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Abstract 
A mathematical model described the propagation of information including 
rumor and truth presented and its properties investigated. We explored exists 
of the equilibria, local stability and global asymptotical stability, and obtained 
the propagation threshold of rumor spreading. Numerical simulation is 
shown to demonstrate our results. Uncertainty and sensitivity analysis shows 
the importance of the parameters in our model. 
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1. Introduction 

Rumors, as daily events have been occurred. With the development of new me-
dia such as Internet, mobile phone has broadened the public access to informa-
tion, optimized the circulation of information, but also exacerbated the spread of 
rumors. In emergency communication, financial markets fluctuation and all 
kinds of contagions, rumors play an important role [1] [2] [3]. Therefore, un-
derstanding the propagation of rumors and how to control it effectively is a very 
meaningful topic. 

The dynamic behavior of the rumor spread has a great similarity with the 
spread of infectious diseases. Epidemic models have been developed by many 
researchers [4]-[14]. The classical model of rumor spreading was introduced by 
Daley and Kendal [15] [16]. In their model, the population is subdivided into 
three groups, the ignorant who know nothing about the rumor, the spreader 
who have heard the rumor and spread it again, the Stifler, who have heard the 
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rumor but lose interesting with it and have ceased to spread it. Since then, many 
scholars worked on improving the model [17] [18]. Rumor spreading is under a 
close relationship with the network topology. Zanette [19] [20] examined the 
rumor spreading dynamics on small-world networks and obtained a critical 
threshold of rumor spreading. Some scholars developed applications of the sto-
chastic Maki-Thompson model on scale-free networks [21] [22] [23] [24]. In re-
cent years, numerous researchers have been studying the influence of psycho-
logical factors, such as memory, suspicion, forgetting and other factors of the 
spread of rumors [25]-[31]. Kawachi [25] studied the effect of the Stifler’s mem-
ory on the spread of rumors, and when he was remembered for the rumors, it 
was the first to judge the true or false of the rumor. Zhao [30] discussed the in-
fluence of forgetting and remembering on the final size of the rumor. He sug-
gested that as the forgetting rate increases, the final size of the rumor decreases, 
reversely, the bigger remembering rate makes the final size of the rumor larger. 
Wang [31] considered two different spreaders to spread two rumors individually 
and found that the spreading of one rumor inhibits the spreading of another 
rumor. Although above models are on the rumor spreading research made a sig-
nificant contribution, these models are not reflecting the impact on the govern-
ment counter-rumor. In the era of big data, the relevant government depart-
ments can take a variety of channels to eliminate or limit the spread of rumors. 
For example, after the rumor, they can through SMS (Short Message Service), 
government radio, broadcast, official microblog and counter-rumor sites to the 
society announced the truth of the incident, to eliminate unnecessary suspicion, 
alleviate people’s anxiety and panic caused by the rumor spread and eliminate or 
reduce the loss of rumors to us. The rumor model takes into account the coun-
ter-rumor conforms to the rumors spread dynamic in today’s society. Research 
considering the mechanism of the government anti-rumor spreading model is 
more practical significance. 

The remainder of this paper is organized as follows. In Section 2, we derived 
the model considering the influence of rumors, after which a detailed steady-state 
analysis is carried out in Section 3, and the threshold of the rumor propagation 
is obtained. In Section 4, numerical simulation, uncertainty and sensitivity anal-
ysis of the model are presented. Finally, Section 5 summarizes this work.  

2. Model 

We assume that there are two kinds of spreaders in the whole population which 
called spreader with rumor and spreader with truth, respectively. As shown in 
Figure 1, the total population is divided into four different compartments name 
ignorants, spreaders with rumor, spreaders with truth and recovers, noted with 
( )I t , ( )S t+ , ( )S t− , ( )R t  respectively. When an ignorant contacts a spreader 

with truth, the ignorant becomes the other side with rate β+ , otherwise, if he 
contacts a spread with rumor, the ignorant becomes the other party with rate β− . 
When a spreader with truth contacts with spreader with rumor, they will become a 
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Figure 1. The flow diagram of the rumor propagation model. 

 
removed with probability λ+  and λ− . The spreaders ( \S S+ − ) spontaneously 
become the removed at a rate ( \γ γ+ − ) for losing interesting. 

According to the dynamic interact as mentioned above, we established the 
S2IR rumor spreading model based on the above assumptions. The model is de-
scribed as follows: 

1

2

3

4

I S I S I I

S S I S S S S

S S I S S S S

R S S S S S S R

β β µ

β λ γ µ

β λ γ µ

λ λ γ γ γ µ

− − + +

+ + + + − + + + +

− − − − − + − − −

+ − + − − + − + + − −

= Λ − − −

= − − −

= − − −

= + − + + −









            

(1) 

The parameters of the model descript as follows: 
Λ , the constant recruitment rate of the population; 

1µ , 2µ , 3µ , the natural fade away rate to recover of the ignorants, spreaders 
with rumor and spreaders with truth respectively; 

β+ , β− , the force of infection from ignorants to spreaders of rumor, spread-
ers of truth respectively; 

λ+ , the fade away rate to recover when a spreader of rumor disseminate the 
rumor to a spreader of truth; 

λ− , the fade away rate to recover when a spreader of truth disseminate the 
truth to a spreader of rumor; 

γ + , γ − , the forgetting rate of spreader of rumor and spreader of truth, re-
spectively. 

The initial condition of (1) is given as ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0I S S R+ −> ≥ ≥ ≥ , 
for the fourth equation of system of (1) is not comprised in the first three equa-
tion. Then we can consider the simplified model as follows:  

1

2

3

I S I S I I

S S I S S S S

S S I S S S S

β β µ

β λ γ µ

β λ γ µ

− − + +

+ + + + − + + + +

− − − − − + − − −

= Λ − − −

= − − −

= − − −







                 

(2) 

The initial condition of (2) is given as ( ) ( ) ( )0 0, 0 0, 0 0I S S+ −> ≥ ≥ . Note 
{ }1 2 3max , ,µ µ µ µ=  Then we can easily verify that the system of (2) is mathe-

matically well posed in the positive invariant region  
( ){ }, , | 0, 0, 0,G I S S I S S I S S µ+ − + − + −= > ≥ ≥ + + ≤ Λ . And all the solutions 
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with ( ) ( ) ( )0 0, 0 0, 0 0I S S+ −> ≥ ≥  approaches or enter the region G, so it is 
sufficient to consider solutions in G. 

3. Equilibria and Stability 

Noting that  

{ }0 01 02max ,R R R=                        (3) 

where 
( )01

1 2

R β
µ γ µ

+

+

Λ
=

+
, 

( )02
1 3

R β
µ γ µ

−

−

Λ
=

+
, and 

{ }* * *
1 2min ,R R R=

                       
(4) 

where 
( )( )

( ) ( )
2 3*

1 2
2 1 2

R
β λ β µ γ µ γ

β µ γ λ µ µ γ
+ − + + −

− + − +

Λ + + +
=

+ + +
,  

( )( )
( ) ( )

3 2*
2 2

3 1 3

R
β λ β µ γ µ γ

β µ γ λ µ µ γ
− + − − +

+ − + −

Λ + + +
=

+ + +
. 

Letting the left-hand side of the differential equations of model (2) equal to 
zero yields the following equations  

1

2

3

0
0
0

S I S I I
S I S S S S
S I S S S S

β β µ
β λ γ µ
β λ γ µ

− − + +

+ + + − + + + +

− − − − + − − −

= Λ − − −
= − − −
= − − −                  

(5) 

Obviously, the system exists a trivial equilibrium ( )0
0 ,0,0E I  where 

0
1I µ= Λ . If 01 1R > , let 0S− = , we easily get the rumor-free equilibrium 

( )1 1
1 , ,0E I S+  where ( )1

2I γ µ β+ += + , and  

( ) ( )1 1
2 1 01 1S Rµ

γ µ µ β
β+ + +
+

= Λ + − = − . Similarly, If 02 1R > , we get the coun-

ter-free equilibrium ( )2 2
2 ,0,E I S−  where ( )2

3I γ µ β− −= + , and  

( ) ( )2 1
3 1 02 1S Rµ

γ µ µ β
β− − −
−

= Λ + − = − . 

In the following, we shall study the existence of the positive equilibrium 

( )* * * *, ,E I S S+ −  of system (1). From the second and the third equation of (5), we 
have ( )( )* *

3S Iβ µ γ λ+ − − −= − + , ( )( )* *
2S Iβ µ γ λ− + + += − + . 

Substituting them in the first equation of (5), we have  

( ) ( )2* *F I A I BI C= + −
                     

(6) 

where ( )A β β λ λ+ − + −= + , ( ) ( ) ( )1 3 2B λ λ µ β λ µ γ β λ µ γ+ − + + − − − += + − + − + , 
and C λ λ+ −= Λ . Obviously, 0, 0A C> >  then exist a unique positive solution 

*I I= , yield ( )* 0F I = . For the * 0S+ >  and * 0S− > , we have 
( )( )2 0F µ γ β+ ++ <  and ( )( )3 0F µ γ β− −+ <  

From (6) we get that *
1 1R > , *

2 1R > , namely * 0R > . Thus, we obtain the 
following theorem. 

Theorem 1. System (2) has the following equilibrium: 
1) if 0 1R < , system (2) has only the trivial equilibrium 0E ; 
2) if 01 1R > , 02 1R < , system (2) has a trivial equilibrium 0E  and a 
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truth-free equilibrium 1E ; 
3) if 01 1R < , 02 1R > , system (2) has a trivial equilibrium 0E  and a ru-

mor-free equilibrium 2E ; 
4) if 01 1R < , 02 1R > , system (2) has a trivial equilibrium 0E , a truth-free 

equilibrium 1E  and a rumor-free equilibrium 2E ; 
5) if 01 1R > , 02 1R > , * 1R > , system (2) has a trivial equilibrium 0E , a 

truth-free equilibrium 1E , a rumor-free equilibrium 2E  and coexist equilibrium 
*E . 
The general Jacobian of (2) is given by  

( )

1

22.2

3

S S I I
J S I S S

S S I S

β β µ β β
β β λ γ µ λ
β λ β λ γ µ

+ + − − + −

+ + + + − + + +

− − − − − − + −

− − − − −
= − − − −

− − − −   

(7) 

Theorem 2. The boundary equilibrium points of (1) have the following local 
stability properties: 

1) if 0 1R < , ( )0 0,0,0E I  is a stable node, and if 0 1R > , ( )0 0,0,0E I  is a 
saddle node. 

2) ( )1
1 1, ,0E I S+  is a stable if and only if *

1 1R > . 
3) ( )2

2 1,0,E I S−  is a stable if and only if *
2 1R > . 

4) ( )* * * *, ,E I S S+ −  is always unstable if it exists.  
Proof. 1) At 0E , we have  

( ) ( )

( )

1
1 1

0 22.2
1

3
1

| 0 0

0 0

J E

β β
µ

µ µ
β

γ µ
µ

β
γ µ

µ

+ −

+
+

−
−

Λ Λ
− − −

Λ
= − +

Λ
− +

         

(8) 

The eigenvalues of the Equation (8) are 1 1λ µ= − ,  

( )( ) ( ) ( )2 1 2 1 2 01 1Rλ β µ γ µ µ γ µ+ + += Λ − + = + − ,  

( )( ) ( ) ( )3 1 3 1 3 02 1Rλ β µ γ µ µ γ µ− − −= Λ − + = + − , and therefore the 0E  is an 

unstable node if 0 1R < . 

2) At 1E , the Jacobian of (2) is  

( )

( ) ( )

( )( )
( )

( ) ( )( )

2
2

2

1 1 2
1 12.2

2 2

*
1 2 1

| 0

1
0 0

J E

R

β γ µβ
γ µ

γ µ β

β µ λ µ γβ
µ

γ µ β λ µ

β λ µ γ µ

β

− ++
+

+ +

+ ++

+ + +

− + −

+

+Λ
− − + −

+

Λ − +Λ
= − −

+ +

− + +

   

(9) 

The eigenvalues are ( ) ( )( )*
1 1 3 21 Rλ β γ µ β+ −= − + ,  

( ( )( )2
1 01 01 01 2 1

2,3

1
2

R R Rµ λ µ µ
λ +± − − +

= − , obviously they all have negative 
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real parts and 1E  is local stability if *
1 1R >  and 01 1R > . 

In a similar fashion, we can conclude that if *
2 1R >  and 02 1R > . 2E  is local 

stability. 
For the positive equilibrium *E ,  

( ) ( )( )

( )( ) ( )( )

*
* *

**
33

* *
2 2

0

0

I I
I

II

I I

β β

β λ µ γβ λ µ β
β β

β λ µ β β λ µ γ

β β

+ −

− − +− − +

− −

+ + − + + −

+ +

Λ
− −

− +− +
−

− + − +
−

(10) 

The characteristic polynomial of (10) can be calculated as follows is  

( )3 2 2 * * 2 * * * *
* 0S I S I S S f

I
λ λ β β λ λ λ+ + − − + − + −

Λ
+ + + − − =

         
(11) 

which ( )( )
* *

* *
*

S Sf S S
I
λ λ

β β λ λ + − + −
+ − + − + −

Λ
= + + ,  the eigenvalues satisfied  

1 2 3 0fλ λ λ = > , It can be obtained by the Routh-Hurwitz criterion: It exists at 
least one eigenvalue of the polynomial equation has positive real part, then *E  
is always unstable. 

Next, we will consider the global stability of quiet equilibrium 0E  of system 
(2).  

Theorem 3. The quiet equilibrium ( )0 0,0,0E I=  is globally asymptotically 
stable provided that 0 1R < .  

Proof. Define the Lyapunov function  

( ) ( ) ( )1 2, , , , , ,V I S S V I S S V I S S+ − + − + −= +               (12) 

where ( )1 0 0
0

, , ln IV I S S I I I
I+ − = − − , ( )2 , ,V I S S S S+ − + −= + , then differentiat-

ing 1V  with respect to t along solutions of system (2) gives  

( )

( )

( )

01
1

0 0
1 0

0

0

0 0

d
1

d

1 1 1

1

IV S I S I I
t I

I I IS I S I I
I I I
I

S I S I
I

S I S I S I S I

β β µ

β β µ

β β

β β β β

− − + +

− − + +

− − + +

− − + + − − + +

 = − Λ − − − 
 

    = − − − + − −    
    
 ≤ − − − 
 

= − − + +
       

(13) 

2
2 3

d
d
V S I S S S S S I S S S S
t

β λ γ µ β λ γ µ+ + + − + + + + − − − − + − − −= − − − + − − −
  

(14) 

Then, we have  

( ) ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 2

0 2 0 3

2 01 3 02

2 0 3 0

d dd
d d d

1 1
1 1

V VV
t t t

S I S S S S I S S S
R S R S S S
R S R S S S

β λ γ µ β λ γ µ
γ µ γ µ λ λ
γ µ γ µ λ λ

+ + + − + + + − − − − + − −

+ + − − + − − +

+ + − − + − − +

= +

≤ − − + + − − −
= + − + + − − +
≤ + − + + − − +

  

(15) 
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Therefore, when 0 1R < , d 0
d
V
t
≤ , and the equality holds only for 0I I= ,  

0S+ =  and 0S− = , According to the LaSalle invariant principle, we have 
( ) 0limt I t I→∞ = , ( )lim 0t S t→∞ + =  and ( )lim 0t S t→∞ − = . Thus, the proof is 

completed. 

4. Numerical Studies 
4.1. Numerical Simulation 

We have formulated a S2IR rumor-spread model. We have established some 
threshold conditions for the steady state. To illustrate the analytical results, we 
do some numerical simulations. From Table 1, we can set 1 0.3µ = , 2 0.3µ = , 

3 0.3µ = , 0.4γ + = , 0.4γ − = , 0.38λ+ = , 0.1λ− = , then system (2) becomes  

0.3

0.38 0.4 0.3

0.1 0.4 0.3

I S I S I I

S S I S S S S

S S I S S S S

β β

β

β

− − + +

+ + + − + + +

− − − − + − −

= Λ − − −

= − − −

= − − −







              

(16) 

Let 0.2Λ = , 0.705β+ = , 0.725β− = , then 0 0.6905 1R = < . By theorem 
1.(a), theorem 2.(a) and theorem 3, system (16) has only the trivial equilibrium 

( )0 0.6667,0,0E  and it is globally asymptotically stable (see Figure 2), it means 
that the message(rumor or truth) will eliminate. 

L e t  0.312Λ = ,  0.856β+ = ,  0.656β− = .  W e  h a v e  01 1.272 1R = > , 

02 0.974 1R = < , *
1 1.303 1R = > , *

2 0.7996 1R = < , It presents the system (16) has 
have two equilibria, ( )0 1.04,0,0E  and ( )1 0.8178,0.095,0E  where 0E  is unsta-
ble but 1E  is stable according to theorem 1.(b) and theorem 2.(a)-2.(b) (see Figure 
3(a)). Let 0.323Λ = , 0.6215β+ = , 0.8545β− = , then system 01 0.956 1R = < , 

02 1.314 1R = > , *
1 0.738 1R = < , *

2 1.362 1R = > . It shows that the system has  
 

 
Figure 2. The trajectories, equilibria and stability of system (4.1) with  

0.2, 0.705, 0.725β β+ −Λ = = = .  
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(a) 

 
(b) 

Figure 3. the trajectories, equilibria and stability of system (16) with (a)  
0.323, 0.6215, 0.8545β β+ −Λ = = = , (b) 0.323, 0.6215, 0.8545β β+ −Λ = = = .  

 
two equilibria, ( )0 1.077,0,0E  and ( )2 0.819,0,0.11E  where 0E  is unstable 
but 2E  is stable according to theorem 1.c and theorem 2.a, 2.c (see Figure 3(b)). 

Let 2.1Λ = , 0.6β+ = , 0.9β− = , then 0 9 0R = > , *
1 0.9091 1R = < , 

*
2 3.101 1R = > . By theorem 1.(d), system (16) has three equilibria ( )0 7,0,0E , 
( )1 1.167,2.5,0E  and ( )2 0.778,0,2.667E  and 0E , 1E  is unstable, but 2E  is 

stable (see Figure 4(a)). Let 2.8Λ = , 0.76β+ = , 0.72β− = , then  

0 10.13 0R = > , * *
1 1.566 1R R= = > , *

2 2.474 1R = > . By theorem 1.(e), system 
(16) has three equilibria ( )0 9.33,0,0E , ( )1 0.921,3.605,0E , ( )2 0.972,0,3.583E  
and ( )* 1.244,1.956,0.646E , which 0E  and *E  are not stable but 1E  and  
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(a) 

 
(b) 

Figure 4. The trajectories, equilibria and stability of system (16) with (a)  
2.1, 0.6, 0.9β β+ −Λ = = =  (b) 2.8, 0.76, 0.72β β+ −Λ = = = .  

 

2E  are bistable. The phase portrait is represented in Figure 4(b). 

4.2. Uncertainty and Sensitivity Analysis 

In this part, uncertainty and sensitivity analysis, based on Latin hypercube sam-
pling (LHS) and partial rank correlation coefficients (PRCC) scheme, will ex-
plore the dependence of 0R , *

1R  and *
2R  due to the change of input parame-

ters in the estimation of the uncertainty. Each input parameters is sampling 1000 
times. A uniform distribution function was used and the variation ranges of all 
parameters are given in Table 1. 
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Table 1. Input parameter sample values for simulation.  

Descriptions Symbols Values (range) Reference 

The constant recruitment rate of the population Λ  1.5 (0.2, 2.8) Assumed 

The natural fade away rate of the ignorants 1µ  0.5 (0.1, 0.9) [29] 

The natural fade away rate of spreaders with rumor 2µ  0.5 (0.1, 0.9) [29] 

The natural fade away rate of spreaders with truth 3µ  0.5 (0.1, 0.9) [29] 

The force of infection from ignorants to rumor-monger β+  0.8 (0.6, 1) [30] 

The force of infection from ignorants to truth-spreader β−  0.8 (0.6, 1) [30] 

The fade away rate of rumor-mongers λ+  0.2 (0.01, 0.39) Assumed 

The fade away rate of truth-spreaders λ−  0.2 (0.01, 0.39) Assumed 

The forgetting rate of spreaders of rumor γ +  0.3 (0.1, 0.5) [30] 

The forgetting rate of spreaders of truth γ −  0.3 (0.1, 0.5) [30] 

 
Table 2. Input parameter sample values for simulation.  

Parameter 
R0 

*
1R  *

2R  

PRCC p-value PRCC p-value PRCC p-value 

Λ  0.0867 0.0064 0.2224 0 0.3448 0 

1µ  −0.0379 0.2348 −0.0601 0.0592 −0.1306 0 

2µ  0.0186 0.5602 −0.7155 0 0.4062 0 

3µ  −0.0751 0.0183 0.3442 0 −0.7685 0 

β+  −0.0378 0.2349 0.5305 0 −0.5457 0 

β−  0.0721 0.0235 −0.489 0 0.6155 0 

λ+  0 0 −0.1302 0 0.772 0 

λ−  0 0 0.7415 0 −0.1256 0.0001 

γ +  0.038 0.2324 −0.6316 0 0.3833 0 

γ −  −0.0695 0.0291 0.3296 0 −0.6966 0 

 
The PRCC results which illustrate the dependence on each parameters of 0R , 

1R , 2R  respectively. We considered PRCC 0.4≥  as indicating that the high 
correlation between input parameters and output variables, 0.2 PRCC 0.4≤ <  
as moderate correlations and PRCC 0.2<  as no relations. 

The results of the simulation of PRCCs are shown in Table 2 and Figure 5. 
For 0R , the absolute values of PRCCs of each parameters fall below 0.2. It sug-
gests that the impact of 0R  is the result of the interaction of each parameters 
and it is very difficult to decrease 0R  by regulating and controlling a few para-
meters. The parameters with the most positive impact on 1R  are the fade away 
rate of truth-spreaders λ−  and the force of infection of rumor-spreaders β+ , 
while the most negative impact on 1R  are the natural fade away of 
truth-spreaders 2µ , the forgetting rate of rumor-spreader γ +  and the force of 
infection of truth-spreader β− . It means that the five factors play a critical role 
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on the process of rumor-spreading. The parameters that have the moderate in-
fluence with 1R  are the recruitment Λ , the natural fade away of 
truth-spreader 3µ  and the forgetting rate of truth-spreader γ − . Compare with 

2R , we find the parameters β+ , β− , 2µ , 3µ , γ + , γ −  have opposite influ-
ences on 1R  and 2R . This exhibitions the propagation have the nature of 
competitive exclusion between rumor with truth. The parameters of the fade 
away rate λ+ , λ−  have no relations with 1R , 2R  respectively, but have high 
positive relations with 2R , 1R  respectively. If both λ+  and λ−  are large, it is 
possible that both 1R  and 2R  are greater than 1 and this will lead to the oc-
currence of bistable on 1E  and 2E . 

Figures 6(a)-(c) shows the LHSs frequency distributions. The mean value 
for 0R , 1R  and 2R  are 

0
2.4214RM = , 

1
1.4797RM = , 

2
1.4793RM =  re-

spectively. The standard deviation with 0R  is 0.6642 and greater than with 

1R  and 2R  (0.3120, 0.3037 respectively) which indicates that the derived 
frequency distribution for 0R  is dispersed than the distributions for 1R  and 

2R . 

5. Conclusion 

Rumor propagation has been investigated through different types of mathemat-
ical models. In our study, we consider a rumor propagation model with 
truth-spreading and determine the threshold which governs the dynamics of the 
system. On one hand, the propagation of rumor and truth is mutually  

 

 
Figure 5. PRCCs illustrating the dependence of *

0 1,R R  and *
2R  for the rumor spread 

model on each parameter. Symbol * shows the PRCC value is not zero significantly 
( 0.05P < ).  
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Figure 6. Uncertainty results based on Latin hypercube sampling. The top row consists of 
the frequency diagrams for (a) 0R , (b) *

1R  and (c) *
2R . The following row shows esti-

mates of CDFs for output variables ((d) 0R , (e) *
1R  and (f) *

2R ).  
 

exclusive. Therefore, the appropriate increase in the spread of truth is conducive 
to the elimination of the spread of rumors. On the other hand, the spread of 
rumor and truth can coexist for a long time under certain conditions. At this 
point, the improvement of the spread of the truth is also conducive to the spread 
of rumors in a certain range. This requires the government and related organiza-
tions to further develop the corresponding work. 
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