In this regard [4] presented numerical simulations for the Coupled Viscous 
Burgers’ Equation and compared the results with experimental data recently; [9] 
proposed a Fourier Pseudospectral method for solving Coupled Viscous Burgers’ 
Equation; [10] and [11] applied differential quadrature method to solve the 
viscous Burgers’ Equation; [7] use finite difference and cubic spline finite ele-
ment methods to solve Burgers’ equation; [10] and [11] used polynomial Diffe-
rential quadrature method for numerical solution of coupled viscous Burger’ 
equations; [12] transform the Burgers’ equation to linear heat equation using 
Hopf-Cole transformation and then use explicit finite difference and exact expli-
cit finite difference method to solve the transformed linear heat equation with 
Neumann boundary condition; [13] solve one dimensional Burgers’ Equation by 
using differential quadrature method based on Fourier Expansion basis; [10] 
used cubic B-spline collocation scheme based on Crank-Nicolson formulation 
for time integration and cubic B-spline functions for space integration by linea-
rizing the nonlinear terms to solve coupled viscous Burgers’ Equation. 

In this study, we look for the solution of coupled viscous Burger’ equation by 
applying the differential quadrature method based on Fourier Expansion basis. 
As a result, this study attempted to answer the following basic research ques-
tions. 

1) How do we describe the differential quadrature method based on Fourier 
Expansion basis for coupled viscous Burgers’ equation? 

2) How the present method is applied to solve coupled viscous Burgers’ equa-
tion? 

3) To what extent the proposed method is approximate the exact solution? 
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1.3. Objectives of the Study 

1.3.1. General Objective 
The general objective of this study is to find the numerical solution of coupled 
viscous burger equation using differential quadrature method based on Fourier 
expansion basis. 

1.3.2. Specific Objectives 
The specific objectives of the present study are: 

1) To describe the differential quadrature method based on fourier expansion 
basis in solving coupled viscous Burgers’ equation numerically. 

2) To solve the coupled viscous Burgers’ equation using differential quadra-
ture method based on a Fourier expansion. 

3) To determine the accuracy that the proposed method approximate the exist 
solutions. 

1.4. Significance of the Study 

The outcomes of this study have the following importance to:  
1) Find an alternative numerical solution of coupled viscous Burgers’ Equation. 
2) Apply differential quadrature method based on Fourier expansion basis to 

find the solution for some practical problems like coupled viscous Burgers’ equ-
ation. 

1.5. Delimitation of the Study 

This study was delimited to the numerical solution of the coupled viscous Burg-
ers’ equation. 

The study also delimited to the practically most important (linear) differential 
quadrature based on Fourier expansion that are of the same type as differential 
quadrature and Fourier expansion formulas, i.e., linear combinations of weighted 
differential function evaluations and their error analysis for quadrature. 

2. Methodology 

2.1. Study Area and Period 

The study was conducted in Jimma University under the department of mathe-
matics from September 2016 G.C. to September 2017 G.C. Conceptually the 
study focus on the solution of coupled viscous Burgers’ equation using differen-
tial quadrature method based on Fourier expansion basis. 

2.2. Study Design 

This study was employed mixed-design (documentary review design and expe-
rimental design) on the coupled viscous Burgers’ equation type. 

2.3. Source of Information 

The relevant sources of information for this study is books, published articles 
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and related studies from internet and the experimental results were obtained by 
writing MATLAB code for the present methods. 

2.4. Mathematical Procedures 

The study is an experimental as it evolves entirely laboratory work with the help 
of computer and MATLAB software. Farther, important materials for the study 
were collected by the researcher using the documentary analysis. The required 
numerical data was collected by coding and running using MATLAB software to 
get the numerical results and table of some examples that have exact solution, to 
show the validity and efficiency of the method. Hence, in order to achieve the 
stated objectives, the study was followed the procedures 

1) Problem preparation or formulation. 
2) Discretizing the space variable. 
3) Replacing the partial differential equation (or the Coupled Viscous Burgers’ 

Equation) by using differential quadrature method based on Fourier expansion 
basis to obtain a system of first order ordinary differential equations. 

4) The obtained systems of ordinary differential equations was solved by clas-
sical fourth order Runge-Kutta method. 

5) Validating the schemes using numerical examples. 
6) Writing MATLAB code for the method to solve the systems obtained. 

3. Result and Discussion 

3.1. Preliminaries 

3.1.1. Differential Quadrature Method 
In seeking an efficient discretization technique to obtain accurate numerical so-
lution using a considerably small number of grid points, [1] and [14] introduced 
the method of differential quadrature (DQ).where a partial derivative of a func-
tion with respect to a coordinate direction is expressed as a linear weighted sum 
of all the functional values at all mesh points along that direction. The key to DQ 
is to determine the weighting coefficient for the discretization of a derivative of 
any order. [1] suggested two methods to determine the weighting coefficients of 
first order derivative. The first method is based on an ill-conditioned algebraic 
equation system and the second method uses a simple algebraic formulation, but 
the coordinates of the grid points are fixed by the roots of the shifted Legendre 
polynomial. In earlier applications of the DQ method, Bellman’s first method 
was usually used because it allows the use of arbitrary grid points distribution. 
However, since the algebraic equation system of this method is ill-conditioned, 
the number of the grid points usually used is less than 13 [15]. After that, [5] 
obtain explicit formulations to compute the weighting coefficient for the first 
and second order derivative. [16] presented a simple algebraic formulation to 
compute the weighting coefficient of the first order derivative without any re-
striction on the choice of the grid points and a recurrence relationship to com-
pute the weighting coefficient of the DQ method and [3] and [17] have further 
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developed some simple algebraic formulation to compute the weighting coeffi-
cient. Recently, the most frequently used DQ procedures to solve one and two 
dimensional differential equations are Lagrange interpolation polynomials based 
differential quadrature method (PDQM). The DQ method approximates the de-
rivative of a smooth function at a grid point by a linear weighted summation of 
all the functional value in the whole computational domain. 

The coupled viscous Burgers’ equation is a nonlinear partial differential equa-
tion of the form 

( ) [ ] [ ]0, , , 0,t xx x xu u uu uv x a b t Tη α− + + = ∈ ∈  
( ) [ ] [ ]0, , , 0,t xx x xv v vv uv x a b t Tε β− + + = ∈ ∈  

With initial condition 

( ) ( ) ( ) ( )1 2,0 , ,0 , 0 1u x x v x x xφ φ= = ≤ ≤  

The boundary condition 

( ) ( ) ( ) ( )1 1, , , , ,u a t f a t v a t g a t= =   
( ) ( ) ( ) ( )2, , , , , , 0u b t f b t v b t g b t t T= = ≤ ≤  

where η, α, ε and β are arbitrary constants depending on the system parameters. 

3.1.2. Differential Quadrature Method Based on  
the Fourier Expansion basis 

Let the first and second order derivative of ( )u x  at a point ix  be approx-
imated by the following equations 

( ) ( )
1

, , for 1,2, ,
N

x i ij j
j

u x t a u x t i N
=

= =∑               (4.1) 

( ) ( )
1

, , for 1,2, ,
N

xx i ij j
j

u x t b u x t i N
=

= =∑               (4.2) 

where ija  and ijb  represents the weighting coefficients of first and second de-
rivative respectively, N is the number of grid points. And the key procedure in 
DQ is to determine the weighting coefficient. 

For, the solution of any partial differential equation has to be convergent and 
bounded, so the solution ( )u x  of the viscous Burger equation be approximated 
by a Fourier expansion of the form 

( ) ( )0
1

cos π sin π
N

k k
k

u x a c k x d k x
=

= + +∑               (4.3) 

( )u x  in this equation constitutes an ( )1N +  dimensional linear vector 
space since 

 1,sin π , cos π ,sin 2π , cos 2π , ,sin π and cos πx x x x N x N x

      (4.4a) 

are linearly independent vectors. 
Thus, we can consider (4.4a) as a set of base vectors. 
Actually FDQ uses two sets of base functions, one is the base functions (4.4a) 

and the other is the terms of the Lagrange interpolating trigonometric poly-
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nomial given by 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 1 1 1

0 1 1 1

sin π sin π sin π sin π sin π
sin π sin π sin π sin π sin π

k

k k N

k k k k k k k N

r x

x x x x x x x x x x
x x x x x x x x x x

− +

− +

− − − − −
=

− − − − −

 

 

(4.4b) 

for 1,2,3, , .k N=   
Let 

( ) ( )
0

N

k
k

p x r x
=

= ∑                        (4.5) 

where 

( ) ( )
0
sin π

N

k
k

M x x x
=

= −∏                    (4.6) 

( ) ( )
0,

sin π
N

i i k
k k i

p x x x
= ≠

= −∏                   (4.7) 

By using the above two sets of base vectors to drive explicit formulations to 
compute the weighting coefficients of the first and second order derivatives, for 
the non-diagonal weighting coefficient we need to use the second set of base 
vectors. For simplicity, we set 

( ) ( ) ( ) ( )
0
sin π , sin π

N

k k k
k

M x x x N x x x x
=

= − = −∏           (4.8) 

where
 

( ) ( ) ( )
0,

π, sin
2

N

i k i k i
k k i

N x x x x p x
= ≠

= − =∏              (4.9) 

( ) ( ), ,i j i j ijN x x N x x δ=  where 
1 if
0 ifij

i j
i j

δ
=

=  ≠
 is the Kronecker delta op-

erator. 
Then Equation (4.4b) can be reduced to 

( ) ( )
( )

, k
k

k

N x x
r x

p x
=                      (4.10) 

Using the same approach as in a polynomial differential quadrature method 
[18] we let all the base vectors given by Equation (4.10) satisfy Equations ((4.1) 
and (4.2)) and obtain 

( )
( )

,i j
ij

j

N x x
a

p x

′
=                       (4.11) 

( )
( )

,i j
ij

j

N x x
b

p x

′′
=                       (4.12) 

It is observed from Equations ((4.11) and (4.12)), the computation of ija  and 

ijb  is equivalent to the evaluations of ( ),i jN x x′  and ( ),i jN x x′′  since ( )jp x  
can be calculated by Equation (4.9). We successively differentiate Equation (4.8) 
to get 
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( ) ( ) ( ) ( ) ( ), sin π π , cos πk k k kM x N x x x x N x x x x′ ′= − + −      (4.13) 

( ) ( ) ( ) ( ) ( )
( ) ( )2

, sin π 2π , cos π

              π , sin π
k k k k

k k

M x N x x x x N x x x x

N x x x x

′′ ′′ ′= − + −

− −
    (4.14) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2 3

, sin π 3π , cos π

3π , sin π π , cos π
k k k k

k k k k

M x N x x x x N x x x x

N x x x x N x x x x

′′′ ′′′ ′′= − + −

′− − − −
   (4.15) 

From the above equation, we can obtain the following result 

( ) ( ) ( )π , πi i i iM x N x x p x′ = =                 (4.16) 

( ) ( )
( )

π
,

sin π
i

i j
i j

p x
N x x

x x
⋅

′ =
−

 where i j≠             (4.17)
 

( ) ( )
,

π
i

i j

M x
N x x

′′
′ =                     (4.18) 

( ) ( ) ( ) ( )
( )

π , cos π
,

sin π
i i j i j

i j
i j

M x N x x x x
N x x

x x

′′ ′− −
′′ =

−
 where i j≠    (4.19) 

( ) ( ) ( )
32 π, ,

3π 8i j i i iN x x M x N x x
 

′′ ′′′= + 
 

            (4.20) 

Substituting Equations ((4.16) and (4.17)) in to Equation (4.11) we obtain 

( )
( ) ( )
π

sin π
i

ij
i j j

p x
a

x x p x
⋅

=
− ⋅

 where i j≠             (4.21) 

( )
( )π

i
ii

j

M x
a

p x

′′
=

⋅
                       (4.22) 

Similarly substituting Equations ((4.19) and (4.20)) in to (4.12) and using Eq-
uations ((4.17), (4.18)), we obtain 

( )2 π cot πij ij ii i jb a a x x = − −   where j i≠           (4.23) 

( )
( )

32 π
3π 8

i
ii

i

M x
b

p x
 ′′ 

= + 
  

                   (4.24) 

From Equations ((4.21) and (4.23)), ija  and ijb  ( i j≠ ) can be obtained. 
However, the calculation of iia  from Equation (4.22) and iib  from Equa-

tion (4.24) involve the computation of ( )iM x′′  and ( )iM x′′′  which are not 
easy to compute by applying the second set of base vectors  

( ) ( ) ( ) ( ) ( ) ( )1,sin π , cos π ,sin 2π , cos 2π , ,sin π , cos πx x x x N x N x
 let the vector 1 

satisfy Equation (4.1) and (4.2) and then obtain 

1
0

N

ij
j

a
=

=∑
                        

 (4.25) 

1
0

N

ij
j

b
=

=∑                         (4.26) 
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Using Equations ((4.21), (4.23), (4.25) and (4.26)), the weighting coefficients 
of the first and second order derivatives can be calculated with FDQ. It should be 
indicated that these equations can be applied to the periodic problems and the 
non-periodic problems. For the non-periodic problems, the range in the com-
putational domain is 0 πx≤ ≤ , while for the periodic problems, the range in 
the computational domain is 0 2πx≤ ≤ . 

3.2. Main Results and Discussion 

The coupled viscous Burgers’ Equations (1.1)-(1.3) can be discretized in the 
Cartesian coordinate system as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]

1 1 1

1

1 1 1

1

d ,
, , , ,,

d

, , , ,

d ,
, , , ( , ,

d

, , , ,

N N N
i

ij j i ij i ij jj
j j j

N

i ij j i
j

N N N
i

ij j i ij j i ij j
j j j

N

i ij j i
j

u x t
b u x t u x t a u u x t a v x tx t

t

v x t a u x t x a b

v x t
b v x t v x t a v x t u x t a v x t

t

v x t a u x t x a b

η α

ε β

= = =

=

= = =

=


= − − 




+ ∈


= − −


+ ∈



∑ ∑ ∑

∑

∑ ∑ ∑

∑

 (4.27)

 

With initial condition 

( ) ( ) ( ) ( )1 2,0 , ,0 ,i i i i iu x x v x x x Dφ φ= = ∈  

The boundary condition 

( ) ( ) ( ) ( )1 1, , , , ,u a t f a t v a t g a t= =  

( ) ( ) ( ) ( )2 2, , , , , , 0u b t f b t v b t g b t t T= = ≤ ≤  

where η, α, ε and β are arbitrary constants depending on the system parameters. 
Where N is the number of grid points, ija  and ijb  are the weighting coeffi-

cients in the x direction, and when FDQ method is used ija  and ijb  are com-
puted by Equations ((4.21), (4.23)). The resulting system of ODEs (4.27) can 
now be solved by using the classical fourth order Runge-Kutta method. 

3.2.1. Numerical Experiments 
In this section, we consider two examples to test the efficiency of the proposed 
method. For describing the error, we consider maximum error norm for u de-
fined as follows 

( ) ( ) ( )
1
max , ,j N jj N

E u u x t u x t
∞ ≤ ≤
= −

              
(4.28) 

where ( ),ju x t  is exact solution of the problem and ( ),N ju x t  is the numerical 
solution at the same mesh points obtained by DQM based on Fourier Expansion 
basis. 

To illustrate the efficiency of the proposed numerical scheme, we solve two 
test examples and throughout the numerical experiment, we consider step length 
in time space t∆ . 
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Example 1 
Consider the coupled viscous Burgers’ equation with the initial and boundary 

condition taken as follows. ( ) ( ),0 sinu x x=  

( ) ( ),0 sin , π π, 0v x x x t= − ≤ ≤ >              (4.29a) 

( ) ( ) ( ) ( )π, π, 0, π, π, 0u t u t v t v t− = = − = =           (4.29b) 

The exact solution taken from [8] 

( ) ( ) ( ) ( ), e sin , , e sin , π π, 0t tu x t x v x t x x t= = − ≤ ≤ >  

The numerical results are computed with different time step length t∆  and 
various values of parameters, α, ε and β. The maximum absolute error obtain 
with 0.01t∆ =  up to T = 3 are reported in Table 1. It is also shown in Table 2 
that absolute errors become reduced when the time step is reduced. 

Example 2 
In this problem, we consider the coupled viscous Burger equation with initial 

conditions 

( ) ( )0
2 1,0 2 tanh ; 10 10

4 1
u x a A Ax xα

αβ
 −

= − − ≤ ≤ − 
       (4.30a) 

( ) ( )0
2 1 2 1,0 2 tanh
2 1 4 1

v x a A Axβ α
α αβ

 − − = −   − −   
        (4.30b) 

 
Table 1. Maximum errors norm of Example 1 for 2η = − , 2ε = − , 1α = , 1β =  at 
step length 0.01t∆ = . 

t ( )E u
∞

 ( )E v
∞

 

0.5 6.724E−4 3.012E−3 

1.0 7..468E−3 4.812E−4 

2.0 5.621E−4 5.792E−5 

3.0 3.460E−4 6.182E−6 

 
Table 2. Maximum absolute norm of u and v of Example 1 for different values of t∆  
the proposed method, at t = 1. 

t∆  ( )E u
∞

 ( )E v
∞

 

0.020 51.6121 10−×  52.2234 10−×  

0.0100 62.8160 10−×  66.1446 10−×  

0.0050 66.9332 10−×  62.8290 10−×  

0.0020 77.7126 10−×  73.3328 10−×  

0.0010 79.9268 10−×  74.8157 10−×  

0.0005 73.1992 10−×  78.8126 10−×  
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The exact solution are given by [19] 

( ) ( )( )

( ) ( )( )

0

0

2 1, 2 tanh 2 , 10 10, 0
4 1

2 1 2 1, 2 tanh 2 , 10 10, 0
2 1 4 1

u x t a A A x At x t

v x t a A A x At x t

α
αβ

β α
α αβ

 −
= − − − ≤ ≤ ≥ − 

 − − = − − − ≤ ≤ >  − −   

 

where 0
4 1
4 2

A a αβ
α

−
=

−
 and 0 , ,a α β  are arbitrary constants. In Table 3 and  

Table 4, we present comparison between the numerical solutions obtained by 
the present method and the method proposed in literature. Table 3 and Table 4 
shows the maximum absolute errors for 1, 2η ε= =  and various values of α  
and β . 

From Table 1 and Table 2 it can be seen that the solution of Maximum abso-
lute norm u and v decrease to zero at a time t as the value of ,η ε  increase it 
can also observed that the Differential quadrature method based on Fourier Ex-
pansion basis method is capable of finding numerical solution for larger value of 

,η ε . 
Here the parameters α and β determine the size of the boundary layer near the 

edges of the domain. We use the value of 1, 2η ε= =  in our numerical experiment.  
 

Table 3. Comparison of numerical results of Example 2 with the results obtained by [9] 
and [11] for the variable u with 0 0.05a = , N = 21 with 0.01t∆ = . 

t α β 
Rashid 

( )E u
∞

 
Jiwari 

( )E u
∞

 
Present Method 

( )E u
∞

 

0.5 
0.1 0.3 9.619E−4 4.173E−5 6.812E−4 

0.3 0.03 4.310E−4 4.585E−5 3.312E−5 

1.0 
0.1 0.3 1.153E−3 8.275E−5 6.222E−4 

0.3 0.03 1.268E−3 9.167E−5 2.490E−4 

3.0 
0.1 0.3 … 2.408E−4 8.612E−4 

0.3 0.03 … 2.747E−4 9.186E−5 

 
Table 4. Comparison of numerical results of Example 2 with the results obtained by [9] 
and [11] for the variable v with 0 0.05a = , N = 21 with 0.01t∆ =  

t α β 
Rashid 

( )E v
∞

 
Ram Jiwari (2012) 

( )E v
∞

 
Present Method 

( )E v
∞

 

0.5 
0.1 0.3 3.332E−4 5.418E−5 5.428E−4 

0.3 0.03 1.148E−3 2.826E−5 6.867E−3 

1.0 
0.1 0.3 1.162E−3 1.074E−4 7.890E−4 

0.3 0.03 1.638E−3 5.673E−5 8.954E−4 

3.0 
0.1 0.3 … 3.119E−4 1.126E−4 

0.3 0.03 … 1.663E−4 7.763E−5 
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In this case we solve the PDE on the random point distribution. The optimal 
shape parameter α and β is also taken the same as we achieved in the linear PDE 
case. The error norm in Table 2 shows as differential quadrature method based 
on Fourier expansion basis. Also works well for this nonlinear problem. Howev-
er, it is shown that the method can be fluctuated as applied to a wide class of 
higher-dimension, nonlinear partial differential equations with a little modifica-
tion depending on the system parameters. In Table 3 and Table 4 we compare 
the differential quadrature method results with those available ones in the lite-
rature. As seen from Table 3 and Table 4 the differential quadrature method 
based on Fourier expansion is quite comparable with those methods in the lite-
rature. 

4. Conclusions and Future Scope 

4.1. Conclusions 

This study demonstrates the application of FDQ method to solve one-dimensional 
coupled viscous Burgers’ equation. This method produces a system of first order 
ordinary differential equations, which can be solved numerically by the classical 
fourth order Runge-Kutta method. To verify the method two test problems have 
been considered and the results obtained are compared with some other me-
thods which are available in the literature. The numerical solutions obtained 
show that the present method produces reasonably accurate numerical solution 
of coupled viscous Burgers’ equation. 

Therefore differential quadrature method based on Fourier expansion basis is 
a reliable method to obtain the numerical solution of some physically important 
nonlinear problems governed by partial differential equation; this is because it 
brings the problem into a smooth and periodic one. 

If the viscous term is dropped from the Burgers' equation the nonlinearity al-
lows discontinuous solutions to develop. A wave is convicting from left to right 
and solutions for successive times are indicated. Points on the wave with larger 
values of u  convict faster and consequently overtake parts of the wave con-
victing with smaller values of u . Coupled viscous Burgers’ equation is the non-
linear partial differential equation, that encounters in the theory of shock waves, 
mathematical modeling of turbulent fluid and in continuous stochastic processes. 
It is necessary to postulate a shock across which u  changes discontinuously to 
have a unique solution and so a physically result. 

It is shown that the present numerical scheme gives better solutions on most 
of the grid points. However, it is shown that the method can be fluctuated as ap-
plied to a wide class of higher-dimension, nonlinear partial differential equations 
with a little modification depending on the system parameters. 

4.2. Future Scope 

In the future by applying different differential quadrature method, I will try to 
solve different partial differential equations numerically. 
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