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Abstract

In the present paper we study models of cancer growth, initiated in Jens Chr.
Larsen: Models of cancer growth [1]. We consider a cancer model in variables
C cancer cells, growth factors GF,i=1---, p, (oncogene, tumor suppressor

gene or carcinogen) and growth inhibitor Gl,,i=1---,q (cells of the im-
mune system or chemo or immune therapy). For =1 this says, that cancer

grows if (1) below holds and is eliminated if the reverse inequality holds. We
shall prove formulas analogous to (1) below for arbitrary p,qeN,p=>q.In

the present paper, we propose to apply personalized treatment using the sim-
ple model presented in the introduction.
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1. Introduction

Cancer growsif g=0 and
GF’ GF,
o — et — > — 1
" GIY " Gl / W
and is eliminated if the reverse inequality holds. Here ¢, eR,,feR_and
GF’,GI; are initial conditions in C =0, see section three for definitions and
also [1]. So if you have many (few) growth inhibitors compared to growth fac-

tors, cancer is eliminated (cancer grows).

In [1] we proved, that Formula (1) when p=1 implied that cancer grows
and is eliminated if the reverse inequality holds. In the present paper we prove,

that cancer growsif g=0,p>q and

P q
;aiGFi%Zlﬁle? >0 2)
i= J=
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and is eliminated if the reverse inequality holds. In [1] we also considered a mass
action kinetic system with vector field flike the one in Section 4 with p=q=1
and proved, that there is a relationship between such a model and the model 7 of
Section 3. Namely if you linearize fat a singular point and then discretize the
flow then you get a mapping 7 of Section 3. See section 4 for details.

Consider now the cancer model from [1]

1+y a p Cc
T(y)=| & (L+x) O | GF|+g (3)
o 0 (1+ ) )L GI

Here 9=(0c.9¢.9, )T ,y=(C,GF,GI )T €R?, where T denotes a transpose. If
you fit my model to measurements, you will get some information about the
particular cancer. y € R is the cancer agressiveness parameter. If this parame-
ter is high cancer initially proliferates rapidly. @ €R, is the carcinogen severi-
ty. feR_ is the fitness of the immune system, its response to cancer.
He i, € R are decay rates. gis a vector of birth rates. 6 €R gives the growth
factor response to cancer and o e€R gives the growth inhibitor response to
cancer. So fitting my model may have prognostic and diagnostic value. If we
have a toxicology constraint for chemo therapy or immune therapy with a suita-
ble safety margin

Gl <PeR, (4)
then we can keep the system at the toxicology limit by requiring
P=oC+(1+4)P+g, (5)
which is equivalent to
9, =-0C—-uP (6)

If o,y <0, then we can give chemo therapy at this rate. Then we get the

induced system

S:R? > R? (7)

(C,GF)|—>[1+7 a ][C]+[QC+P,BJ )
5 1+u )\GF 9-

We shall prove that this treatment benefits the patient in section 2. To get the
system to the toxicology limit P assume that we have

Gl =7P, 7]6]0,1[ (9)

Then looking at the third coordinate of 7'we see that we shall require
P=0oC+(1+y )nP+g, (10)
which implies that
9, =P-(1+4 )nP-0oC
=(1-n-nu, )P-oC

We can also fit the ODE model of section 4 with p=0 =1, by defining the
Euler map

(11)
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k,,GF —k,;,C -Gl +aC +k,,
H(c)=c+e|  —(ky +k,)GF +ky, (12)
—k,5C -Gl + kg, —K,6Gl
c= (C,GF,GI ) € R®. Iterating this map will give an approximation to the flow.
Then kg, is the rate at which you give chemo therapy. If we have the constraint

Gl <P (13)
then looking at the third coordinate of / we see that to keep the system at the
toxicology limit with a suitable safety margin, we must have

P=P+e(—k;C-P+kg —kyP) (14)
Solving for k,, we get
Kes = KysC - P +K,P (15)

Since the k; are positive we can give the chemo therapy at this rate. To get

this system to the toxicology limit we shall require

P:HS(C,GF,UP):77P+e(—k43C77P+k64—k4677P) (16)
which means, that

1
ke, = P(l—r])z+k43C77P+k4677P (17)

I felt I had to suggest this. If you want to try this you may want to do it step-
wise.

In Figure 1, I have plotted a fit of 7'to three Gompertz functions
C(t)=exp(0.5(1-exp(-0.5t))) (18)

e s o I UV (DTSR S AR S R S S
~ 1.98y

50.63

Figure 1. A fit to Gompertz functions. The upper curve is C(t), the middle GI(t) and
the lower curve is GF (t) . The solid curves are the Gompertz functions and the dots the
model 7.
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GF (t) =exp(0.3(1-exp(-0.3t))) (19)
Gl (t) =exp(0.4(1-exp(-0.4t))) (20)

From a paper from 1964 [2] we know that solid tumors grow like Gompertz
functions. That is the cancer burden is approximately a Gompertz function. De-

fine the error functions

E = n (Ci+1_((1+7)ci+aGFi+ﬂG|i+gC))2 (21
=
E, ZZ(GFm‘(‘SCi +(1+ p )GF + gF))2 (22)
=
Es ZZ(G|i+1‘(O'Ci +(1+14) Gl +9, ))2 (23)
=
where C,,GF,Gl,,i=1---,n+1 are measurements of C,GF,Gl at equidis-

tant time points t =ei,i=1---,n+Le>0. We set C :C(ti), GF, :GF(ti),
Gl, =GI(t;) Then solve the equations

o8, _ 0 (24)
dy
oE,
10 25
a (25)
o8 _ 0 (26)
op
Ok _ 0 (27)
99¢
in unknowns y,a,f,9. and
oE,
=2 _0 28
5 (28)
@ =0 (29)
Ol
@ =0 (30)
09
in unknowns &, y-,9; and
Ok,
-0 31
o (31)
% g (32)
ou,
O, _ 0 (33)
a9,
in unknowns o, 4,9, . For instance
o8, _ 0 (34)

oy
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gives

n

(1+7)ici2+aici'G':i"'ici'Gli"'gcici: CiiC (35)
i i i =

i=1 i

The result is

y =-0.1344 (36)
a =0.1656 (37)
=-0. 38

0.4023 (38)

gc =0.598 (39)
§=0.017 (40)
o =0.06485 (41)
pe =—0.2664 (42)
#y =—0.3815 (43)
gr =0.3312 (44)
g, =0.4622 (45)

I have also fitted Sto two Gompertz functions

C(t)= exp(O.S(l—exp(—O.St))) (46)
GF (t) =exp(0.3(1-exp(-0.3t))) (47)
See Figure 2 and Figure 3. Define error functions
Ei=Zn:(Ca+1—((1+7)Ci +aGF +9c ))2 (48)
i=1
E, :Zn:(GFM—(é'Ci +(L+ 4 )GF +0¢ ) (49)
i=1
i_
' sy

f1 (x)=eo.5-(1-e-°~5'x)

N )

30

0

e

Figure 2. A fit of Sto a Gompertz functions C(t). The solid curve is the Gompertz

function and the dots are the model S.

DOI: 10.4236/am.2018.94031 422 Applied Mathematics


https://doi.org/10.4236/am.2018.94031

J. C. Larsen

axes

3 (X):eo.a-(l-e -0.3x)

Figure 3. A fit of Sto a Gompertz functions GF (t) . The solid curve is the Gompertz

function and the dots are the model S.

and measurements C; =C(t;),GF, =GF(t;). Solve
E
oy
% _
oa
% 4
00d¢

0

in unknowns y,a,g. and
%, _
0o
OE,
O B
OE, 0
09

0

0

in unknowns &, g, g . The result is
y =-0.3289

a=-0.0517
gc =0.6119
5=0.01725

1y =—0.2664
g, =0.3312

(50)

(51)

(52)

(53)

(54)

(55)

(56)
(57)
(58)
(59)
(60)
(61)

In Maple, there is a command QPSolve that minimizes a quadratic error func-

tion with constraints on the signs of the parameters estimated. There are several

important monographs relevant to the present paper, see [3]-[8]. There are several
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publications by the author impacting on the present paper, see [9]-[15].

2. The Routh Hurwitz Criterion for Maps

We shall derive a well known criterion for stability of a fixed point of a map. To

this end define the Mobius transformation
(z):i*-z, g:C\{1} > C\{-1} (62)
-7

which maps the left hand plane H_ to the interior D of the unit disc. This is

because
<0
4x4=0 (63)
>0
implies
<1
1L+
rz|< :1 (64)
| >1
z=X+iy#1,and
D
Ze Sl\{—l} (65)
C\D
implies
<0
R(h(z))4= (66)
>0
Define
z-1
h(z)=——, h:C\{-1} > C\{1 67
(2)=1 S A (67)
Then
X2 —1+y?
R(h(z))=———2—<0 (68)
( ( )) (1+x)2+y2
when z=x+1y liesin the interior of D. Also
hog(z)=2, zeC\{1} (69)
goh(z)=z, zeC\{-1} (70)

This shows, that gis a bijective map with inverse g™ =h. Let
p(A)=4*+al+b (71)
denote the characteristic polynomial of the two by two matrix A4 in (7). Note,

that if 1-a+b=0 and z¢D and p(z)=0 then z=-1 and h(z)¢H_.
Here
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a:—(2+7/+yF) (72)
b=—ad+(1+y)(1+u) (73)

Define
(1—2)2p(g(z)):22@:—a+b)+(2—2b)z+14—a+b (74)

Soif 1-a+b=0 then we have the polynomial
, 2-2b l+a+b
"+ z

+ (75)
l-a+b 1-a+b

If this polynomial is a Routh Hurwitz polynomial, i. e. the roots lie in H ,
then the roots of

A2 +al+b (76)
lie in the interior D of the unit circle. Now compute
2-20=2(—(y+up ) +ad -y ) (77)
and
l+a+b=-ad+yu: (78)
Also
1-a+b=4+2(y+ug )+ —as (79)
If
1-a+b<0 (80)

and ¢, the fixed point of Sis stable, then by the Routh Hurwitz criterion
1-b=—(y+u: )+ad—yu: <0 (81)
l1+a+b=yu —ad <0 (82)

But this implies, by adding these two inequalities, that
“2(y+pe ) <—(y+pe) (83)
However, then
1-a+b=4+2(y+pu )+ —ad >y +pe +yue —a6>0  (84)
A contradiction to (80). So if c;, is stable, then 1-a+b>0. Assume now
that 1-a+b>0.If c, isstable, then
l+a+b=yu —ad >0 (85)
by the Routh Hurwitz criterion. We shall find the fixed points of S, with P =0.

From the second coordinate find

__5C_9F

GF (86)
He
Then the first coordinate gives
C,y = a9 —Qc ke (87)

YU —ad
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But the denominator is positive if c;, is stable, by the above. Hence the
treatment benefits the patient, because we assume that g <0, and
oC;,
x50 (88)
99c
and we are lowering g. by AP <0.
Now suppose
l-a+b=0 (89)
The assumption 1-a+b=0 implies that -1 is a root of
A*+al+b

Since a=1+b, we have

A2+(b+1)A+b=0 (90)

We claim that c;, is stable, when |b|<1.Butthen A=-1 and -be]-1]]
are the distinct eigenvalues of A. So there is a change of basis matrix D such that

AL D‘lAD:(_Ob Oj (91)
Clearly both
x> Ax+D7'g =T (x) (92)
and
y— Ay+g=5(y) (93)

have unique fixed points €;, and c;, and we clearly have
Cfix = D_lcfix (94)
We need the following definition.
Definition. A fixed point ¢, of T is stable if given an open neighbourhood

U(cq) of cg there exists an open neighbourhood V (cg ) of ¢y, such that
forall zeV(cg)

T (2) €U (cy) (95)

for all n>0. A fixed point is unstable if it is not stable.

Now observe, that

T (€ +2) = A2+ A"C, +nf:A‘D-1g (96)
=
=A"2+6;, (97)
Notice that
A <1 (98)
in the max norm
(22, )] = max{[] 2|} (99)

because
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[Az] = max{|-ba,|.|-2|} < max{|a].|z,[} =[] (100)
But now stability follows from the estimate

and this implies that ¢, is stable, because Sand T are conjugate:

T=D7'SD (102)

”‘I:(”) (i +2) =G [ =[A"2

<|z| (101)

If |b| >1, then we get the estimate when z, >0,z,=0

An Zl

0
as n—+wo.So € is unstable and since T and Sare conjugate, Cq, is un-
stable.

”f(n) (G +2) —Cix

=|b[*|z,| > +o0 (103)

3. Models of Cancer Growth

Consider the mapping

1+y a, a, B B,
I} 1+/1,:1 0 0 0
T(y)=| % 0 o I o 0 ly+g (109
O-l 0 ces 0 1+/'1Fp+1 ces O
o, 0 0 0 1+,uFp+q
where
9;
o= |erre (105)
gp+q+l
and
C
GF,
y=|GF, leR"™ (106)
Gl
Gl

q

The matrix here is denoted A. 7'maps RP**

to itself. gis a vector of birth
rates and a, o, R, B, BeR . The Moo Me €R. Finally

8, 8,,0y,--,0, € R. Also put

o
Ay =f (107)

(108)
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Ay =B, (109)
Spn =0, (110)
(111)

Spia =0, (112)

C is cancer GF,i=1---,p are growth factors and Gl i=1---,q are
growth inhibitors, p,qeN.
Proposition 1 The characteristic polynomial p=pP? = p"% ofAis

pa
f)(/i):(l+;/—/l)ﬁ(l+,uﬁ—ﬂ) (113)
—pijasé's ﬁ (14 g, — 2) (114)
e
Proof. With p=q=1,
Pr(A) = (147 = 2)(1+ g, = A)(1+ e, - 2) (115)
— oy, (14 pte, = A) = 2,6, (1+ g, — 2 (116)

Decompose A—Aid after the last column to obtain, assuming the formula
for §"" holds

57 (4) =(1+ . —/1) P (2) (117)
Tty —2 0
G| - : (118)
0 SO T
p+q
=(W+y =11+ s, - 2) (119)
t=1
p+g-1 p+q
- b, [ (1+us-4) (120)
s=1 t=1t#s
p+q-1
~ 0O g (1+;zFt —/1) (121)
p+q
=4y = A)[1(1+ 4 -2) (122)
r=1
p+q p+q
—>a0, [1 (1+ 1 - 2) (123)
s=1 t=1t#s

Suppose henceforth, that
M=y ==l (124)

Then the characteristic polynomial of A is
q
p(A)= ((1+ y=A)(1+u-4)- zara‘,J(ny 2P (125)

So the eigenvalues are 1+ x and since
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p+q

A =(2+y+u)A+(L+y)(1+ 1) - Y a6, (126)

r=1

is a factor of p"*(1), then

PR A Ny (127)
- 2 2
are eigenvalues of A, where
A:(2+;/+,u)2—4[(1+y)(1+y)—§ar§rj (128)
r=1L
, b
=(r-u) +42as, (129)

r=1

For the moment assume A >0, p>(. Define the matrix of eigenvectors of A

by
1+pu-4, 1+u-42 0 - 0 o - 0
-5, -6, B - 0 -B, - 0
-B,
D= _§p _5p 0 _ﬂl (130)
-0, -0, o a, 0
-0, -0, 0 o,
-0, -0, 0 Ay

We shall find formulas for the complements

D,=D}%D,,=D%%r=1---,p+q+1 (131)

rl
of D and the determinant of D, detD.
Proposition 2 For r=2,---,p+1 we have
D = —(1+ - /17)0:1 e aqfl[)’lpflarfl (132)
For r=p+2,---p+q+1
DAY =—(L+ =2 Yoy e BB o (133)

Proof. Suppose r=2,---,p+1. We are deleting row r. So in column r+1
there is only one nonzero element ¢, ,. Decomposing after this column and
then after row one we get a matrix with zeroes under the diagonal. The signs

here are
(_1)r+1(_1)p+r—1(_1)p—1 (134)

(—1)r+1 is the sign on the complement D, and (—1)p+F1 is the sign on the
complement to «, ;. Itisin row p+2 and column r-1 and we delete two

rows. (1) " is the signon (/)" Hence
Dy=—(1+u-2 )" o a0, (135)

which is what we wanted to prove.
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Now suppose that r=p+2,---,p+q+1. For r=p+2 we geta matrix with

zeroes under the diagonal, so
DA =(-1) "oy, (-B) (Lt =2 ) =—ay g S L+ =2 ) B (136)

Now consider the case r=p+3,---,p+q+1. Write r=p+k. After de-
composing after rows p+3,---,p+0+1 and row one column two in D,

we are left with

-5 0 . 0 0 0
_,Bl _ﬂk—l (137)
0 - 0
o o, a, 0 >
Decompose after rows 1,---, p,toget
— g, (-B)" A P (-1)"* " (1) (138)
o, 0
which gives
D, =-a- 'aq—lﬁlpilﬂk—l (139)
The proposition follows, because
r-(p+1)=p+k—(p+1)=k-1 (140)
Proposition 3
p 9
Dt =—oy-ag,y 1”1[2%@ + zﬁro—rj (141)
r=1 r=1
Proof. We have
_51 _ﬁ1 ’ _132
-5,
-6, O A
Dii=|-0, @ - a, -0 (142)
-0, 0 0 o 0
-0, O 0 0 Qg4
Initiallylet q=1. Now
-5 -
DY :‘ A ~(e40, + ,3,) (143)
0
when p=1 and
-6 B 0
D : : o (144)
u -5, 0 - -p
-0, o a,
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when p2>2.Now decompose after the last column to get

-5, -B - 0
o P LY (145)
p_é‘pil 0 - -8 111
-5, 0O - 0
If
p-1
DM =-pP" (Zaré} + ﬁlalj (146)
r=1L

(g =1 in the statement of the proposition) we get

p-1
qu’l = _apé‘pﬂlp%L _ﬂlﬂsz [Zarar + Ulﬁlj
r=1

= _ﬂlpil (Zp:arér + O-lﬂlj

Now we shall use induction over ¢ to prove the formula in the statement of

(147)

the proposition. Decompose after the last row

DA% =, D" ~ 0, (-1)""' B (148)
L2 g1
= _al'”aq—lﬂlp Zar5r +Zﬂro-r (149)
r=1 r=1
@piqOpiqla ™ Olq—lﬂllk1 (150)
p q
:_al...aqlﬂlp'1£2a,5r +Zﬁ,arj (151)
r=1 r=1

In Bwe have decomposed after —f, and then after the rows
p+3-2,-:-,p+0—2 and in the remaining matrix decomposed after row p and

column @-1. The signs here are
~(-1)"" (=0, )(-1)" " ()" (<) =0, (152)

The proposition follows.
The aim of our computations is to show that there exists an affine vector field

Xon R”% such that the time one map is
O (x)=T(x) (153)

Let c(t)= (C GF -, Gl )(t denote an integral curve of X through
C, = (O, GF’,--,Gl O) (0) € R Then we shall find a formula for

dc
E(O) (154)

First notice that
detD=(1+u—2,)Di" +(1+u-4)D5* =—(4, -2 )Di*#0  (155)
if

zp:aﬁr + i[)’rar =0 (156)
r=1 r=1
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and

Qe Oy, iy #0 (157)

which we assume. We have used that
D5 =D} (158)

So the eigenvectors in D are linearly independent, hence

A0 e 0
D'AD={0 0 1+x -~ O (159)
0 O e A+ p
Now define when 4,4 ,1+ x>0
Ini, 0 0
0 InAi 0
Y(x)=| 0 0 In(l+p) - 0 X+F=Ax+F  (160)
0 0 o In(1+ )
where x,F e R?*%!, The flow of Yis
exp(In A,t) 0 0
0 exp(InA.t) 0
D" (t,x) = 0 0 exp(In(1+u)t) - 0 X
0 0 o exp(In(1+ p)t)
(161)
n i F,(exp(InA,t)-1)
1
——F, (exp(InA.t)-1
n InA 2 (exp(In2.0)-1) (162)

i ) F (exp(In(1+ 1)t)-1)

where we denote the last vector d(t). This is readily shown by differentiating
®" with respect to ¢

Y
dz (t,x) (163)
In 2, exp(In A,t) 0 0
_ 0 InA_ ex;.)(lnﬂft) 0 Y (164)
6 0 In(1+y)exp;(ln(1+y)t)
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Fexp(In4,t)
F,exp(InAt)

165
" Fyexp(In(L1+ u)t) (165)
Now we get
AO" (t,x)+F (166)
In 2, exp(In A.t) 0 0
0 InA_exp(InAt) - 0
= : i p( Y - : x (167)
0 0 o In(L+ u)exp(In(1+ u)t)
F(exp(InA,t)-1)
F,(exp(InA.t)-1)
+F (168)
Fs(exp(ln(1+,u)t)—1)
It follows that @' is the flow of ¥. Now require
A, -1
Iz ' (Dyg,) 1
d (1)12 = = " (169)
: A -1 D,,q, /detD
FZ
InA
that is
I
d /Lr L Drlgr
F) | A, -1detD
= (170)
) | A 1
_Drlgr
A_—1detD
We shall require
d(1)=D"g (171)
because then the time one map of Yis
@/ (x)=D'ADx+D™g (172)
Now define
X (x)=DYD™(x) (173)
Then the flows of Xand Yare related by
®* (t,x) = Do @' (t,D7*(x)) (174)
But then the time one map of X'is
@ (x)=Dod/ (D*(x))= Ax+g (175)

which is what we wanted.

Theorem 4 Assume, that
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p+q
o, B %0, Y s, #0 (176)
r=1L
and
A>01+u,4,4 >0 (177)
We have the formula
p q
0=t (Nt -n2) SaGF +3 46! (178)
dt A —A i i1
N MO, _In/1++ln/17 (179)
A -A\ A -1 i-1
+—5 (ina -na) (180)
A=A
1 gl pLat InA InA
+ + — — 181
/1+ _l_ [;arlgr r_zp;rzﬂr(p+1)grj[ﬂ+ _1 /1_ _1] ( )
Proof We use the formula
ac . d v 71
E(O)_E(Dloq) (t.D (CO)))I:O (182)
_p| Yo (tD(c)) (183)
dt =0
1 (Ina 0 D,.c/
=((1+u-A)1+u-1 * o 4d,, (0 184
(( Hod) e p )(detD[ 0 In/l_J[DrzcgJ ia( )J (184)
We have
p+q
Dy=-o- "aq—lﬂlp_l (Zalé‘lj (185)
i=1
and then
1+u-2
Drl — arfl( +/J *) (186)

detD (L—ﬂ)(ga@j

for r=2,---,p+1 andfor r=p+2,---,p+q+1

1+ u-4
rl __ﬂr—(p+1)( H 7) (187)

detD (&-M(id@}

D

We shall write
D,=D,(1+x—-1) (188)

and then we have

D,=-D,(1+u-2,) (189)

When r=p+2,---,p+q+1 then
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Dr2 :ﬁr—(p-ﬂ)(l—i_ﬂ_l—*—)

p+q
det D (/t—i)(Zaﬁij
i1
,Pp+1 we have

Dy _ o (Lru-4,)

while for r=2,---

det D (A —l)(fa@j
i1
Notice that
p+q
A+ p=2)1+p—-2,)== a6,
r=1

Continuing from (184)

(), (s u-2)

detD

1
= — al
detD

1 (InA,
detD{ O

= . ((l+y—/’i‘+)|n2’+Drlc(;+(1+;U_/L)InﬂiDrZC(;)

0

|

(190)

(191)

(192)

J (193)

(194)

o, BPINA, [iaieﬁ(’ + i,b’iGl ,"](1+y -2, )1+ p—2.)(195)

—al---aqlﬂfllnz(Zp]aiGFi%Zq)ﬂiGIFj(lw—ﬂ)(1+u—&)] (196)

1
detD

So this gives the first term in

Note that

Now we have

flz:(D—lg) — Drlgr 1
' 12 | D,,0, /detD

1+ ﬂ p+l p+g+1
'u [Zar 1gr + z ﬁ p+1
r=p+2
- 1+/1 ﬂ p+l p+q+1
zar lgr + Z ﬂ p+1
r=2 r=p+2
D,
+ 1lgl l
D,,0, /detD

Hence the r>2 contribution is from (184)

a a7 (InA, —In ﬂ)(iwiGFio + Zq:,BiGI ?](’f‘jaié’i] (197)

(198)

(199)

(200)

(201)

(202)
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In4 InA
1+ pu—-2)f (It pu-A)f,—— 203
(1+n +)1&_1( ped) by (203)
RS part In4 In4 1
= a + * — 204
(zz 2 %f”pﬂ)g’)(@—l ﬂ—l}/@—ﬂ (209
and the r=1 contribution is
D. _
1191 L: 1 1 9, (205)
D,0, )detD 4, -4 \ 1
So
(I+u—-24)R+1+u-2)F, (206)
InA g Ini g
=(1+pu—A4, ) ———= L —(1+pu-4)| - L 207
(s *)( ,1+—1/1+—/1]( # ‘)( /1—1/@—/1} 207
__ MG _In/1++lni_ (208)
A -2\ A, -1 4 -1
% _(na -Ina) (209)
A —A
The theorem follows.
Now suppose that A <0. Then
A, =azxib (210)
b = 0. We shall require that a > 0. Now define the matrix
l+y-a -b 0 0 O 0 0
5 0 -f 0 0 - 0O
-0 0 O - -
U: p ﬂl ﬂq (211)
-0, 0 o a, 0
-0, 0 O o
-0, 0 0 - Ay

The first column is denoted v, =U (e,), the second is denoted v,=U (e,).
Here e =(1,0,--,0),e,=(0,1,0,---,0), bothin RP"**. Notice that

v, =V, +iv, (212)
Vo=V, —iv, (213)
v, :%(w +V.) (214)
1
v, :E(w -V.) (215)
Now as in [1] we get
U~ AU (g)=U ‘1%(/1+v+ +AV) (216)
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:U*%(A(Vﬁivz)wi_(vl—ivz)) (217)
:%((a+ib)(e1+ie2)+(a—ib)(e1—ie2)) (218)
=ae, —bhe, (219)
and similarly
UAU (ez):u*%(/uvfz_v_) (220)
i
1 . . . .
=E((a+|b)(e1+|e2)—(a—|b)(e1—|e2)) (221)
=be +ae, (222)
So
a b 0 0
b a O 0
U'AU=|0 0 1+u - O (223)
0 0 o l4u

because we assume that detU = 0. Exactly as before we get

Proposition 5 For r=2,---,p+1
U, =ba a8 a,, (224)

andfor r=p+2,---,p+q+1

Uy =bay ey BB, o (225)
Also
p+q
U,=a-" ”aq—lﬁlpil Zaﬁi] (226)
i=1
Finally
detU =—bU,, (227)
since
U, =0 (228)
Proof. The proposition follows immediately from proposition 2 and 3.
The flow of
L :[ a bl] (229)
b a
is,for a, €R,b #0
t inbt
oLt _ gat co_sb1 sinby (230)
—sinbt cosbt

We want to have that this equals for t =1, the matrix
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Thus

Remember the formula

b
cosotan (— =

where X,F e RP*"* The flow of Yis
exp(Lt) - 0
' (t,x) = : : X
0 o exp(In(1+ )t

L™ (exp(Lt)—id)F,

F3
+ In(1+ﬂ)(exp(ln(l+ ,u)t)—l)

where the last vector is denoted d (t) . To see this compute
Lexp(Lt) - 0
i@nmz ' E i
dt ’
exp(Lt)F,
+| Fyexp(In(L1+ u)t)

Now we also get
Lexp(Lt) - 0

Y (d)Y (t, x)) =

(exp(Lt)—id)F,,
+| Fy(exp(In(1+ p)t)-1) [+F

0 In(1+y)exp;(ln(l+,u)t)

6 In(1+y)ex;;(ln(1+y)t)

(231)

(232)

(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)
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So @' isthe flow of Y. We need to have
d(1)=U"g
because then the time one map of Yis
@) (x)=U"AUx+U g
Then define
X (x)=UY (U™ (x))
The flows are related by
@ (t,x)=Ud" (t,U™(x))
But then the time one map of Xis
O (x)=Ud; (U’l(x)) =AX+g

which is what we intended to find.

Theorem 6 When A<0,a>0,, -, 4,4 #0, Z:qaﬁr =0 then

Z—f(O):%(iaiGEO +2AG|?]

#{ul(@-1b-ba) (a1 +b?)by ) P s

1

r=p+2

Proof. We have the following computation

(1+u—a)* +b? :(%T _{(,uT—;/T + %a@}

i=1

p+q

=Y as
=
And we want to have
dy, (1) =L"(exp(L)-id)F,
=U~(9),
that is

F.=(exp(L)- id)f1 LU™(9),,

exp(L) :(—ab 2]

_(a-1 -b\fa b)), 1
F”_[ b a—J[—bl aJU (g)l'z(a—1)2+b2

But we have arranged that

so we get

p+l p+g+1
+((a-1)by —bal)(Zamgr t 2 ﬂr(pﬂ)ng—
r=2

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)
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:[ ai(a_1)+blb (a_l)bl_ba1J( 11 U_l(g)l,z (257)

ab+(a-1)(-b) bb+(a-1)a J(a 1) +b°

Denote the two by two matrix in the last line

A B
( ] (259)

-B A

We can also compute the first term in
U1%CDY (LU, (259)
omitting the factor
detU
(1+u—a,-b) 50 Narigp S aGF® + Y AGIC | (260)
' b a )\l+pu-a) " S =~ A

SR SR oY DS RS VST ESTEVACE

~b,((1+ u—a)" + bz)(iaiGFﬁ +Zq:ﬂiGIi°jaf1ﬂ1~--ﬂpl (262)

p+q P q
=-b > s [ZO&GEO + ZﬁiGlfjaflﬂl e Boa (263)
i=1 i=1 i=1
hence the first term in
(Z—(t:(o) (264)
Now
p+q+1
Z U rlgr 1
-1 _ r=1
(U g)l,z - p+q+1 detU (265)
rzgr
r=1
p+q+1U
; rlgr 0 1
=1 pget + U.g, | |detU (266)
U g 1291
; r29r
The U,, contribution is omitting the factor 12
detU (a—1)’ +D?
B
(1+u—a,-b) A U,0, (267)

=((1+u—-a)((a-1)b,—ba,)-b(a (a—1)+bb))U,g,  (268)
= u((a-1)b,~ba,)U,,0, - ((1-a)° +b* |bU,,0, (269)

:(ﬂ((a_l)bl—bal)—((l—a)z+b2)b1)Ulzgl (270)
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1

The r>2 contribution is, omitting the factor

(1+ﬂ—a’_b)(_?3 i]((“z—a)JG

U (a-1)° +b?

(271)

=(1+u—a)(Ab+(1+u-a)B)-b(-Bb+A(l+x-a))G  (272)

~((2+p-a)"+b*)BG

~((a-1)b,- ba1>(za 0+, gJ[ s o

r=p+2

where
p+1 p+g+1 .
_ p-
G=| 2.0+ 2. ﬂrf(p{l_)gr oy oy )
r=2 r=p+2

The theorem follows.

Now assume that > p . Define

1+pu-4, 1+u-4 0 0 0

—0; —0 -A _ﬂq 0
_52 _52 0 0 _ﬁl

D =0, =0, 0 0 0
-0, -0, o, 0 a,

—Opy —0,, 0 0 0

-0, -0, 0 a, 0

Proposition 7 Forgodd and r=2,---,p+1
D,=-8" -ﬂpflalq’larfl (I+u—-2)
andfor r=p+2,---,p+g+1 and godd
:_ﬂl'“ﬂpflalq_ﬂ (o1 (1+,u )
For gevenand r=2,---,p+1
=(-1)° B+ Byao e (L4 u—A)
and for r=p+2,---,p+g+1 and geven
Dy =(-1)" B By By (L4 = 1)

Also
D, = p 10!1 1205

when ¢is odd and

(273)

B <1 (274)

(275)

(276)

(277)

(278)

(279)

(280)

(281)
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ptq
D, = (—1)p B 'ﬁp—lalcklzaié‘i (282)

when gis even.
Proof. (277) q odd. We are deleting the row r with —f. ,. Decompose after

that column with ¢, in it and row one column two. The sign on ¢, is
(_1) p-2 (_1)q+r—2+p+r—3 (_1)r+l (_1)r (283)

The first sign here is the sign when decomposing after row 3,---, p+1, except
the row with —p, ,. The second sign is the sign on the complement to «, .
The third sign is the sign on D,,. The last sign is the sign on f, , in column r
and row one. (277) follows. Now let r=p+2,---,p+q+1. Write r=p+Kk.
Decomposing after rows 3,---, p+1 to give

(—ﬂl)"'(—ﬂpa) (284)
We have the sign
(-1 (285)
on D,,.And we have the sign
(-1 (286)

on column k-1 and row one. Hence the formula. r=2 is obvious. And the
formulas for g even follow similarly. (281) g odd. First let p=1 and ¢=1.
Then

Dllil = _(a151 + 1810-1) (287)
For =3 we get
o, @ - 0
: Do q
D =D + B, =—at [%51 + ZﬂFGFJ (288)
oy 0 oo ~
= 0 - 0

q

We have, decomposing after the last column

DS = B,.Df " +a,B (289)
=P (—/31 e Poaay” (?Z:aiéi + iqzlﬂio-i D (290)
+@,0y (B By 12 By 1) (291)
=—B, Boat™ pZTaifSi (292)

Here
B=(-0,)(-1)" (-1)" ()" ()" B Bpa =B By,
(293)

For geven we get
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DI =—a, (a6, + Bio, + p,0,) (294)

Now decompose after the last column

-, a - 0
: : . : q
D! = o, D} - o = e+ 295
1 = :Bq o4 0 - g Q| &40 ;ﬁro} (295)
. 0 - 0

q

Now we get decomposing after the last column

DAY =-B,,D " +a,B (296)
~Bos (1) B By [Za +iqu‘j;iaiJ (297)
+a,8, (-1)" B oo™ (298)
=(-1)° B+ By 1Za (299)

where
B=(=0,)(-)""*" (<) o B Bya (1) (D) = 6,8 Braci (1)
(300)

In the determinant B, we have decomposed after row 2 to p—2. In the re-
maining determinant decompose after row one and column p-1. The proposi-
tion follows.

Definefor q=p and A<O

1+y-a b 0 - O o - 0
-5, 0 - -« - 0 - 0
-5, 0 0 - 0 -B - 0
-0 0 O 0 0 s
U= ’ & 301
-0, 0 « 0 o, 0 (301)
0, 0 0 0 0 a,
-0, 0 0 -« o 0 - 0
From Proposition 7, we get
Proposition 8 Forgoddand r=2,---,p+1
U,=bg-- ~ﬁpfla1’ a, (302)
and for goddand r=p+2,---,p+q+1
1 =DB - Byae By (303)
For gevenand r=2,---,p+1
U, = (_1) i bp, - 'ﬂp—lafilar—l (304)
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and for gevenand r=p+2,---,p+Qq+1

U =(-1)"" b Boatd™ By (305)
Also for goddand r=p+2,---,p+q+1
U,=1+u-a)B -ﬁp_lalq'lﬂr_( o41) (306)
and for goddand r=2,---,p+1
U =+ p=a) B e e, (307)

For gevenand r=p+2,---,p+Qq+1

1
U, = (_1)p (1+ﬂ_a)ﬁ1 :Bp 1a1 ﬂ (p+1) (308)
and for gevenand r=2,---,p+1
Ur = (—1) St p-a) B fpaa (309)
Finally for godd
p+g
Ulqu :ﬂl"'ﬂp—lalq_lzaié‘i (310)
i
and
UL =(-1)"" B B,.0f 12(1 (311)
for geven.

4. An ODE Model

In [1] we also considered a three dimensional ODE model of cancer growth in
the variables C,GF,Gl cancer, growth factors and growth inhibitors, respec-
tively. Analogous to what we did in section three define a mass action kinetic

system
GF,—>C (312)
C+Gl gy >0, i=p+2--,p+q+1 (313)
C->2C (314)
GF, =0, j=2,p+1 (315)
Gl (py) S0 i=p+2,-,p+a+l (316)
Cso0 (317)

Here the complexes are C(1)=C, C(j)=GF, j=2,---,p+1,
C(i)=C+Gl, (papi = PH20 prg L, C(p+q+2)=0, C(p+q+3)=2C,
C(q+2+i)=Gl_,,i=p+2,---,p+0q+1 This defines the rate constants. For

a reaction

p+1

C(r)scC(s) (318)

the forward reaction rate is denoted k, and the reverse reaction rate is de-

noted K, . The differential equations are
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p+l p+g+1
C'= Z I(leFj—l - z kp+q+2,ic : Glif( p+1) + (kp+q+3,1 - kp+q+2,l)c + kl,p+q+2 (319)
j=2 i=p+2
GF/, =K GF .1 ~Ky.0.0 OF; 1 +K; puuas i =2, p+1  (320)
Gli,—( p+1) = _kp+q+2,iC : Gli—( p+1) + kq+2+i,p+q+2 - kp+q+2,q+2+iG|i—( p+1)’ (321)
i=p+2,--,p+q+1

We shall find a polynomial giving candidates of singular points of this vector
field.
From GFJL1 =0, we find

k.
GFyy = — "”k*q*z (322)
1j T Kpigaz,j
where j=2,---,p+1.From Gl (pq) =0, we find
k. ..
GIF = q+2+i, p+Q+2 (323)
(P) kp+q+2,iC + kp+q+2,q+2+i

for i=p+2,---,p+Qq+1. Inserted into C'=0 we get

fk kj,p+q+2 _ p+zq+lc I(p+q+2,ikq+2+i,p+q+2
e
j=2 : klj kp+q+2,j i=p+2 I(p+q+2,ic + kp+q+2,q+2+i (324)
+ (kp+q+3,1 - kp+q+2,l)C + kl,p+q+2 =0
We can then multiply with
p+g+1
(kp+q+2,iC + kp+q+2,q+2+i ) (325)
i=p+2
and define the constants
i kj p+q+2
K= zklj k k y as= kp+q+3,l - kp+q+2,1 (326)
j=2 1j + p+q+2,]
to obtain the polynomial of degree ¢+1
p+g+1
p(C) = (K +aC+ kl. p+q+2) H (kp+q+2,ic + kp+q+2,q+2+i ) (327)
i=p+2
p+g+1 p+q+L
- Z qu+2+i,p+q+2kp+q+2,i H (kp+q+2,lc + kp+q+2,q+2+| ) (328)
i=p+2 I=p+2, 1=

if we assume that k;,a>0. There is a relation between the ODE model of this

chapter, with vector field
fiRPHOT 5 RPOH (329)

and the discrete dynamical system of section three, see also [1]. Linearize the

vector field at a singular point ¢, € R”*%" and set
h(c)=Df, (c-c.) (330)

Also define the Euler map
H(c)=c+eh(c) (331)

for e>0. This is an approximation to the flow of A. If we let
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g=-Df_(c.)e (332)

prasl
y= (_iégk"“‘mm” o) T a}e (333)
o =Ky6, =1, p (334)
B o) = KpiqaiCei=p+2,---, p+q+1 (335)
5,=0i=1---,p (336)
O (ps1) = —kp+q+2,iGIi_( p1)E i=p+2,--,p+q+1 (337)

and

te, == (K +Kprqiog )& J=20,p+1 (338)
te, = €(=CKyrqiai —Kpigizgioii ) 1= P+2,+, p+q+1 (339)

then you obtain a discrete model 7 of section three.
Example Let = p=2 and define the rate constants
Kes =Kes =Kgg =Keg =Kig =a=ky, =kjz =kg, =kg3 =1 and Kjp =kgg =2,

Kgs = Kgs =9 . Then there are two positive singular points.

5. S ummary

In this paper, we considered a discrete mathematical model and an ODE model
of cancer growth in the variables C,GF;,Gl;, i=1--,0,j=L1--,p cancer,
growth factors and growth inhibitors, respectively. We have shown that this
model is a threshold model. If g=0 and

P q
leaiGFio +Zl:ﬁjG|? >0 (340)
i= j=

then cancer grows, and if the reverse inequality holds, cancer is eliminated. We
also proposed personalized treatment using the simple model of cancer growth

in the introduction and the ODE model of section four.
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