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Abstract

Plates vibrate when load moves on them. In this paper, the dynamic response
of Mindlin plate analytical model was converted to its numerical form using
finite difference algorithm. The numerical model was analysed to ascertain the
critical parameters contributing to the deflection of Mindlin plate under a
moving load. The examination was more reasonable as in the likelihood of the
plate laying on a Pasternak foundation was put into thought. Likewise the
impact of damping was not dismissed. The plate considered in this paper was
an inclined Mindlin plate, where the impacts of shear deformation and rota-
tory inertia were considered. The numerical equations were solved with the
help of a developed computer program and Matlab. The results were consis-
tent with what we have in the literature. The effects of the Pasternak founda-
tion, damping, angle of inclination, and the moving load to the dynamic re-
sponse of the elastic plate were exceptionally self-evident.
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1. Introduction

The importance of moving load problem manifested in numerous applications
in the area of Mathematics and Engineering. Structural elements are usually

designed to support moving loads. Various authors have analysed the dynamic
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response of a Mindlin Elastic plate under the influence of moving load, without
considering the influence of inclination with the rotatory inertia and shear
deformation on the plate. This is necessary because of the practical application
in modern Engineering [1]-[7]. A load put on a slanted plane will frequently
slide down the surface if nothing is keeping it down, particularly when the
sliding surface (plate) is frictionless or practically frictionless. Likewise, the rate
at which the object slides down the plate depends on the edge of slant of the
surface; the more noteworthy the edge of slant of the surface, the quicker the rate
at which the load will slide down it [8]. The edge of slant is the edge plate makes
with the level. There are always, at least, two forces namely: the force of gravity
and the normal force, acting upon the railway vehicle positioned on an inclined
bridge [9]. The force of gravity acts in a downward direction, while the normal
force acts in a direction perpendicular to the surface [10]. An inclined plane
problem is in every way like any other net force problem with the sole exception
that the surface has been tilted. An inclined plane therefore can be transformed
into the form with which we are more comfortable [11]. After this transformation,
one can ignore the force of gravity since it has been replaced by its two
components and solve for the net force and the acceleration for a load mowing
down the inclined plate [11]. Mindlin plate is the sort that put into thought the
impact of shear deformation and rotatory inertia. Damping was considered in
this work. The plate considered is of wood material, an example of orthotropic
material. It has material properties that contrast along three commonly
orthogonal twofold axes of rotational symmetry. It is a subset of anisotropic
materials, since its properties change when measured from different directions
[12] [13]. It has material properties that differ along three mutually-orthogonal
twofold axes of rotational symmetry. It is a subset of anisotropic materials,
because its properties change when measured from different directions [13]. A
versatile rectangular inclined orthotropic Mindlin plate, supported by Pasternak
foundation and traversed by a descending moving load is considered [14]. Loads
are known to accelerate down slanted planes in view of a lopsided force [14].
Because of the orthotropic plate, the impact of contact, expressed by friction, is
put into thought. The perpendicular component of the force of gravity is
directed opposite the normal force and as such balances the normal force. The
parallel component of the force of gravity is not balanced by any other force.
This object will subsequently accelerate down the inclined plane due to the
presence of an unbalanced force. It is the parallel component of the force of
gravity that causes this acceleration. The parallel component of the force of
gravity is the net force. In the presence of friction, determining the net force,
which is the vector sum of all the forces, is as follows: The perpendicular
component of force balances the normal force since objects do not accelerate
perpendicular to the incline. The perpendicular component and the normal
force add to 0 N. The parallel component and the friction force add together to a

magnitude greater than 0 N, since we are considering a moving load. In this
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paper, finite difference algorithm was utilized to model the differential equations
governing the dynamic response of an elastic rectangular damped inclined
orthotropic Mindlin plate supported by a Pasternak foundation to a downward

moving load. The algorithm converted the equations to their algebraic forms.

2. Problem Formulation

2.1. Assumptions

1) The inclined plate is of constant cross-section,

2) The moving load moves with a constant speed,

3) The moving railway vehicle is guided in such a way that it keeps contact
with the inclined plate throughout the motion,

4) The inclined plate is continuously supported by a Pasternak foundation,

5) The moving load is moving downwards,

6) The rectangular Mindlin plate is elastic,

7) There is no damping in the system,

8) Uniform gravitational field,

9) Constant mass of the load moving down the inclined plane,

10) Constant angle of inclination.

2.2. Governing Equations

The simplified form of the set of dynamic equilibrium equations governing the
behaviour of damped simply supported orthotropic inclined Mindlin plate traversed
by a partially distributed downward moving load is given as [15] [16] [17]:

2 2 2
M. B gsiné?+8 I/12/+2U ow +U? 0 Vf
yA oT x0T Ox

2 2 82 2
= k>Gh —Nf+a‘”x_mf+ Vol okw-m, 28 1)
ox ox Oy oy oT
ow ow o'W

_FS

-G -G + ph
Poxr ! 9P PR or?
B h3 2 2 2 3 A2
pL™ al/lzx+2Ual//x +U26l/;x +ph al//zx
12 | oT oxoT ox 12 or @)
2
vy, & - 2 R
_p| ey I | Y OV OV —szh(y/x—a—Wj
ox Ox0y 2 oy Ox0y Ox

B K| d*w. v 8? 3 9%y
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oy Oyox 2 oxdy  Ox Yooy

The definitions for moments along x and y axes, twisting moment and shear

(3)

deformation along x and y axes are given as follows respectively [17] [18] [19]

a l//x a l//y j

+v

ox oy

M, = —D[ (4)
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MAZ—D(%+V%j (5)
! oy Ox
M)”,:_D(l_‘/)(al//x'i‘al//yj (6)
’ 2 oy Ox
0, = —szh(wx —a—W] )
’ ox
0,- —szh(wy —a—Wj ®)
) ay

where,

w,(x,»,T) and y,(x,»,T) are local rotation in the x and y directions
respectively.

W(x, »,T ) is the traversed displacement of the plate at time 7.

g(sin@) = acceleration due to gravity of the load down the inclined plane.

6 = angle of inclination of the plate to the horizontal.

y = damping coefficient.

g(cosf) = acceleration due to gravity of the load equal and opposite the
normal force to the plane.

Fiis the force of sliding friction.

gis acceleration due to gravity.

K, G, = foundation stiffness.

B =B B, such that

1—H(x—§—fj, 0<T<Z
2 U
& & & L
H(X—f-’-zj—]‘[(}(f—é—gj, ESTSUX
B = L L+ ©)
H|x-¢e-%], iy P
2 U U
0, Lx+8£T
U

_ e B M
By_{H(y y1+2j H(y N 2)} (10)

H(x) is the Heaviside function defined as:

1, x>0
H(x): 0.5, x=0 (11)
R x<0

U'is the velocity of a load of rectangular dimension & by x with one of its line
of symmetry moving along Y= Y.
A= ue , the area of the load in contact with the plate.

The plate is Z, by L, in dimensions and

&
§_UT+E (12)
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hand A, are thickness of the plate and load respectively.
pand p, are the densities of the plate and load respectively.
G is the modulus of the plate.

Dis the flexural rigidity of the plate defined by

D=%Eh2 [(1-v")]=anfe(1-v) (13)

& is the shear correction factor.
vis the poisson’s ratio of the plate.
gis the acceleration due to gravity.
Eis Young modulus of Elasticity.

M, is mass of the load.

2.3. Boundary and Initial Conditions

For a complete formulation of the problem, a simply supported rectangular
Mindlin plate is considered as an illustrative example. If the edge y = 0 of the
simply supported, it then follows that the deflection W along this edge must be
zero. At the same time this edge can rotate freely with respect to the x-axis, ‘e,
there are no bending (A4,) along this edge. Therefore the boundary conditions
can be stated as follows: [19] [20] [21]

W(x,y,T)=M(x,y,T)=0, forx=0andx=a y
W(x,y,T)=M (x,y,T)=0, fory=0andy=b (14)

The corresponding initial conditions are
W (x,0.0)=0=22 (x,.0) (15)

orT

2.4. First Order PDE Version of the Governing Equations

The first order partial differential equations versions of the system of Equations
(1)-(8) are as follows:

0. - My, M,
) GEY’). ¢
30 310
_ph NWr  pib | Ve L[ OMy g, OMy (16)
12 or 12 | or D(V2 _1) or ox
1 U(aMY +U8MYJ 3
D(v2 _1) or oxX
0. - oMy, oM,
) G 4
30 310 0
_Ph Wy Pl | Ve g 1 U(GMY +U8Myj (17)
12 or 12 | or oY D(VZ _1) oT oY
U (GMX +UaMXj 2
D(v2 _1) oT oY
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where M =M, —ph

0 0
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where Wis the deflection
0
Yxr= %
_Oyy
Vyr = or
and
ow
D.=— 24
=7 (24)
ow
D, =— 25
X = oy (25)
ow
= 26
=5y (26)

3. Finite Difference Algorithm for the Model

Equations (16)-(26) were solved using a numerical method based on the finite
difference algorithm. These equations were transformed into their equivalent
algebraic forms. The finite difference definition of first order partial derivative of

a function E(x,y,t) say, with respect to x, y and ¢ respectively are as follows

[21] [22]):
CE 1
5 - FI:E"]:,]jH + E,]:l, + Ezk;lfl + Eiljl - Ez‘ﬁ-],j+1 - Eflil,j - E[]fﬁ] - Ei]fj] 27)
aE 1 + + + +
a = an" |:Ei]«(+l}j+1 + Ei]irljj _Ei]jj] _Eilfjll + Ei]irl,jﬂ + Eilirl,j _Ei]fjJrl _Ei]ij] (28)
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OF

_ K+l K+l k+1 K+l k k k k
5 - ar" |:Ei+1,j+l +Ei,j+l _Ei+1,j _Ei,j +Ez'+1,j+1 +Ez',j+1 _Ei+l,j _Ei,j:| (29)

where Eis the function value of the centre of a grid, which is well approximated
by the average of its values at the grid nodes [22].

h* kK r
Elergp iy
(30)
_ k+1 k+1 k+1 k+1 k k k k
- g[Ei+l,j+l + Ei+l,j + Ei,j+1 + Ei Jj + Ei+l,j+l + Ei+l,j + Ei,j+1 + Ei,j]
Using the above finite difference definition on Equations (16)-(26) gives:
1 k+1 k+1 k+1 k+1 k k k k
§|:Qxi+l,j+l + Qxi+1,j + Qxi,j+1 + Qxi,j + Qxi+1,j+1 + Qxi+1,j + Qxi,j+l + Qxi,j:|
_ 1 M k+1 M k+1 _M k+1 _M k+1 M k
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k k k k+1 k+1
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k+1 k+1 k k k k
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Ph3 1 K+l K+l K+l K+l k k
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3 2
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3 2
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_ 1 M k+1 +M k+1 _M k+1 _M k+]+M k
* XYi+l,j+1 XYi,j+1 XYi+l,j XYi,j XYi+l,j+1
4]’! J J s J J

1
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= ahG[g |:‘//X,Ti+|,j+1 + WX,TH—],/‘ + ‘//X,T[,j + ‘//X,Ti,j+1 + l//X,Ti+1,j+l
(37)

1 )
k k k kil kel
TWxrin TWxrijmtWVxri; :I} —ahG |:_4h* [DYi+l,j+l + DYi+1,j

k+l k+l k k k k
- DYi,j - DYi,j+1 + DYi+1,_j+1 + DYi+1,j - DYi,j+l - DYi,j ]}

1 k+l k+l k+l k+l k k k k
_41’* |:QY1'++1,j+1 + QYf++1,j + QYi:; + QYi;'Jrl - QYi+l,_j+1 - Qym,j - QYi,j+l - QYi, /]

1 k+1 k+1 k+1 k+1 k
=ahG l:g['//y,ri+1,j+1 + V/Y,Ti+|,j + V/Y,Ti,j + V/Y,Ti,j+1 + ‘//Y,Ti+1,j+|
(38)

: 1
k k k k+1 k+1
+ Yy ris,j + Yy rij+ + Yyrij :|:| —ahG |: e [DYi+l,j+1 + DYi,j+1

k+1 k+l k k k k
- DYi+1,j - DYi,j + DYi+1,j+1 + DYi,j+1 - Dym,/ - DYi,j ﬂ

1 k+1 k+1 k+1 k+1 k k k k
§|:DTi+l,j+l + DTi+l,j + DTi,j + DTi,j+] _DTi+1,j+I _DTi+1,j _Dri,j+1 - DTi,j]

. (39)
_ *|:Wk+1 LW Lk gk gk Wk _wk

k
4 xitl, j+1 xi,j+1 xitH, ] xi,j xitH, j+1 xi,j+ xitl,j Vin,j:I
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%[Dyﬁjll,jﬂ + DYz]“-:—ll,j + Dy:'(,;l + DYtl'{,;i-l + Dyf+1,j+1 + Dyfn,j + DYf,j+l + Dyf,j}

1 k+l k+1 k+1 k+1 k k k k (0)
= 4h* [Wri+l,j+l + in+|,j _Wxi,j _Wxi,j+l + Wxi+l,j+l + Wxi+1,j _Wxi,j+1 - Wxi,j]
%[DTZ'TII,]H + DTftll,j + DT:'(,;I + DT:'(,;LI + DTf+1,j+1 + DTll':-l,j + DTf,jH + DTf,j]

1 k+1 k+1 k+1 k+1 k k k k (1)
= W[me,ﬁl + Wxi,j+1 - Wxi+l,j - Wx;,j + Wxi+l,j+l + Wxi,j+1 - Wxi+1,j - Vin,j]

The set of algebraic equations to be solved may be written in matrix form as:

R .S +P. . .5 —_7 5 Y. .S +7

i, j+10, j+1 i+, j+120+ 41 i, j 100, 4+ T il R k (42)

i=1,2,3,---,N—-1, j=1,2,3,---,M -1

where N and M are the number of the modal points along x- and jy-axes
respectively, Z; is a matrix representing the right half of Equations (16)-(26)
defined by

0
Si+1,/'+1

Z, =48’ +B .S . +C. S, +D,

(e i+ i+1,j i+, j i+, j+

+E, (43)

The terms of the above Equations ((42) and (43)) can be represented in matrix

form as follows:

Xi j+1

Yi,/‘+l

XYr.j+l

i j+l

Oy

i,j+l

/ —
Si,j” - : I//XYI‘,/’H

R

i,j+1
i,j+1
7;',1‘4-]

ij+1

i j+

Yi,/‘+l B

Numerical Simulation

For numerical work the coupled differential Equations (16)-(26) were solved
using the central difference formula of finite difference method. The following
values of the various parameters were used: A=1, A, =0.2, p=0.8, p, = 0.5, B=
0.5, U=5.5,D=0.63, v=0.2, M= 10, M; = 0.05, K= 100, G, =10, y=0.5, A= 6,
£=98,60=30,a=001, G=200, 7 =1, A =1, kK =1, r=2. Equations (31) to

(41) can now be written as follows:
0125 [Qxf:l],jﬂ + virl],] + xf,-;l’l + xf,-;] + xf+1,j+1 + xf+1,j + Qxﬁjﬂ + Q,\zk,j:|
-0.25 |:MXY;€:11,j+1 + MXYleJrLl - Mxyfc:ll, - MXYII'C,;I + MXYZ'C+1,j+1
XYi,j+

+M : MXYf'{H,j_MXY:F,]:|_0'25|:MX1]'€-;1,1'+1+MX1]'C-:]1,j
M g ko k MK MLk fo,/]

Xi,j Xi,j+l Xi+l, j+ Xi+l,j Xij+l
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_ k+1 k+1 k+1 k+1 k k
= {O~00002[‘/’X,ri+1,‘/+1 YWy i YVWxrin TWxri; ~Wxriv o " VYxria,

k k k+1 k+1 k+1 k+1
“Wxrijw ~Yxrij ]} + {0-00075 [V/Y,Ti+1,j+l Ty rien; YWyrijn YWy

k k

Wy riajn V/Y,Ti;l,j - l//y,Tin - !//Y’Tl’.ij :|} — {0~00121|:M g ke

Xi+l, j+1 Xi+l,j
k+1 k+1 k k k k
+ M M - M -Mt M M ]}

Xi+l,j+1 Xi+l,j Xij+1 ~ Mxi;

—{0.0008[ M 5L+ ML M <M M M

Xi,j Xi, j+1 Xi+l, j+1 Xi+l,j
k k k+1 k+1 k+1 k+1
My = M T H{0.00020] My M M M

(44)
_My,/'c+1,j+1 _MYII':—I,j _MYt,‘c,j-H _My,/'c,j:|} + {000667 [M k+l/+1 + M,

Yi+l, Yi+l,j

MUK Rk TME MK _Mk]}

Yi,j Yi,j+l Yi+l, j+1 Yi+l,j Yi,j+1 Yi,j

k+1 k+1 k+1 k+1 k k k k
O'lzs[QYHl,jH + QYi+1,j + QYi,j+l + QYi,; + QYi+l,j+1 + QYi+l,j + QYi,j+1 + QYi,j]

—0.25[ M K+ M i = My =M b M

XYi,j+1 xvi+l,j — M xvi,j XY i+, j+1
+MXY1]'(,j+1 _MXY:'(Jrl,j _MXYII'{,j:'_O'ZS[MXf:II,jH +MX5'€:11,j
_MXLI‘C,;I _MXL]F,;}*—] +MXL]’C+],j+] +MXf'€+l,j _fo,jﬂ _Mxﬁj:'
_ O 0667 L +1 k+1 k+1 k+1 k _ k
=U. 4 [‘//Y,Tm,m FTWyri; YWrrign TWrri; ~Vyringa ~Vyria

k k 1 k+1 k+1 k+1 k+1
“VYyrija Yy :|} +0.00002 {; |:‘//Y,Ti+1,j+1 Ty i TWrrija TWrrij

k k k k k+1 k+1 k+1
“VYyriaja " VYryria,; “VYyrija Yy :I} +0.00046 [‘//Y,Ti+1,j+1 YWy rin; ~VYyrij

+1

1
k k k k k kel
“Wyrija YWy rinja TWyring; ~Wyrija— ‘/’Y,Ti,/':| -0.30313 {— [M

Xi+l, j+1
4r
k+l k+ k+ k k k k
+MXi+1,j +MXi,j+l +MXi,j _MXi+1,j+1 _MXi+1,j _MXf,j+1 _MXi,j]}
Xi+l,j Xi,j Xi,j+l Xi+l, j+l Xi+l,j

1 .
_1.66722{5[1\/{)(::{]_” S ML R kL gk Mk

1
My M j]}+o.30313{ [fo;{jHJrMXf;{jJrM M (45)

Xi,j+1 Xi,j

4r / /

-M S —M M M +166722LM"”
Xi+l,j+ Xi+l,j Xi,j+l Xi,j : 4h Xi+l, j+1
Xi+l, j+ Xitl,j Xxij+ — Mxi

k+l k+l e+l k k k k
+MX[+1,j_MXi,j _MXi,j+1+M +M -M M ]}

k+1 k+1 k+l e+l k k k k
O'ZS[QxHLJH + Qxi+1,j T iy T 2y + Qxi+1,j+1 + Qxi+l,j - Qx Q :'

i+ xi,j
+0.25 |:Qxf'{++ll,j+l + szk;il - Qxf{:llj - Qxfjl + Qx:':—l,jﬂ + szl'(,j+1 - sz]'il,j - Q\’f{j]
+ 125 [fo:ll,jﬂ + Wxijlﬂ + Wxi:rll,/ + Vfo;l + Vsz]'(Jrl,jH + Vsz]'(,jH + W)Cl].:’l,j + VVX;(_]J
+1.25 [DTzl'(:ll,jH + DTII'TII,j + DTZ‘{,;I + Drf;lﬂ - DT?+1,j+1 - DTj'irl,j - DTf,jH - DTf‘ij:'
+ 25|:Dx:(:11,j+1 + Dxf:ll,] - Dxf,;l - Dxll",;lﬂ + Dxf+l,j+l + Dxlﬁl,j _Dxﬁj+l _Dxl]'{,j:'
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k+l k+l k+ e+ k k k k
+2.5 I:DYHL‘/H + DYi,j+1 - DYi+1,j - DYi,j + DYi+1,j+1 + DYi,j+1 - DYi+1,j - DYi,j:I
. l k+1 k+1 k+1 k+1 k k
+0.008335 |:g sin 0 + ZI:DTH—I,jH +Drivyy+ Drij + Dri o = Driy ju = Dria

k k k+1 k+1 k+1 k+1 k

- DTz‘,j+1 - DTi,j :I} +0.011459 |:DTi+l,j+1 + DTi+1,j + DTi,j + DTi,j+1 - DTi+1,j+1
k k k k+l k+l k+l

- DTi+I,j - DTi,j+l - DTi,j:| + 0'005729[WX,T:'+1J+] + Vi rij + Vix i,

kil k k k k kil
TVWxrij TVWxrinm TWxrijm tWyrin; T WX,Ti,j] - 0~052101|:Mxi+1,j+1

k+1 k+1 k+1 k k k k
+ Mxi,j+1 + Mxi+1,j + Mxi,j + Mxi+1,j+1 + Mxi,j+1 + Mxi+1,j + Mxi,j:|
k+1 k+1 k+1 k+1 k k
+ 0'01042[MYi+1,j+1 +MYi,j+1 +MYi+1,j +MYi,j +MY1'+1,j+l +MYi,j+1
k k k+1 k+1 k+1 k+1 k
+ MYi+1,j + MYi,j:I - 0‘005729[Qxi+1,j+1 + Qxi+1,j + Qxi,j+1 + Qxi,j T Xxit, 4l (46)

k k k k+ e+l e+l e+l
- Qxi+1,j - Qxi,j+l - Qxi,j:l —0.0315105 |:QYi+1,j+l + Yil,j — ZYijH -~ ¥Yi,j
k k k kT
+ QYi+1,j+1 + QYi+l,j - QYi,j+1 - QYi,j:' =0

k+1 k+1 k+1 k+1 k k k k
0.25 [Mxi+1,j+1 + Mxi+1,j + Mxi,j+1 + Mxi,j - Mxi+1,j+1 - Mxi+1,j - Mxi,j+l - Mxi,j :|
1
_ k+1 k+1 k+1 k+1 k
=-0.63 [Z[V/X,THL_,-H tVWxrin “Vxri; ~Wxrija TWx e s
" ko ko k ~0.126 l kel e+l (47)
Vxriv, ~¥xrija ~Yxrij . 4 Vi ristjn TV x i
k+1 k+1 k k k k
“VYxrin, “¥Yxri; TWxriva tWxria " VYxria ~W¥xri; ]:l
k+1 k+1 k+1 k+1 k k k k
O'ZS[MYH-I,/‘-H + MYH—I,/‘ + MYi,j+1 + MY[,j - MYi+],j+] _Myi+1,j _MYi,j-H - MYi,j:|
1
_ k+1 k+1 k+1 k+1 k
=-0.63 |:Z[(//X,Ti+l,j+l tWxrijn " Vxriey ~VYxri; TVxrie
(48)
k k k 1 k+1 k+1
+'//X,Ti,j+1 - ‘//X,Tm,j - V/X,Ti,j ]:‘ -0.126 ‘:Z[‘/’X,Tm,jﬂ + WX,T:’,_HI
k+1 e+l k k k k
Wy “VYxrig TVWxrinn T¥Wxrijn " ¥Yxrivg " Wxri; ﬂ
e+l e+l J+l Je+l k k k k
0.25 [MXYi+l,j+1 + MYi+l,j + MYi,j+1 + MYi,j - MYi+1,j+l _MYi+l,j - MYi,j+l _MYi,j:I
_ _0 252 l k+1 + k+l k1 k+1 + k
=-u. 2 Vxriaa TVxrijn ~WYxring ~VYxri; TWVWxriam
k k k 1 k+l k+l (49)
+ V/X,Ti,j+1 - (//X,Ti+1,j - l//X,Ti,j:| +0.252 Z[WY,THI,]-H + V/Y,Ti,l/-#l
e+l k+1 k k k k
- ‘//Y,Tm,j - l//Y,Ti,j + l//Y,Ti+l,j+l + l//Y,Ti,j+l - ‘//Y,Tm,j - !//Y,Ti,j :|:|
k+1 k+1 k+1 k+1 k k k k
0.25 |:Qxi+l,j+l + xi+l, ] + xi, ] + xi,j+l Qxi+l,j+l - Qxi+l,j - Qxi,j+1 - Qxi,j]
=2 l k+1 + k+1 ¥ k+1 + k+1 + k
4l Yxrin YWxrin; YWxri; YWxrijn TV x i m
k k k 1 k+1 k+l (50)
+
tVWxrin; TWxriqmt ‘//X,Ti,j:| -2 Z|:DYi+1,j+1 + DYi+l,j
k+l k+l k k k k
- DYi,j - DYi,j+1 + Dym,ju + DYi+1,j - DYi,j+1 - DYi,j ﬂ
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R

/

i+ =

k+ k+l k+ k+l k k k k
0.25 [Qw:l,_m + QYi:l,/ + QYi,; + QYi,;ﬂ - QYi+l,j+1 - Qym,/ - QYi,/’+1 - QYi,/:'

1 + + + +
=2 |:g|:l//Y,Tf+1],j+l + l//Y,TfH],j + V/Y,Tf,j] + ‘/’Y,Tf,jlﬂ + V/Y,Tf+l,j+l
k k k 1 K+l K+l (51)
Ty ring TWyrija TV, ]} - 2|:Z|:DYi+1,j+l + DYi,j+1
- DYzl’Tll,j - DY:(JI + DYf+l,j+1 + Dyf,jﬂ - DYfH,j - DY:(,j ﬂ
0.125 [Drf:ll,ju + DTzl'Tll,j + DT:'(,;] + Drf,;lﬂ - DTtl'(+l,j+1 - DT:'(H,j - DTz,'t,jJrl - DTzl'{,j:' (52)
=0.25 [Wn]'c:ll,jn + Vthkjlﬂ + Wrtk:ll/ + Vij(jl - vaﬂ,/ﬂ - Vfo‘c,‘/n - Wnl'il,j - Wx:j]
0.125 |:DYf:ll,j+1 + DYf:ll,j + DY:'(,;I + DY;C,;L + DYf+1,j+1 + DYerl,j + DYf,jH + DY:'(,j:| (53)
= 0.25[ WL+ =W = W+ =W =T
0.125 |:DT5'{++ll,j+1 + Drf:ll,j + DTl]'c,;l + DTSLl + DTII'{+1,j+1 + DTf'{+1,j + Drf,jﬂ + DTz]'c,j:| (54)
=025 W + W =W =W W W =W -
The matrices now appear as follows:
_ _ Xi,/+l
0.3 0 03 0.1 0 0 0 0 0 0 0 .
0.3 0 -03 0 0.1 0 0.1 0 0 0 0 o
M, )
-0.1 0 0 0 0 0 0 -13 25 25 Y
-1.3 0 0 0 0 -0.1 0 0 0 0 0 QXI',/H
0 =03 0 0 0 02 0 0 0 0 0| 9.
0 0 -03 01 -0.1 0 0 0 0 0 0 Vi,
0 0 0 =03 0 -03 0 -05 0 0 0 Wyr
i,j+1
0 0 0 0 -03 0 -03 05 0 0 0 !
0 0 0 0 0 0 0 -0.1 0.3 0 0 T
0 0 0 0 0 0 0 0.1 -0.3 0 0 g/"’j”
| 0 0 0 0 0 0 0 0.1 -0.3 0 0 | Kija
Yi,/‘+1 B

The above is at a particular node (i, j + 1). Similar matrices can be shown for

the other nodes, but for brevity sake.

4. Results Discussion

The paper set out to analyse, numerically, the vibration of rectangular elastic
orthotropic damped inclined Mindlin plate, because of applied force, using finite
difference method. The plate was supported by a Pasternak foundation.
Deflection of the plate was calculated for specific values of foundation parameter
and contact area of the plate. It was observed that Mindlin plate has highest
maximum amplitude when compared with Non-Mindlin plate. The response
maximum amplitude decreases with an increase in the value of the subgrade’s
shear modulus for fixed value of foundation stiffness, contact area and velocity.

It was noticed that the response amplitude of the plate continuously supported
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by a Pasternak foundation is less than that of the plate not resting on any elastic
subgrade. As the foundation stiffness and shear modulus increase the response
amplitude decreases. Also, it was observed that as the contact area increases the
response maximum amplitude increases with fixed values of the foundation
stiffness and the subgrade’s shear modulus. Finally it was observed that the

maximum amplitude increases as the velocity increases.

5. Conclusion

The structure of interest was an inclined Mindlin rectangular plate on Pasternak
elastic foundation, under the influence of a uniform partially distributed moving
load. The problem was to use finite difference technique to solve the governing
equation of a moving load problem. The dynamic response of the whole system
was determined by solving the resulting first order coupled partial differential
equations obtained from governing equations for the simply supported Mindlin
plate. The study has contributed to scientific knowledge by showing that Paster-
nak foundation, on which the inclined Mindlin plate rests, has a significance ef-
fect on the dynamic response of the plate to a partially distributed moving load.
The effect of rotating inertia and shear deformation on the dynamic response of
the inclined Mindlin plate to the moving load gives more realistic results for
practical application, especially when such inclined plate is supported by a Pas-

ternak type of subgrade foundation.
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