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Abstract 

In this paper, we investigate the Lie point symmetries of Klein-Gordon equa-
tion and Schrödinger equation by applying the geometric concept of Noether 
point symmetries for the below defined Lagrangian. Moreover, we organize a 
strong relationship among the Lie symmetries related to Klein-Gordon as well 
as Schrödinger equations. Finally, we utilize the consequences of Lie point 
symmetries of Poisson and heat equations within Riemannian space to con-
clude the Lie point symmetries of Klein-Gordon equation and Schrödinger 
equation within universal Riemannian space. 
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1. Introduction 

According to Quantum Physics Klein-Gordon and Schrödinger equations are 
mainly two necessary equations, so it is compulsory that we can apply these eq-
uations and resolve their Lie point symmetries in the direction of discovering 
their invariant solutions by applying Lie point symmetries methods [1] [2] and 
[3]. As we know, Klein Gordon equation is an appropriate case of Poisson equa-
tion and Schrödinger equation is an important form of the heat equation. Since 
Lie point symmetries of Poisson and heat equations within Riemannian space 
have been studied in [4] [5], however in this paper we utilize these consequences 
to conclude the Lie point symmetries of Klein-Gordon equation and Schrödin-
ger equation within universal Riemannian space. 

One of the most important topics of the current study is the approach of con-
formally Lagrangians i.e. Lagrangians covered by the conformal transformation 
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through potential as well as a metric guide in the equivalent equation; however, 
the dynamical variables are different. From every Lagrangian defining dynamical 
system, we determine a metric which is called kinematic metric defined by La-
grangian. Furthermore, Noether symmetries of the motion equations and con-
formal symmetries of that mentioned metric are a very strong connection. 
Moreover, the mentioned kinematic metric determined Laplace operator, and 
therefore the Lie point symmetries of Poisson equation have described the con-
ditions related to conformal symmetries of kinematic metric. Since these conclu-
sions are continued to Yamabe operator as well as investigate Lie point symme-
tries related to the conformal Klein-Gordon equation. We define the Lagrangian 
in the universal Riemannian space such as 

( ) ( ) ( ). .1,
2

l l l i j l
ijx x f x x x W x= −                  (1) 

And we can demonstrate with the intention of Noether symmetries of con-
formally Lagrangians be developed of metric ijf  from the conformal algebra. 

In this paper, we investigate the Lie symmetries of Klein-Gordon equation 
and Schrödinger equation by applying the geometric concept of Noether point 
symmetries for the above defined Lagrangian Equation (1); we organize a strong 
relationship among the Lie symmetries related to Klein-Gordon as well as 
Schrödinger equations. Finally, it will be demonstrated that if a Noether symme-
try for the above Lagrangian Equation (1) is generated by the homothetic group 
element of kinematic metric then it further generates Lie symmetry for Klein 
Gordon equation and Schrödinger equation. We analyze that Noether point 
symmetries of Noether gauge are not a constant function. 

We’ll examine the case of the kinematic metric which introduces an Homo-
thetic Vector (HV) or Killing Vector (KV) such that it produced Noether sym-
metries for classical Lagrangian Equation (1) and display that Lie point symme-
try is a nonlocal symmetry in both cases of Klein Gordon equation. The infor-
mation of Lie point symmetries of Klein Gordon equation and Schrödinger equ-
ation in a classical Riemannian space create achievable decisions of solutions of 
the above equations such that they are invariant by a mention Lie point symme-
try. Furthermore, to study the Wheeler De Witt equation [6], they are used in 
Quantum Cosmology [7] [8] [9] [10] and [11] in a Riemannian space. 

2. Noether Point Symmetries Related to Conformal  
Lagrangian within Riemannian Paces 

Let us consider Lagrangian in a Riemannian space containing the metric ijf  
moving with the reaction of a potential ( )lW x , is given by 

( )1 dwhere as
2 d

i j l
ij

xf x x W x x
t

= − =                    (2) 

According to the above reaction the equations of motion becomes 

( )( ) ( )1d , d
2

l l i j m
ijR t x x t f x x W x = = − 

 ∫ ∫                 (3) 
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Now we shift the variable t z→  which is defined as 

( )2d diz M x t=                         (4) 

Now according to the new coordinates ( ), lz x  the equations of motion be-
comes 

( ) ( ) ( )4
2

d 1 dwhere as
2 d

l i j l i
ijl

z xR f M x x x W x x
tM x

 ′ ′ ′= − = 
 ∫      (5) 

So the new Lagrangian becomes 

( ) ( ) ( )
( )

2
2

1,
2

l
i l l i j

ij l

W x
x x M x f x x

M x
′ ′ ′= −                (6) 

If we study the conformal transformation of a new potential function  

( ) ( )
( )2

l
l

l

W x
W x

M x
=  and the new metric ( )2 l

ij ijf M x f= , then according to the  

new coordinates ( ), lz x  the new Lagrangian becomes 

( ) ( )1,
2

l l i j l
ijx x f x x W x′ ′ ′= −                     (7) 

Since the Lagrangian   in Equation (2) and the new Lagrangian   in Eq-
uation (7) of the same form therefore, the Lagrangian ( ),l lx x  ant the new 
Lagrangian ( ),l lx x′  is called conformal. Moreover, the reaction will be the 
same i.e. the equations of motion in the original coordinates ( ), it x  as well as 
the latest coordinates ( ), lz x  under the Lagrangian   will be the same. 

Corollary 2.1: In the conformably connected Lagrangians Equation (2) and 
Equation (7) the Noether point symmetries are included in the conformal alge-
bra of ijf , ijf  metrics. 

Lemma 2.2: For the two conformal Lagrangians transform the Euler Lagrange 
equations covariant the relating Lagrangians under the conformal transforma-
tion ⇔ the Hamiltonian disappear. 

Proof: Let us examine the Lagrangian ( )1
2

i j l
ijf x x W x= −   containing the 

Euler Lagrange equations 
. , 0,i i i j i

jlx x x W+ Γ + =                          (8) 

whereas Γi
jl  called Christofell symbols for , , 1, 2,3, ,i j l m=  . 

Now the equivalent Hamiltonian is of the form 

( )1
2

i j l
ijH f x x W x= +                          (9) 

For the new Lagrangian ( ) ( ) ( )
( )

2
2

1,
2

l
l l l i j

ij l

W x
x x M x f x x

M x
′ ′ ′= −  the pro-

duced Euler Lagrange equations as 

, ,
4 5

1 2ˆ 0i i i j i i
jl

Wx x x W W
M M

′′ ′ ′+ Γ + − =                  (10) 
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whereas 

( ) ( ) ( ),
, ,

ˆ ln ln ln ii i i i
jl jl j j ill lM M M fπ πΓ = Γ + + −              (11) 

Now the equivalent Hamiltonian is of the form 

( )
( )2

d
l

i i j
l

W x
H x x x

M x
= +

                        (12) 

Now to prove that these two equations are the same we using the conformal 
transformation 

( )..
2 4 4,

d d d 1 1 1and 2 ln
d d d

i i
i i i i i j

j

x x tx x x x x x M
z t z M M M

′ ′′= = = = −      (13) 

Now by substituting Equation (13) in Equation (10) we get 

( ) , ,
4 4 4 4 5,

1 1 1 1 22 ln 0i i j i i j i i
jlj

Wx x x M x x W W
M M M M M

′ ′− + Γ + − =       (14) 

Furthermore, by substituting Equation (11) in Equation (14) we get 

( ) ( )

( ) ( )
, ,

, ,,

2 ln 2 ln

ln 2 ln 0

i i j i i l i j
jlj j

i ii j i
il

x x x M x x M x x

M f x x W W M

′ ′− + Γ +

− + − =

    

 

 

This follows that 

( ) ( ),, ln 2 0ii i i l i i j
jl ilx x x W M f x x W+ Γ + − + =                (15) 

Hence, the new Euler Lagrange Equation (15) correspond with the original 
Euler Lagrange Equation (8) ⇔ 2 0i j

ilf x x W+ =   i.e. the Hamiltonian vanishes. 
Obviously the converse is also true. 

3. Lie Symmetries Related to Klein-Gordon Equation 

According in the direction of Poisson equation ( )– , 0ip f x p∆ =  (where 

1 ij
i jf f

x xf
∂ ∂ ∆ =  ∂ ∂ 

 is called a Laplace operator) if we choose 

( ) ( ),i if x p W x p= , then we get the Klein Gordon equation which is of the form 

( )– 0ip W x∆ =                          (16) 

Hence, by implementing the theorem which is stated as:  
Theorem: Lie symmetries related to Poisson equation ( )– , 0ip f x p∆ =  of 

the ijf  metric generated from the Conformal Killing Vectors (CKVs) describ-
ing the Laplace operator are the following 

1) When 2n >  then we get the vector as  

( ) ( ) ( )0
2 .

2
i l l l

i p
nX x x p b p c xφ ξ− = ∂ + + + ∂ 

 
 Whereas ( )i lxφ  is called a 

CKV having the conformal factor ( )lxξ  and ( )lc x  is a solution of

( )– , 0ip f x p∆ =  such as the following condition is satisfied 

, , , ,
2 2 2– 0

2 2 2
ij l

p ij l p p p
n n nf c f f g cfξ φ ξ ξ− − +
∆ + − − − =  

https://doi.org/10.4236/am.2018.93025


M. Iqbal, Y. F. Zhang 
 

 

DOI: 10.4236/am.2018.93025 340 Applied Mathematics 

 

2) When 2=  then the Lie symmetry vector become  

( ) ( )( )0 .i l l
i pT x b p c xφ= ∂ + + ∂  Whereas ( )li xφ  is called a CKV having the 

conformal factor ( )lxξ  and ( )lc x  is a solution of ( )– , 0ip f x p∆ =  such as 
the following condition is satisfied 

( ), , 0 , 0 ,2 0ij l
ij l p pf c f b pf b f cfφ ξ− − + − − =  

Then we obtained a conclusion such as 
Theorem 3.1: Lie symmetries related to Klein-Gordon equation Equation (16) 

of the ijf  metric generated from the CKVs describing the Laplace operator are 
the following 

1) When 2n >  then we get vector as 

( ) ( ) ( )0
2

2
i l l l

i p
nX x x p b p c xφ ξ− = ∂ + + + ∂ 

 
           (17) 

whereas ( )i lxφ  is called a CKV having the conformal part ( )lxξ  and ( )lc x  
is a solution of Equation (16) such as the following condition is satisfied 

,
22 0

2
l

l
nW W ξφ ξ −

+ − =∆                     (18) 

2) When 2=  then the Lie symmetry vector become 

( ) ( )( )0
i l l

i pX x b p c xφ= ∂ + + ∂                   (19) 

whereas ( )i lxφ  is called a CKV having the conformal part ( )lxξ  and ( )lc x  
is a solution of Equation (16) such as the following condition is satisfied 

, 2 0l
lf Wφ ξ+ =                           (20) 

If we take the comparison between the Lagrangian Equation (2) and the Klein 
Gordon equation Equation (16) and the conformal factor holds the conditions 

; 0ijξ = , for some important functions CKV or KV or HV, then we analyze the 
following conclusion. 

Proposition 3.2: When 2n > , the Lie symmetries related to Klein-Gordon 
equation in favor of the ijf  metric are connected to Noether symmetries of La-
grangian equation having the equivalent metric and potential which describe by 
the Laplace operator as follows 

1) If a proper CKV or special CKV of the ijf  metric, produce a Lie symme-
tries of Klein Gordon Equation (16) and also satisfy the condition 0ξ∆ = , then 
it must generate a Noether symmetries of conformably Lagrangian Equation (2) 
so that the CKV convert into a HV or KV. 

2) If an HV or KV of the ijf  metric, produce Lie point symmetries related to 
Klein-Gordon Equation (16), subsequently the ijf  metric, must generate 
Noether point symmetries related to Lagrangian Equation (2) with a constant 
gauge function. 

4. Lie Point Symmetries Related to Conformal Klein-Gordon 
Equation 

According to conformal Poisson equation ( ), 0i
fL p f x p− =
  (whereas fL  is 
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called the Yamabe operator) if we choose ( ) ( ),i lx p pf W x= , then we get the 
conformal Klein Gordon equation (Yamabe KG) equation which is of the form 

( )– 0l
f p W x p =                          (21) 

Hence, by implementing the theorem which is stated as 
Theorem: Lie point symmetries related to conformal Poisson equation 

( ), 0i
fL p f x p− =
  of the ijf  metric generated from the CKVs describing the 

conformal Laplace operator as follows 

( ) ( ) ( )0
2

2
i l l l

i p
nX x x p b p c xφ ξ− = ∂ + + + ∂ 

 
 

whereas ( )i lxφ  is called a CKV having the conformal part ( )lxξ  and ( )lc x  
which is a solution of equation ( ), 0i

fL p f x p− =
  such as the following condi-

tion is satisfied 

( ); , 0
2 2– 0

2 2
ij l

i j l p p p
n nf c g g g c N S gφ ξ ξ− +

− − − − + =  

Then we obtained a conclusion such as 
Theorem 4.1: Lie point symmetries related to conformal Klein-Gordon equa-

tion Equation (21) of the ijf  metric generated from the CKVs describing Lap-
lace operator are the following 

1) When 2n >  then we get vector as 

( ) ( ) ( )0
2

2
i l l l

i pX x x p b p c xφ ξ− = ∂ + + + ∂ 
 

            (22) 

whereas ( )i lxφ  is called a CKV having the conformal part ( )lxξ  and ( )lc x  
is a solution of Equation (21) such as the following condition is satisfied 

, 2 0l
lW Wφ ξ+ =  and 0f c Wd− =                 (23) 

2) When 2n = , then Equation (21) is called the Laplace Klein Gordon equa-
tion of Equation (16), and the Lie symmetry vector become 

( ) ( )( )0
i l l

i pX x b p c xφ= ∂ + + ∂  

whereas ( )i lxφ  is called a CKV having the conformal part ( )lxξ  and ( )lc x  
is a solution of Equation (16) such as the following condition is satisfied 

, 2 0l
lg Wφ ξ+ =  

If we take the comparison between the Lagrangian Equation (2) and the con-
formal Klein Gordon equation Equation (21) and the conformal factor holds the 
conditions ; 0ijξ = , for some important functions CKV or KV or HV , then we 
analyze the following conclusion. 

Proposition 4.2: 
1) If an HV or KV of the ijf  metric, produce Lie point symmetries related to 

Klein-Gordon Equation (16), subsequently the ijf  metric, must generate 
Noether point symmetries related to Lagrangian Equation (2) with a constant 
gauge function. 
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2) If a proper CKV or special CKV of the ijg  metric (dim 2ijf ≥ ) which 
describe the conformal Laplace operator and produce Lie symmetries related to 
conformal Klein-Gordon Equation (21), subsequently it must generate a Noeth-
er symmetries of conformably Lagrangian Equation (2) so that the CKV convert 
into a HV or KV. 

5. Lie Symmetries of Schrödinger Equation 

According to the heat equation ( ) ( ), ,iL p v t x p=  if we choose  
( ) ( ), ,V z x p W x p= , then we get Schrödinger equation which is of the form 

( )ij i
ij i tf p p p W x p−Ω − =                      (24) 

Theorem 5.1: Lie symmetries of Schrödinger equation Equation (24) by flux 
in n-dimensional Riemannian spaces be composed of homothetic algebra by ijf  
metric are the following 

1) When iZ  be non-gradient KV or an HV 
Then Lie symmetry vector become 

( ) ( )( )1 02 ,i
t i pX b t b bZ b p c t xξ= + ∂ + ∂ + + ∂            (25) 

where 1,b b  are constant and 0b , ( ), lc t x , ( ), ,lv t x p  must satisfying the re-
striction equation 

( ) 0– 0 and 2 0zL c cW b W bW bξ= + + =           (26) 

2) If ,i iZ L=  be the gradient KV or an HV 
Then the vector become 

( ) ( ) ( ),
1 ,t

12 d ,
2

i
T i pX T t b TR T R G t p c t xξ   = + ∂ + ∂ + − + + ∂  

  
∫    (27) 

where ( )T t , ( )G t , ( ), lc t x , ( ), ,lv t x p  must satisfying the restriction equa-
tion 

( ) 21– 0 and 2 0
2tL c cW W W b L eξ= + − + =            (28) 

whereas the function G and T are calculated from the following results 

2
, ,t ,t

1and
2ttT b T T G dTξ= + =                    (29) 

If we take the comparison between the Lagrangian Equation (2) and the 
Schrödinger equation Equation (24), then we analyze the following conclusion. 

Proposition 5.2: when an HV/KV of the ijf  metric, produces Lie symme-
tries related to Schrödinger equation Equation (24), then it must produce a 
Noether symmetries of Lagrangian Equation (2) with same metric ijf  and same 
potential ( )lW x , obviously the converse also holds. 

6. Klein Gordon Equation and sl(2, R) Algebra 

According to the preceding considerations for a constant gauge function, we 
proved that the Lie symmetries of Klein Gordon equation stimulate Noether 
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symmetries used for the standard Lagrangian. Moreover, in this part, we study 
the case for a no constant gauge function while the stimulated Noether symme-
tries used for the standard Lagrangian, whereas, the stimulated Noether point 
symmetries to come from a comprehensive Lie point symmetries of Klein-Gordon 
equation. Obviously, if HV or KV produces Noether symmetries for the stan-
dard Lagrangian satisfy the condition i.e. 

, 12 0l
l tW Z W bξ+ + =                          (30) 

Then, it doesn’t generate Lie symmetries for Klein Gordon equation. On the 
other hand, if a KV or HV generates Noether symmetries for the standard La-
grangian satisfy only the above condition go ahead to the two famous dynamical 
systems which are oscillator system and Kepler Ermakov system. 

7. Oscillator Systems 

We regard as the situation such that a metric acknowledge the gradient KV such 
that it produces Lie symmetries of the standard Lagrangian which can be written 
in the form as 

2 2d d d dB A
BAr x l y y= +                      (31) 

whereas, ,i
xR = ∂  and ( )b

BA BAl l y=  is called the tensor such that ordinary to 
the KV. According to the above coordinate, a Lagrangian can be written of the 
form 

( ) ( )21 ,
2

B A d
BAx l y y W x y= + +                    (32) 

Thus, for the gradient KV the Lie symmetry condition becomes 
2

, 0xW xλ+ =  

The potential is follow as 

( ) ( )2 21,
2

d dW x y x G yλ= − +                  (33) 

The corresponding Noether symmetries in the form of vectors e z
x

λ± ∂ , con-
taining the measure function ( ), , eBg z x y xλ ±= , and the corresponding Noeth-
er integral is of the form 

e ez zI x xλ λ± ±
± = 

                         (34) 

Now the Laplace Klein-Gordon equation described through the Equation (31) 
as well as Equation (33) is of the form 

( )2 2 0BA B d
xx B A Bp l p p p x p G y pλ+ −Π − − =           (35) 

Hence, the Equation (35) doesn’t acknowledge a Lie symmetry for the com-
mon bAl , ( )bG y , but, it is called independent through x when a result be capa-
ble of in the type as ( ) ( ) ( ), B Bp x y v x R y= , means that the operator 

2 2
0

ˆ
x xI D D x Iλ= − −  satisfies ˆ 0pI =  i.e. 

The Klein Gordon equation Equation (35) occupy Lie Bäcklund symmetry of 
[12] [13], containing the generator ( )2 2

xx xT p xλ= − ∂ . 
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Regarding the conformal Klein Gordon equation such as 

( )
( ) ( )2 22

2 0
4 1

BA B d
xx B A B p

l
p l p p p S x p G y p

l
λ

−
+ −Π + − − =

−
       (36) 

Here for a KV bφ  we take 0H Sφ = , [14] therefore ( )dS S y= , so Equation 
(36) be able to write into shape of Laplace Klein-Gordon equation such that 

( ) ( ) ( )
( ) ( )2

2 .
4 1

d d dl
G y G y S y

l
−

= −
−

 

8. Kepler Ermakov Potential by Means of an Oscillator Term 

Suppose the gradient HV such that it generates Noether symmetry on behalf of a 
standard Lagrangian, then according to [15] [16] it is identified to acknowledge 
a gradient HV, subsequently, we get the coordinates system such as 

2 2 2d d d dB A
BAr s s l y y= +                       (37) 

Here HV is ,i
sL s= ∂ , = 1, 21

2
H r=  and ( )d

BA BAl l y=  is called tensor ana-

lytical normal. 
With the help of above coordinates, required Lagrangian becomes 

( ) ( )2 2 . . 1 – ,
2

B A d
BAr r l y y w s y= +                  (38) 

whereas gradient HV produces only Lie symmetries used for Ermakov potential 
comprehensive by the oscillator term, i.e. 

( ) ( )2 2
.2

1,
2

d
d

G y
w s y s

r
λ= − +                    (39) 

The acknowledged Noether symmetries produce as of a gradient HV, ,iL  

containing the vectors 2 21 e et t
t sX sλ λ

λ
± ±

± = ∂ ± ∂ , with equivalent gauge function 

( ) 2 2, , eB tg t s y sλλ ±= , related Noether Integral ( 2 2 2 21 e e er r rI V pp pλ λ λλ
λ+ ′= − + ,

2 2 2 21 e e er r rI V pp pλ λ λλ
λ

− − −
− ′= − + ) and Hamiltonian l of Equation (38) it’s easy 

to build the 1st integral 2
0 l I Iξ + −= −  which depends on time which is of the 

form 

( )4
0 2B A d

DAs l y y G yξ = +  .                    (40) 

Known as well-known Ermakov invariant [17] [18]. 
Laplace Klein-Gordon equation determine through Equation (39) as well as 

Equation (40) is given by 

( )2 2
2 2 2

1 1 1 2 0BA B d
ss BA s B

lp l p p p s G y
ss s s

λ
−

+ + − Π + + =         (41) 

Since the above equation doesn’t introduce Lie symmetry, but it is separate in 
the logic such that ( ) ( ) ( ), d dp s y v s R y= . So the operator becomes 

( ) 02BA B d
B A Bl D D D G yξ ξ= −Π + −               (42) 
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This satisfies that 0pξ =  i.e. introduce the Bäcklund symmetry containing 
the generator ( )p pX ξ= ∂ , [12] [13]. 

Regarding conformal Klein Gordon equation, the HV and Ricci scalar  

Equation (38) satisfy the situation 2 0H S S+ =  [14], where ( )2

1 dS S y
s

=  .  

After that, in the gradient KV we take up the expression ( )bS y  interested in a 
potential as well as obtained the similar solutions by means of Laplace 
Klein-Gordon equation. According to these results, it has been deduced with the 
purpose of generalized symmetries shift as of classical in the direction of quan-
tum but Lie symmetries don’t move. 

9. Conclusion 

In this paper, we apply the results obtained in the Lie point symmetries of Pois-
son and heat equations and study into universal Riemannian space the Lie point 
symmetries of Klein Gordon equation and Schrodinger equation. We acknowl-
edge that how the Lie symmetries of Klein Gordon and Schrodinger equations 
are connected with Noether symmetries of the indicated Lagrangian and show 
that the kinematic metric is described by the standard Lagrangian. Finally, it will 
be demonstrated that if a Noether symmetry for the above Lagrangian equation 
(1) is generated by the homothetic group element of kinematic metric then it 
further generates Lie symmetry for Klein Gordon equation and Schrödinger eq-
uation. We analyze that Noether point symmetries of Noether gauge are not a 
constant function. 
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