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Abstract 
We present an iterative scheme for solving Poisson’s equation in 2D. Using fi-
nite differences, we discretize the equation into a Sylvester system, 
AU UB F+ = , involving tridiagonal matrices A and B. The iterations occur 

on this Sylvester system directly after introducing a deflation-type parameter 
that enables optimized convergence. Analytical bounds are obtained on the 
spectral radii of the iteration matrices. Our method is comparable to Succes-
sive Over-Relaxation (SOR) and amenable to compact programming via vec-
tor/array operations. It can also be implemented within a multigrid frame-
work with considerable improvement in performance as shown herein. 
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1. Introduction 

Poisson’s equation 2u f∇ = , an elliptic partial differential equation [1], was first 
published in 1813 in the Bulletin de la Société Philomatique by Siméon-Denis 
Poisson. The equation has since found wide utility in applications such as elec-
trostatics [2], fluid dynamics [3], theoretical physics [4], and engineering [5]. 
Due to its expansive applicability in the natural sciences, analytic and efficient 
approximate solution methods have been sought for nearly two centuries. Ana-
lytic solutions to Poisson’s equation are unlikely in most scientific applications 
because the forcing or boundary conditions on the system cannot be explicitly 
represented by means of elementary functions. For this reason, numerical ap-
proximations have been developed, dating back to the Jacobi method in 1845. 
The linear systems arising from these numerical approximations are solved ei-
ther directly, using methods like Gaussian elimination, or iteratively. To this 
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day, there are applications solved by direct solvers and others solved by iterative 
solvers, depending largely on the structure and size of the matrices involved in 
the computation. The 1950s and 1960s saw an enormous interest in relaxation 
type methods, prompted by the studies on optimal relaxation and work by 
Young, Varga, Southwell, Frankel and others. The books by Varga [6] and 
Young [7] give a comprehensive guide to iterative methods used in the 1960s 
and 1970s, and have remained the handbooks used by academics and practi-
tioners alike [8]. 

The Problem Description 

The Poisson equation on a rectangular domain is given by 

{ }2 in , | 0 ,0u f x y x a y b∇ = Ω = ≤ ≤ ≤ ≤            (1) 

where ( ),u u x y=  is to be solved in the 2D domain Ω , and ( ),f x y  is the 
forcing function. Typical boundary conditions for this equation are either Di-
richlet, where the value of ( ),f x y  is specified on the boundary, or Neumann, 
where the value of the normal derivative is specified on the boundary. These are 
given mathematically as, 

ˆor on ,D Nu g u n u g= ∂ ∂ ≡ ⋅∇ = ∂Ωn                (2) 

where n̂  is the outward unit normal along ∂Ω  and Dg  and Ng  are the 
function values specified by Dirichlet or Neumann boundary conditions. It is 
also possible to have mixed boundary conditions along the boundary, where 
some edges have Dirichlet and some have Neumann, so long as the problem is 
well-posed. Furthermore, edges could be subject to Robin boundary conditions 
of the form 1 2 Rc u c u n g+ ∂ ∂ = . Any numerical scheme designed to solve the 
Poisson equation should be robust in its ability to incorporate any form of 
boundary condition into the solver. A detailed discussion of boundary condition 
implementation is given in the Appendix. Discretizing (1) using central differ-
ences with equal grid size x y h∆ = ∆ =  leads to an M N×  rectangular array of 
unknown U, such that ( ), ,i j i jU u x y≈  (assuming that a and b are both integer 
multiples of h). This discretization leads to a linear system of the form 
AU UB F+ = , the Sylvester equation, which can be solved either directly or ite-

ratively. The direct method utilizes the Kronecker product approach [9], given 
by 

( ) ( )Twhere kron , kron ,K K I A B I= = +u f         (3) 

where u  and f  are appropriately ordered 1MN ×  column vectors obtained 
from the M N×  arrays U and F, and K is a sparse MN MN×  matrix. The 
Kronecker product, ( )kron ,P Q , of any two matrices P and Q is a partitioned 
matrix whose ijth partition contains matrix Q multiplied by component ijp  of 
P. Due to the potentially large size of the system given in (3), direct solvers are 
not the preferred solution approach. Specifically addressed here is an iterative 
approach to solving the Sylvester equation, 
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int int int ,AU U B F+ =                       (4) 

where intU  is the m n×  array of interior unknowns (not including the known 
boundary values when Dirichlet boundary conditions are given) with 

2m M= −  and 2n N= − . Operator matrices A and B are given by the ( )2O h  
finite difference approximation to the second derivative, 

2

2 1
1 2 1

1 .
1 2 1

1 2

h

− 
 − 
 
 

− 
 − 

                     (5) 

For an array of unknowns int m nU ×∈ , the operator matrices are of dimen-
sion m mA ×∈ , and n nB ×∈ . The matrix structure of U should be modified 
such that the first index i corresponds to the x-direction, and the second index j 
corresponds to the y-direction. With this orientation, multiplying intU  by the 
matrix A on the left approximates the second derivative in the x-direction, and 
multiplying intU  by the matrix B on the right approximates the second deriva-
tive in the y-direction. 

2. Sylvester Iterative Scheme 

Examining (4) it might seem natural to move one term to the right-hand side of 
the equation to achieve an iterative scheme such as: 

AU UB F AU F UB+ = ⇒ = −  
1 1 1 ,k kU A F A U B+ − −⇒ = −                    (6) 

However, this scheme diverges, and an alternative approach is required to ite-
rate on the Sylvester system. An appropriate method is to break up the iterative 
scheme into two “half-steps’’ as follows 

1) First half-step: *kU U→  

( )AU F UB A I I U F UBα α= − ⇒ − + = −  

( ) ( )* kA I U F U B Iα α⇒ − = − +                   (7) 

2) Second half-step: * 1kU U +→  

( )UB F AU U B I I F AUβ β= − ⇒ − + = −  

( ) ( )1 *kU B I F A I Uβ β+⇒ − = − +                 (8) 

where *U  is some intermediate solution between steps k and 1k + . Rearrang-
ing, this leads to 

*

1 *

1 1 1 ,

1 1 1 .

k

k

I A U U I B F

U I B I A U F

α α α

β β β
+

   − = + −   
   

   
− = + −   

   

                (9) 

The iterative scheme (9) is similar to the Alternating Direction Implicit (ADI) 
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formulation [10], where Poisson’s equation is reformulated to have pseudo-time 
dependency, 

d ,
d
U AU UB F
t
= + −                      (10) 

which achieves the solution to Equation (4) when it reaches steady-state. This 
method is separated into two half-steps, the first time step going from time 

1 2k k→ +  treating the x-direction implicitly and the y-direction explicitly. 
The second time step then goes from time 1 2 1k k+ → + , treating the 
y-direction implicitly and the x-direction explicitly. The two half-steps are, 

1 2
1 2

2

1 1 2
1 2 1

2

1 ,
2

1 ,
2

k k
k k

k k
k k

U U AU U B
t h

U U AU U B
t h

+
+

+ +
+ +

−  = + ∆

−  = + ∆

              (11) 

which leads to 

1 2

1 1 2

,
2 2 2

.
2 2 2

k k

k k

t t tI A U U I B F

t t tU I B I A U F

+

+ +

∆ ∆ ∆   − = + −   
   

∆ ∆ ∆   − = + −   
   

           (12) 

This iteration procedure looks nearly identical to our Sylvester iterations giv-
en in (9) with 2t∆  replaced by the unknown parameters 1/α and 1/β. However 
in our formulation, there is no pseudo-time dependency introduced. Instead, the 
eigenvalues of our operator matrices A and B are deflated to produce an iterative 
scheme that optimally converges, and finding the values of the parameters α and 
β becomes an optimization problem. 

Convergence 

After the Sylvester Equation (4) is modified into the iterative system (9), the 
iterative scheme can be written as a single step by substituting the expression for 
the intermediate solution *U  into the second step of the iterative process; this 
yields the single update equation for 1kU +  given by 

11
1

11

1 1 1 1

1 1 1 1 1 .

k kU I A I A U I B I B

I A I A I F I B

β α α β

α β α β β

−−
+

−−

      = + − + −      
      

     − + − − −     
      

      (13) 

Assuming that an exact solution exactU  exists that exactly satisfies the linear 
system (4), i.e. exact exactAU U B F+ = , we define the error between the kth itera-
tion and the exact solution as 

exact .k kE U U≡ −                         (14) 

Finding an update equation for the error is done by subtracting the error at 
the kth step from the error at the ( )1 stk +  step, noting that the expressions in-
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volving the forcing F disappear, we arrive at 
1 ,k kE PE Q+ =                          (15) 

where the matrices P and Q are given by 
111 1 1 1, .P I A I A Q I B I B

β α α β

−−      = + − = + −      
      

        (16) 

Denoting the m eigenvalues of m mA ×∈  by A
kλ , and the n eigenvalues of 

n nB ×∈  by B
kλ , the corresponding deflated eigenvalues of the iteration ma-

trices P and Q are 

( )
( )
( )
( )

1
, 1,2, , ,

1

1
, 1,2, , .

1

A A
kP k

k AA
kk

B B
kQ k

k BB
kk

k m

k n

λ β β λα
λ

β α λλ α

λ α α λβ
λ

α β λλ β

+  +
= = = 

−−  

+  +
= = = 

−−  





           (17) 

A sufficient condition for convergence of the iterative process is achieved if 
the spectral radii of both iteration matrices P and Q are less than one, 

( ) ( )max 1 and max 1.P Q
k kP Qρ λ ρ λ≡ < ≡ <             (18) 

The error at each consecutive iteration is decreased by the product of ( )Pρ  
and ( )Qρ , 

( ) ( )

( ) ( )( )

1

1

1 0

,

,

,

k k

k k

kk

E PE Q

E P Q E

E P Q E

ρ ρ

ρ ρ

+

+

+

=

=

=

                  (19) 

where 0E  is the initial error. Often in practical applications, the exact solution 
is not known, so the error kE  cannot be computed directly. In this case, the 
preferred measure in iterative schemes is given by the residual, which measures 
the difference of the left and right hand sides of the linear system being solved. 
This will be further discussed in the Results section. 

3. Finding Optimal Parameters α and β  

Finding α and β is an optimization problem for achieving the fastest conver-
gence rate of the Sylvester iterative scheme (9). Given the operator matrices A 
and B and their respective eigenvalues A

kλ  and B
kλ , it seems feasible to find 

optimal values of α and β to minimize the spectral radii of the iteration matrices 
P and Q given in Equations (17). From (15) the error 1kE +  is found by multip-
lying by P on the left, and Q on the right, thus the convergence is governed by 
the spectral radii of both P and Q. 

Figure 1 shows the eigenvalues of P and Q for arbitrary m and n, given by 
Equation (17), plotted vs. the eigenvalues of A and B for some parameters α and 
β. It can be seen that as Aλ  or Bλ  get large in magnitude, the values of Pλ  
or Qλ  approach α β−  and β α− , respectively. This implies that if α β≠ ,  
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Figure 1. Eigenvalues ( ); ,P Aλ λ α β  and ( ); ,Q Bλ λ α β  vs. Qλ  and Bλ  for given 

constant α  and β . In this figure, >α β , so ( ) = > 1Pρ α β , and the scheme will 

diverge. 
 
the high frequency eigenvalues of P and Q, in magnitude, will be greater than 
one, thus convergence condition (18) will not be satisfied. This provides the re-
striction for convergence that, 

.α β=                              (20) 

This optimal value of α β=  will henceforth be called *α . It is important to 
note that the operator m mA ×∈  or n nB ×∈  with the larger dimension 

( )max , ,m n≡                           (21) 

has a larger range of eigenvalues. Figure 1 shows m n> , (i.e. m= ) so it can 
be seen that ( ) ( )min minA Bλ λ<  and ( ) ( )max maxA Bλ λ> . This property of 
the eigenvalues is important when calculating an expression for c, which will 
soon prove to be a highly useful parameter for an adaptive approach to smooth-
ing. Letting *α β α= =  in (17) gives the following expression for the eigenva-
lues of P and Q: 

*

*

*

*

, 1, 2, , ,

, 1, 2, , .

A
P k
k A

k
B

Q k
k B

k

k m

k n

α λ
λ

α λ

α λ
λ

α λ

+
= =

−

+
= =

−





                     (22) 

Finding the optimal parameter *α  is done by considering the error reduc-
tion of Sylvester iterations on an arbitrary initial condition U0. Assume that U0 
can be decomposed into its constituent error (Fourier) modes, ranging from low 
frequency (smooth) to high frequency (oscillatory) modes. Given that U0 con-
tains error modes of all frequencies, the most conservative method would be to 
choose *α  such that the spectral radii ( )Pρ  and ( )Qρ  are minimized over 
the full range of frequencies. This ensures that all modes of error are efficiently 
relaxed, and convergence is governed by the product of spectral radii. 

Referring to the lower curve in Figure 2, the conservative method of  
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Figure 2. Eigenvalues ( );P Aλ λ α  and ( );Q Bλ λ α  illustrating the quantities involved in 

computing the optimal parameters *α  and *
mgα , and their respective optimal 

smoothing regions *
smoothR  and mg

smoothR . Note that the upper curve illustrates the method 

of determining *α  in the multigrid formulation, while the lower curve is for 
determining *α  in conservative Sylvester iterations. 
 
determining *α  would be to set * *

min maxL L=  and according to (22), 
**

maxmin
* *

min max

.
AA

A A

α λα λ
α λ α λ

   ++
− =   

− −   
                    (23) 

Noting that eigenvalues for all dimensions collapse onto the curves shown in 
Figure 2, this conservative approach “locks in’’ the value of the larger operator’s 
spectral radius, thus providing an upper bound for convergence. Figure 2 shows 
m n> , so ( ) ( )P Qρ ρ> , so convergence will be limited by ( )Pρ . Equation 
(23) can then be solved for *α  giving 

( ) ( )*
min min max maxmin , max , ,A B A Bα λ λ λ λ= ×              (24) 

where absolute values are introduced as a reminder that ,A Bλ λ  are negative. 
This value of the parameter *α  most uniformly smooths all frequencies for any 
arbitrary 0U  containing all frequency modes of error. It can be seen that the 
spectral radii of P and Q shown in Figure 2 occur at either endpoint, and the 
minimum amplitude occurs near the intersection of the curve with the axis. Va-
rying the parameter *α  in (22) controls the intersection point, and thus creates 
an effective “optimal smoothing region’’, denoted smoothR∗ . Modes of error asso-
ciated with this optimal smoothing region will be damped fastest, which makes 
Sylvester iterations highly adaptive in nature. This adaptive nature of Sylvester 
iterations lends itself nicely to a multigrid formulation. 

The Sylvester multigrid formulation is based on the philosophy that most 
iterative schemes, including Sylvester iterations, relax high frequency modes 
fastest, leaving low frequency components relatively unchanged [11]. On all gr-
ids traversed by a multigrid V-cycle, the high frequency modes are eliminated 
fastest by finding the optimal parameter value mgα∗  such that mg mg

min midL L= , as 
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shown in the upper curve of Figure 2. The height mg
midL  is essentially the dis-

tance above the axis associated with the approximate “middle’’ eigenvalue in the 
range of Aλ  or Bλ . This equality gives the following optimal parameter value 
for the Sylvester multigrid method 

( ) ( )mg min min mid midmin , min , ,A B A Bα λ λ λ λ∗ = ×               (25) 

where, if m n≠ , the minimum (i.e., most negative) middle eigenvalue 
( )mid min max 2λ λ λ≡ +  is chosen to shrink the optimal smoothing region mg

smoothR  
such that high frequencies are smoothed most effectively. This choice of optimal 
parameter can be observed in Figure 2 to drastically decrease the magnitude of 

Pλ  and Qλ  associated with high frequencies which significantly enhance re-
laxation in accordance with the multigrid philosophy. 

To find analytical expressions for *α  and mgα∗ , it is necessary to have values 
for Aλ  and Bλ . For Dirichlet boundary conditions, analytical expressions for 

Aλ  and Bλ  are derived below, but for Neumann boundary conditions numer-
ical approaches are necessary to find Aλ  and Bλ . The operator matrices A and 
B are each of tridiagonal form, 

0 1

1 0 1

1 0 1

1 0

.p p

d d
d d d

d d d
d d

×

 
 
 
 ∈
 
 
  

                   (26) 

Tridiagonal matrices with constant diagonals, such as A and B for Dirichlet 
boundary conditions, have analytical expressions for their eigenvalues given by 

0 1
π2 cos , 1,2, ,

1k
kd d k p

p
λ

 
= + = + 

              (27) 

where p is the arbitrary dimension of the matrix [12]. Neumann boundary condi-
tions alter the upper and lower diagonals of A or B, thus there is no analytical 
form of eigenvalues for Neumann boundary conditions. Using (5) and (27) gives 
the following analytic form of the eigenvalues of the tridiagonal matrices A and B, 

2

2 π1 cos , 1,2, , ,
1k

k k p
ph

λ
  

= − + =  +  
            (28) 

which achieves minimum and maximum values given by 

min max2 2

2 π 2 π1 cos and 1 cos ,
1 1

p
p ph h

λ λ
      

= − + = − +      + +      
    (29) 

respectively. Using (24), (25), and (29) the analytic expressions for optimal pa-
rameters for both conservative and multigrid approaches are given by 

*
2

mg 2

2 π π1 cos 1 cos ,
1 1

2 π π π1 cos 2 cos cos ,
1 1 1

h

h

α

α∗

     = − + − +     + +     

       = − + − + +       + + +       



 

 

  

     (30) 
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where again ( )max ,m n≡ . Having expressions for *α  and mgα∗  allows Pλ  
and Qλ  to be found analytically using (22) which subsequently allows the 
spectral radii of the iteration matrices P and Q to be calculated. Knowing the 
spectral radii of the iteration matrices P and Q is highly advantageous, as it al-
lows for an analysis of the Sylvester iterative scheme. 

4. Analysis  

The analysis of standard Sylvester iterations can be performed and describes the 
error reduction with each consecutive iteration using (19). Having the optimal 
parameters given by (30) and eigenvalues of P and Q in (22), the spectral radii 
can be calculated to be 

( )

( )

π π π1 cos 1 cos 1 cos
1 1 1

,
π π π1 cos 1 cos 1 cos
1 1 1

π π π1 cos 1 cos 1 cos
1 1 1

1 c

m
m

P
m

m

n
n

Q

ρ

ρ

       − + + − + − +       + + +       =
       − + − − + − +       + + +       

       − + + − + − +       + + +       =

− +



 



 



 

.
π π πos 1 cos 1 cos
1 1 1

n
n

       − − + − +       + + +       



 

   (31) 

Rewriting the last expression of (19), we see that 

( ) ( )( )0
~ .

k
kE

P Q
E

ρ ρ                      (32) 

If we want to reduce our error to 0~kE E  and we wish to know how 
many iterations it will take to achieve this error reduction, using (32) we set 

( ) ( )( ) ~
k

P Qρ ρ  , and solving for k, we find it will take 

( )
( ) ( )( )

log
~

log
k

P Qρ ρ


                       (33) 

iterations to reduce the error by  . Here log can be with respect to any base, as 
long as the same one is used in both the numerator and denominator; e.g., the 
natural log can be used. Recall that the exact solution exactU  of (4) is only an 
approximate solution of the differential Equation (1) we are actually solving. 
Due to this, we can only expect accuracy of the truncation error of the approxi-
mation. With an ( )2O h  method, exact

,i jU  differs from ( ),i jU x y  on the order 
of 2h  so we cannot achieve better accuracy than this no matter how well we 
solve the linear system. Thus, it is practical to take   to be something propor-
tional to the expected global error, e.g. 2Ch=  for some fixed C [12]. 

To calculate the order of work required asymptotically as 0h → , (i.e. 
m →∞ ) using (33) and our choice for  , we see that 

( ) ( )
( ) ( )( )

log 2log
~ .

log
C h

k
P Qρ ρ
+

                      (34) 
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The expressions for ( )Pρ  and ( )Qρ  in (31) contain several cosine terms 
which can be Taylor expanded about different values. Cosines with arguments 
like πx  can be expanded about 1x =  or 0x =  depending on the form of x, 
namely 

( ) ( ) ( )( )
( ) ( )

2
2 3

2
2 3

πcos π ~ 1 1 1 for 1,
2

πcos π ~ 1 for 0,
2

x x x x

x x x x

− + − + − ≈

− + ≈





        (35) 

where, from (31), the form of x is something like ( )1m m +  or ( )1 1m + , 
which clearly approach one or zero, respectively, in the limit that m →∞ . Using 
these expansions, along with the fact that ( ) ( )21 1 ~ 1x x O x− + +  for 1x  to 
simplify the spectral radii, we arrive at the following 

( ) ( )
2π 1 π~ ~ 1 ,

1 4 1
P Qρ ρ  − +  + +  

                 (36) 

when , 1m n . Since ( )1 1h m= + , (34) combined with (36) gives the follow-
ing order of work needed for convergence to within 2~ Ch : 

( ) ( )2log 1
~ ~ log ,

π2log 1
1

m
k m

π
− +

 − + 





                 (37) 

where only linear terms are used from (36), and the latter simplified expression 
can be deduced by using the property that ( ) ( )2log 1 ~x x O x+ +  for 1x . 
Note that when m n= , the order of work for Sylvester iterations is 

( ) ( )~ π logk m m , which is comparable to the work necessary for the Successive 
Over-Relaxation (SOR) algorithm to solve Poisson’s equation [12]. This will be 
our basis for comparison in the Results section for standard Sylvester iterations. 

5. Results 

Problems solved by Sylvester iterations can, in general, be written shorthand as 
U F= , where   is a linear operator. In the case of Poisson’s equation,   

is the Laplacian operator. As an error measure, the discrete 
2⋅  norm of the 

residual, r F U≡ − , can be measured at each iteration. This number provides 
the stopping criterion for our iterative schemes, namely the iterations are run 
until 

( ) ( ) ( )0tol ,k kr F U r= − < ×                  (38) 

where ( )0r  is the initial residual, and tol is the tolerance. The tolerance is set to 
machine precision 16tol ~ 10−  to illustrate the asymptotic convergence rate, 

( )
( )

( )1
,

k
k

k

r
q

r −
=                           (39) 

however, in practice, the discretization error ( )2O h  is the best accuracy that 
can be expected. These numerical results were run using MATLAB on a 1.5 GHz 
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Mac PowerPC G4. The model problem that is solved is given by 

( )( ) ( )( )2 2 2 2 2 2 22 1 6 1 1 6 1 in ,

0 on ,

u y x y x y x

u

 ∇ = − − − + − − Ω 
= ∂Ω

      (40) 

where { }, | 0 1,0 1x y x yΩ = ≤ ≤ ≤ ≤ , and whose exact solution 

( ) ( )( )exact 2 4 4 2, ,u x y x x y y= − −                   (41) 

is known so errors can be computed [11]. This model problem is used to show 
performance of both standard and multigrid Sylvester iterations. In all cases, the 
initial guess ( )0U  of the iterative scheme is a normalized random array and can 
be assumed to contain all modes of error. 

5.1. Standard Sylvester Iterations 

For comparison, standard Sylvester iterations were tested against Successive 
Over-Relaxation (SOR) with Chebyshev acceleration (see e.g., [13]). In SOR with 
Chebyshev acceleration, one uses odd-even ordering of the grid and changes the 
relaxation parameter ω  at each half-step, which converges to the optimal re-
laxation parameter. The results are shown in Table 1. It is important to note that 
SOR iterations involve no matrix inversions, whereas Sylvester iterations do, 
thus the CPU time measure might not be an appropriate gauge for this particular 
comparison. From these results, it is clear that standard Sylvester iterations are 
comparable to SOR, and in most cases, converge to within tolerance in fewer 
iterations than SOR. An unfortunate artifact of standard iterative schemes is that 
as system size increases, so does the spectral radii governing the convergence. 
This can be observed in Table 1, as asymptotic convergence rates for each me-
thod sylvesterq  and sorq  steadily increase, thus requiring higher numbers of ite-
rations to solve within tolerance. The number of Sylvester iterations required to 
converge is consistent with the predicted number of iterations given by Equation 
(33) letting 16tol 10−= = . 

5.2. Multigrid Sylvester Iterations 

In multigrid Sylvester iterations, the performance of the ( )1 2,V ν ν -cycle using 
Sylvester iterations is compared to that using the traditional Gauss-Seidel (GS) 
 
Table 1. Sylvester iterations vs. successive over-relaxation (SOR). 

System Size Sylvester SOR   Sylvester SOR 

M N×  Iterations Iterations sylvesterq  sorq  CPU Time CPU Time 

16 16×  84 93 0.638 0.674 0.059 0.072 

32 32×  173 185 0.806 0.819 0.474 0.612 

64 64×  352 368 0.899 0.905 4.591 5.082 

128 128×  709 735 0.949 0.951 43.13 48.28 

256 256×  1473 1469 0.975 0.975 744.5 786.7 
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Table 2. Multigrid sylvester iterations vs. multigrid gauss-seidel (GS) iterations. 

System Size Sylvester GS   Sylvester GS 

M N×  V(2,1)-cycles V(2,1)-cycles mg
sylvesterq  mg

gsq  CPU Time CPU Time 

16 16×  12 14 0.055 0.067 1.53 1.66 

32 32×  13 15 0.062 0.078 2.07 2.16 

64 64×  13 15 0.066 0.082 3.29 2.94 

128 128×  13 15 0.068 0.083 6.34 4.87 

256 256×  13 15 0.068 0.083 24.1 15.4 

512 512×  13 15 0.069 0.083 151.8 102.3 

 
iterations. The parameter 1ν  represents the number of smoothing iterations 
done on each level of the downward branch of the V-cycle, while 2ν  represents 
the number done on the upward branch. In practice, common choices are 

1 2 3ν ν ν= + ≤ , so our performance is based on the ( )2,1V -cycle [14]. In each 
case, the V-cycle descends to the coarsest grid having gridwidth 0 1 2h = , and in 
the Sylvester implementation, the value of mgα∗  is calculated to smooth high 
frequencies most effectively on each grid traversed by the cycle. The results are 
shown in Table 2. It can be seen that the asymptotic convergence rates mg

sylvesterq  
and mg

gsq  reach steady values independent of the gridwidth h. This is characte-
ristic of multigrid methods, and enables the optimality of the multigrid method. 
It is clear when comparing the CPU times of the Sylvester multigrid formulation 
in Table 2 with standard Sylvester iterations in Table 1 that the multigrid 
framework is substantially faster (e.g., 30 times faster than standard iterations 
for a grid of size 256 256× ). It can also be seen that the asymptotic convergence 
rates are such that mg mg

sylvester gsq q< , thus convergence is met in fewer ( )2,1V
cycles using Sylvester smoothing versus Gauss-Seidel smoothing. 

6. Conclusion 

Sylvester iterations provide an alternative iterative scheme to solve Poisson’s eq-
uation that is comparable to SOR in the number of iterations necessary to con-
verge, namely converging to discretization accuracy within ( ) ( )~ π logk m m  
iterations. The true benefit of the Sylvester iterations, however, comes from its 
adaptive ability to smooth any range of error frequencies, thus being a perfect 
candidate for smoothing in a multigrid framework. Multigrid ( )2,1V -cycles 
using Sylvester smoothing have an asymptotic convergence rate of  

mg
sylvester 0.069q =  (versus mg

gs 0.083q =  for Gauss-Seidel smoothing) and indicate 
significant improvement in efficiency over standard Sylvester iterations. 
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Appendix 

1) Boundary condition implementation 
Solving the Poisson equation using Sylvester iterations lends itself nicely to 

boundary condition implementation. Dirichlet boundary conditions of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 40, , , , ,0 , , ,u y u y u a y u y u x u x u x b u x= = = =   (1) 

where 1 2 3, ,u u u  and 4u  are functions describing the edges of U, can be im-
plemented as follows. The unknown values in the Sylvester system given in Equ-
ation (4) are the m n×  array of interior values, where 2, 2m M n N= − = − . It 
is possible to incorporate Dirichlet boundary conditions directly into this inte-
rior system by examining the partitioned matrix product, for example AU, given 
by 

      (2) 

with UB taking an analogous partitioned form. Multiplying through by 2h  as-
sociated with the operator matrices A and B, the partitioned Sylvester system for 
internal unknowns gives 

( )( ) ( )( ) ( )( )T int int T T int int T 2 int
1 2 3 4 ,L R T BA A U A B U B B h F⋅ + + ⋅ + ⋅ + + ⋅ =u u u u (3) 

where all matrix-vector products are m n×  outer products. Note that the 
product AU incorporates Dirichlet boundary conditions in the x-direction, and 
UB incorporates Dirichlet boundary conditions in the y-direction. Combining 
the partitioned systems incorporating both A and B matrix multiplications and 
boundary conditions yields 

( )( ) ( )( ) ( ) ( )int int 2 int T T T T
1 2 3 4 ,L R T BA U h F A A B B= − ⋅ + ⋅ − ⋅ + ⋅u u u u     (4) 

which is an m n×  linear system for intU . 
For Neumann boundary conditions, the edge at which the condition is im-

posed becomes part of the internal unknowns in the Sylvester system. As an 
example, consider a Neumann boundary condition given by 

( ) on 0.u g y x
x
∂

= =
∂

                      (5) 

Staying within the finite difference formulation of derivatives and letting 

( )j jg y g≡ , this condition can be discretized and approximated with the 

( )2O h  central difference approximation, which yields 

1, 1,

,

for 0, 0 .
2

i j i j
j

i j

U Uu g i j N
x h

+ −−∂  ≈ = = ≤ ≤ ∂ 
               (6) 

For a Neumann condition along the edge 0x = , the row vector T
1u  de-

scribed in (2) becomes a part of the internal array of unknowns intU . In order to 
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implement this finite difference on the edge, we need to introduce a ghost layer 
with index 1i = − , and pair Equation (6) to the second derivative operator AU 
for 0i = . This gives 

( )

1, 1,
1, 1,

2
1, 0, 1, 1, 0,

2 2 2
0,

2 ,
2

2 2 2 2
2 ,

j j
j j j j

j j j j j j j

j

U U
g U U hg

h
U hg U U U U gu

hx h h

−
−

−
= ⇒ = −

− − + − ∂
≈ = − 

∂ 

       (7) 

which leads to the following partitioned form of AU, 

(8) 

where the additional term 2 jg h−  is taken to the right hand side of the Sylve-
ster system such that int int

0, 0, 2j j jF F g h= +  for 0 j N< < . Comparing (8) to (2), 
the size of intU  changes from m n×  to ( )1m n+ × , and 0,1A  is changed from 
1 to 2 (shown boldface in (8)), and the right hand side is slightly modified along 
that edge. Similarly, any edge with a Neumann condition can be handled in this 
fashion. It is clear that both Dirichlet and Neumann boundary conditions are 
very simple to implement in the Sylvester iteration method, and only slightly 
modify the structure of the arrays involved. 
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