
Applied Mathematics, 2017, 8, 1769-1794 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2017.812127  Dec. 18, 2017 1769 Applied Mathematics 
 

 
 
 

Error Estimator Using Higher Order  
FEM for an Interface Problem  

Maharavo Randrianarivony1,2  

1Simulation Unit, Personal Simulation and Design, Sankt Augustin, Germany  
2Address: Pappelweg 7, Zimmer 21, Sankt Augustin 53757, Germany 

 
 
 

Abstract 
A higher order finite element method is considered to treat an interface prob-
lem. The polynomial degree is allowed to be arbitrary but it is fixed for the 
FEM-variational formulation. We propose an error estimator which turns out 
to be efficient and reliable. We demonstrate upper and lower bounds of the 
error estimator with respect to the exact accuracy. For the transmission prob-
lem, the coefficients for the internal and external domains can be highly dis-
similar. One major difficulty is the characteristic of the estimator at the inter-
face. The a-posteriori error estimates can be computed very efficiently ele-
ment by element. To corroborate the theoretical analysis, we report on a few 
numerical results. 
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1. Introduction 

In most aspects of numerical simulation, it is desirable to provide an approxi- 
mation to an unknown. But it is even more reliable to supply an additional 
information quantifying how accurate the approximation is. In particular for 
FEM (Finite Element Method), that additional value is exactly the purpose of the 
a-posteriori error estimator which is described subsequently. We begin by 
motivating the transmission problem that is based on the PBE (Poisson-Boltz- 
mann Equation) for the interaction of solute and solvent media which are 
respectively denoted by intΩ  and extΩ . The surface Γ  represents the 
solute-solvent [1] [2] [3] interface which is the molecular surface in the realistic 
case. The solvent is represented by a continuous dielectric medium while the 
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solute is located inside the cavity intΩ . In the sequel, the whole solute-solvent 
domain is denoted by := 

int extΩ Ω Ω . The nonlinear PBE [4] admits the next 
general expression  

( ) ( )( ) ( ) ( ) ( )
2

2

1 1

4π
e ,

m
i

NM
q u C

i i i i
i iB

eu n q z
k T

βε κ δ−

= =

−∇ ⋅ ∇ + = − ∀ ∈∑ ∑xx x x x x x Ω   (1) 

The charge positions ix  are located in the strict interior of the molecular 
surface Γ  as illustrated in Figure 1(a) and Figure 1(b). The quantities 

, , , , , ,B i i i Ck T z q n eβ  are constants related to physical parameters while the  
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Motivation: (a) Ionic solution; (b) Connolly surface: composition of trimmed 
toroidal and spherical surfaces; (c) Tetrahedral mesh of the solvent. 
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unknown function is the dimensionless electrostatic potential u. The coefficients 
( )ε x  and ( )κ x  are space-dependent functions related to the dielectric value 

and the modified Debye-Hückle parameter. Those coefficients might be 
discontinuous between intΩ  and extΩ  but the solution u is required to be 
continuous everywhere. In the case 2M =  and under certain assumption on 
the parameters, the exponential term becomes a hyperbolic sine. By the Taylor 
expansion, one has ( ) ( ) ( )3 5sinh 3! 5!t t t t= + + + . The linear PBE considers 
only the first term of the above expansion to obtain  

( ) ( )( ) ( ) ( ) ( )u u fε µ−∇ ⋅ ∇ + =x x x x x  for ∈x Ω  which will be the purpose of 
this paper. We will focus on the FEM treatment of the linearized equation for 
which we investigate a-posteriori error estimates. 

Before presenting our approach, related works and our previous results are in 
order. Verfürth has compiled a comprehensive study [5] about APEE 
(a-posteriori error estimator) for which he mainly treats piecewise linear FEM. 
Many different a-posteriori error estimators have been proposed for the Stokes 
problem [6] [7] [8] [9] for isotropic grids. In the context of anisotropic meshes 
[10] [11] [12], there are a variety of APEEs for Poisson and reaction-diffusion 
problems [13] [14]. An article [15] by Creusé, Kunert and Nicaise presents a 
survey on the residual based error estimator on anisotropic grids for the Stokes 
equation. An interesting APEE for two and three dimensions as well as an 
anisotropic adaptive mesh refinement are also detailed in [16]. Basically, 
a-posteriori error estimators permit to evaluate the finite element errors without 
knowing the exact solution. That feature makes it possible to dynamically 
identify regions where one should have further refinements if the error there is 
too large. Therefore, adaptive refinements are mainly based on the quality of 
a-posteriori error estimators. Our approach in this paper follows the same spirit 
as the works in [17] [18]. For the Spectral Element Method, we find in [18] an 
APEE for the hp-case. That is, the mesh size h is allowed to be refined in some 
regions while the polynomial degrees p are also variable on different elements of 
the mesh. The hp-case does not require that the polynomial degree or the mesh 
size are fixed. That has been generalized in [17] to treat hp-FEM [19] for the 
Poisson problem where corner singularities are allowed. We have presented in 
[20] an APEE based on hierarchical space enrichment on anisotropic FEM 
which is combined with adaptive refinements. Boundary Element Method (BEM) 
is very efficient [21] [22] [23] [24] [25] as far as the linear PBE is concerned 
because of the existence of a fundamental solution providing an explicit kernel 
for the integral equation formulation. In addition, BEM requires only a 
discretization of the surface Γ  instead of the entire volume Ω  (see Figure 
1(c)). When treating nonlinear PBE, a solver on the volume Ω  appears to be 
unavoidable. This paper can be viewed as a preliminary work toward nonlinear 
PBE. We are still reluctant to completely focus on the nonlinear PDE because the 
equation in (1) presents a real challenge related to the exponential nonlinear 
term on the left hand side and the nonsmooth Dirac functions on the right hand 
side. The only treatment of nonlinear PBE using BEM which we are aware of is 
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[26] that is admittedly a very good approach. By inspecting that paper in detail, 
we realized that a solver in the volume Ω  is also needed to construct an 
artificial fundamental solution. An integral equation solved by BEM is then used 
by applying that artificial fundamental solution in order to form a kernel. That is, 
a treatment exclusively on the surface Γ  without recourse to a solver in Ω  is 
so far not sufficient. Holst [27] [28] [29] [30] is one of the most prominent 
specialists of PBE using FEM. His work seems to be extensively based on 
piecewise linear variational formulation. The Finite Difference Method (FDM) is 
also widely used in PBE. The main reason does not seem to be attributed to its 
numerical efficiency but rather to code availability and to reference or 
comparison purpose (see Section 1.1.2 of [31]). An important component of 
PBE simulation is the geometric information because exact solutions of PBE are 
only known for very few simple geometries. Implementing a program for 
generating an SES (Solvent Excluded Surface) from nuclei coordinates and the 
Van-der-Waals radii of the atoms is not straightforward because a lot of 
geometric tasks [32] [33] [34] come into play. It is a long process to start from 
the nuclei coordinates till obtaining geometric data for computations. We have 
achieved a geometric task to process nuclei information in order to generate data 
for BEM as well as a mesh generation [35] from FEM as illustrated in Figure 
1(c). Furthermore, a real chemical simulation by using wavelet BEM is described 
in [25] for the quantum computation. A wavelet BEM simulation using domain 
decomposition techniques was described in [36] which treats the case of ASM 
(Additive Schwarz Method). It was utilized as an efficient preconditioner for the 
wavelet single layer potential which is badly conditioned. A wavelet BEM 
formulation for computing apparent surface charge is documented in [37] for an 
interface problem. A simulation for chemical quantum computation using FEM 
is documented in [38] where we used nanotubes immersed in polymer matrices. 

We consider in this work a higher order FEM formulation to treat the 
interface problem. That is, the polynomial degree, which is arbitrary but fixed, is 
uniformly constant in the entire FEM mesh. We examine the a-posteriori error 
estimator locally within each element and each edge. There are several types of 
edges: the interface edges, the interior edges, the exterior edges and the 
boundary edges. The difficulty for an estimator with respect to an interface edge 
is the discontinuous coefficients on the incident elements as well as the flux 
jump at the interface. In this work, we are more interested in elaborating 
mathematical theory than in chemical simulation. The error estimator can be 
efficiently computed element by element. We consider smooth load functions as 
right hand side of the equation. In addition to the theoretical investigation, we 
contribute about the numerical influence of the parameters appearing in the 
a-posteriori error estimator. We need numerical tests because the dependence of 
all various constants with respect to the problem parameters is not established 
theoretically. The next discussion is structured as follows. In the following 
section, we start by formulating the problem accurately and we introduce some 
important definitions as well as the expression of the estimator. That is followed 
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by the analysis of the a-posteriori error estimator in Section 1. We report on 
some interesting practical results in the last section. 

2. Problem Setting and A-Posteriori Estimators 

This section describes the problem formulation, the introduction of the higher 
order FEM as well as the explicit expressions of the a-posteriori error estimators. 
We recall also some important results related to polynomial inverse estimates. 
We consider the transmission PDE:  

( ) ( ) ( ) foru u fε µ− ∆ + = ∈int int intx x x x Ω             (2) 

( ) ( ) ( ) foru u fε µ− ∆ + = ∈ext ext extx x x x Ω             (3) 

( ) ( )
0 0

0lim lim foru u
→ →
∈ ∈

= ∈
int ext

x x x x
x Ω x Ω

x x x Γ                 (4) 

( ) ( ) ( ) ( ) ( )
0 0

0 0 0 0lim , lim , foru u Qε ε
→ →
∈ ∈

∇ − ∇ = ∈
int ext

int ext

x x x x
x Ω x Ω

x n x x n x x x Γ   (5) 

( ) 0 foru = ∈∂x x Ω                       (6) 

where ( )0n x  designates the normal vector at 0 ∈x Γ  pointing outward of 
= ∂ intΓ Ω . The load function :f →Ω  and the flux jump :Q →Γ  are 

given while the interface Γ  and the boundary ∂Ω  are polygons in 2 . We 
consider a mesh h  of the entire domain = 

int extΩ Ω Ω  such that the 
restrictions of the mesh h  in intΩ  and extΩ  are respectively denoted by 

hint  and hext . The mesh h  is composed of triangles admitting the next 
properties:  
 The intersection of two different elements ,i j hT T ∈  is either empty or a 

common node or a complete edge,  
 We have the coverings:  

, ,
h h hT T T

T T T
∈ ∈ ∈

= = =
  

  int ext

int extΩ Ω Ω               (7) 

 Every node of the interface Γ  is also a node of h ,  
 All edges of the interface Γ  are edges of the mesh h .  

For a triangle hT ∈ , we denote  

( ) ( ) { }2: diameter sup , ,h T T T= = − ∈Rx y x y            (8) 

( ) : supremum of the diameters of all balls contained inT Tρ =       (9) 

( ) ( ) ( ): aspect ratio ofT h T T Tσ ρ= =              (10) 

( )0 : set of elements of sharing a vertex withhT T=        (11) 

( ) ( )1: set of elements of sharing a vertex withi h iT T T−′= ∈     (12) 

We use ( )T  to denote ( )i T  for sufficiently large i. We assume 
quasi-uniformity in the sense that there exists a constant 0 0ρ >  such that  

( ) 0 , hT Tρ ρ≤ < ∞ ∀ ∈                    (13) 
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We define the following mutually disjoint subsets of edges  

: set of edges of on the interfaceh h= Γ Γ            (14) 

: set of edges of on the boundary ,h h= ∂ 0 Ω           (15) 

: set of edges of which are not included in ,h h= int int Γ       (16) 

: set of edges of which are included neither in nor in .h h= ∂ ext ext Ω Γ  (17) 

Note that an edge of h
int  may have an endpoint in Γ . Likewise, an edge of 

h
ext  is allowed to have an endpoint in Γ  or ∂Ω . We introduce in addition 

the set of all edges  

:h h h h h=       Γ 0 int ext                   (18) 

For an edge he∈ , we denote  

( ) ( ) { }2: length sup , ,h e e e= = − ∈Rx y x y            (19) 

( ) : set of elements of having as a sidehe e=          (20) 

( ) : unit normal vector orthogonal toe e=n            (21) 

The direction of the normal vector ( )en  is outward Γ  if the edge he∈Γ  
while it is pointed toward the exterior of Ω  if the edge he∈0 . For all other 
edges in h h int ext , the normal vectors ( )en  are pointed in an arbitrary but 
fixed orientation. 

For any triangle T, the affine invertible mapping from the unit reference  

( ){ }2ˆ : , : 0 1,0 1,0 1T x y x y x y= = ∈ ≤ ≤ ≤ ≤ ≤ + ≤x R        (22) 

onto T is denoted by ˆ: :TF T T→  in which  

( ) ( )( ) ( ) ( )( )2 1 2where det , detTF B b B h T B h T− −= + = =x x     (23) 

That allows one to derive results on the unit reference triangle T̂  and to 
carry them over to any element T in the original mesh h . We use the standard 
definitions of the Sobolev spaces for ( )2 Ω , ( )1 Ω  and ( )1

0 Ω . From here 
onward, we use the usual shorthand X Y  if there is a constant c such that 
X cY≤  in which c is independent on h and p. In addition, X Y  amounts to 
X Y X  . 

We want to consider now the Galerkin variational formulation. Denote the 
restriction of the solution u to the interface problem in intΩ  and extΩ  by u int  
and uext  respectively. Due to the Green identity we have  

uu v u v fv vε µ ε ∂
∇ ⋅∇ + = +

∂∫ ∫ ∫ ∫int int int

int
int int int int int int int int int

Ω Ω Ω Γ n
    (24) 

uu v u v fv vε µ ε ∂
∇ ⋅∇ + = −

∂∫ ∫ ∫ ∫ext ext ext

ext
ext ext ext int ext ext ext ext ext

Ω Ω Ω Γ n
    (25) 

We will denote the piecewise constant function defined on Ω :  

( ) ( )if if
: :

if if
ε µ

ε µ
ε µ
 ∈ ∈

= = 
∈ ∈ 

int int int int
Ω Ω

ext ext ext ext

x Ω x Ω
x x

x Ω x Ω
      (26) 
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The sum of (24) and (25) for every ( )1
0v∈ Ω  yields  

u uu v uv fv vε µ ε ε
 ∂ ∂

∇ ⋅∇ + = + − ∂ ∂ 
∫ ∫ ∫ ∫

int ext
Ω Ω int ext

Ω Ω Ω Γ n n
      (27) 

Taking into account the flux jump (5) in the transmission equation, we have  

, , u uQ u uε ε ε ε
∂ ∂

= ∇ − ∇ = −
∂ ∂

int ext
int int ext ext int extn n

n n
       (28) 

The Galerkin weak form is therefore  

u v uv fv Qvε µ∇ ⋅∇ + = +∫ ∫ ∫ ∫Ω Ω
Ω Ω Ω Γ

              (29) 

For a fixed polynomial degree 1p ≥ , the finite dimensional space is  

( ) ( ){ }0: : , in whichh p hTv v T= ∈ ∈ ∀ ∈  Ω Ω         (30) 

{ }: span : 0n m
p x y n m p= ≤ + ≤                  (31) 

The discrete Galerkin approximation is to search for ( )h hu ∈ Ω  such that  

( ),h h h h h h h hu v u v fv Qv vε µ∇ ⋅∇ + = + ∀ ∈∫ ∫ ∫ ∫ Ω Ω
Ω Ω Ω Γ

Ω       (32) 

Introduce the bilinear form  

( ), :v w v w vwε µ= ∇ ⋅∇ +∫ ∫ Ω Ω
Ω Ω

                (33) 

In order to express the a-posteriori estimators, we assume that the appro- 
ximated solution hu  on the current discretization h  is available and we 
consider a parameter [ ]0,1α ∈ . The 1D-weight on [ ]ˆ 0,1e =  and the 
2D-weight on T̂  are respectively  

( ) ( ) ( ) ( )ˆˆ
ˆ1 and distance ,e Tt t t Tω ω= − ∂x x              (34) 

For a general edge e and triangle T, transformations from the reference 
elements are used to define eω  and Tω . For an interior element int

hT ∈ , 
the estimator is defined as  

( ) ( ) ( )
( )2

2
22 2

, 2:T T h h T T

h T
f u u

p
α

αη ε µ ω= + ∆ −int int int int int


         (35) 

where Tf  designates the ( )2 T -projection of the load function f  onto the 
element T. The expression for an exterior element hT ∈ ext  is similar:  

( ) ( ) ( )
( )2

2
22 2

, 2:T T h h T T

h T
f u u

p
α

αη ε µ ω= + ∆ −ext ext ext ext ext


          (36) 

For an interface edge he∈Γ , one introduces  

( ) ( )
( ) ( )

( )2

2
2 2

, :
2

h h
e e e

e

h e u u
Q

p e e
α

αη ε ε ω
 ∂ ∂

= − +  ∂ ∂ 

int ext
Γ int ext

n n


         (37) 

where eQ  is the ( )2 e -projection of the flux jump Q onto the edge e. The 
estimator for an interior edge he∈int  having a normal vector ( )en  is defined 
as  
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( ) ( )
( )

( )2

2
2 2

, :
2

h
e e

e

h e u
p e

α
αη ε ω

∂
=

∂

 

 

 

 

  

int
int int

n
               (38) 

where 
 

t  stands for the jump of t when evaluated from the two elements 
incident upon e. The orientation of the jump is irrelevant because one takes its 
square in the 2 -norm. The estimator corresponding to an exterior edge 

he∈ext  is  

( ) ( )
( )

( )2

2
2 2

, :
2

h
e e

e

h e u
p e

α
αη ε ω

∂
=

∂

 

 

 

 

  

ext
ext ext

n
              (39) 

Since one needs computable local estimators for an element-by-element 
computation, an interior element hT ∈int  is introduced  

( ) ( ) ( ) ( )2 2 2 2

, , , ,
, ,

:
h h

T T e e
e T e e T e

α α α αη η η η
⊂∂ ∈ ⊂∂ ∈

= + +∑ ∑
 int Γ

loc int int Γ          (40) 

Likewise, for an exterior element hT ∈ext , the local estimator reads:  

( ) ( ) ( ) ( )2 2 2 2

, , , ,
, ,

:
h h

T T e e
e T e e T e

α α α αη η η η
⊂∂ ∈ ⊂∂ ∈

= + +∑ ∑
 ext Γ

loc ext ext Γ           (41) 

The local estimators add up to the global estimator:  

( )22
,:

h
T

T
α αη η

∈

= ∑


loc                        (42) 

One has the following polynomial inverse estimates and extension properties. 
The descriptions of the next lemmas are found in [17] [19] [39] [40] [41] [42]. 

Lemma 1. Given ,α β  such that 1 α β− < <  and some [ ]0,1δ ∈ . For every 
univariate polynomial pπ  of degree 1p ≥  on the 1D reference element 

[ ]ˆ 0,1e = , one has  

( ) ( ) ( ) ( )2 21 12
ˆ ˆ10 0

d de p e pt t t C p t t tω π ω π′   ≤   ∫ ∫             (43) 

( ) ( ) ( ) ( ) ( )2 21 12
ˆ ˆ20 0

d de p e pt t t C p t t tβ αα βω π ω π−   ≤   ∫ ∫          (44) 

( ) ( ) ( ) ( ) ( )2 21 12 22
ˆ ˆ30 0

d de p e pt t t C p t t tδδ δω π ω π−′   ≤   ∫ ∫          (45) 

On the 2D reference element (22), one has for every bivariate polynomial pπ  
of degree 1p ≥   

( ) ( ) ( ) ( )2 22
ˆ ˆ1ˆ ˆ, , d d , , d dp pT TT T

x y x y x y C p x y x y x yω π ω π ∇ ≤  ∫ ∫       (46) 

( ) ( ) ( ) ( ) ( )2 22
ˆ ˆ2ˆ ˆ, , d d , , d dp pT TT T

x y x y x y C p x y x y x yβ αα βω π ω π−   ≤   ∫ ∫    (47) 

( ) ( ) ( ) ( ) ( )2 22 22
ˆ ˆ3ˆ ˆ, , d d , , d dp pT TT T

x y x y x y C p x y x y x yδδ δω π ω π−  ∇ ≤  ∫ ∫    (48) 

The constants are ( )1 1 ,C C α β= , ( )2 2 ,C C α β= , ( )3 3C C δ=  which do not 
depend on p.  

Lemma 2. Consider a univariate polynomial π  of degree 1p ≥  defined on 
the unit reference interval [ ]ˆ 0,1e =  and a parameter 0 < 1γ ≤ . There exists a 
bivariate extension ( )1 ˆv T∈  defined on the reference triangle T̂  from (22) 
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such that it has the next properties w.r.t. the weight ê
αω :  

( )ˆ ˆˆ ˆ\and 0ee T ev vαπω
∂

= ≡                    (49) 

( ) ( )
( )2 2

22 2
ˆˆ ˆeT e

v C αα γ πω≤ 
                  (50) 

( ) ( ) ( )
( )2 2

22 2 2 1 2
ˆˆ ˆeT e

v C p α αα γ γ πω− − ∇ ≤ +  
           (51) 

3. Investigation of the Estimators 

Theorem 1. Let e  be an interface edge in h
Γ . Define for the weight 

exponent α : 

( ) ( )
: h h

e e e
u uQ

e e
ασ ε ε ω

 ∂ ∂
= − +  ∂ ∂ 

int ext
int ext

n n
             (52) 

We have for any γ  as in (50) and (51) the next estimate using the patch 
( )e :  

( ) ( ) ( )
( ){

( ) ( )
( )( )

( ) ( )} ( )
( )

2 2

1

2 2

2

2 2 1

2

1

T T
e e h he TT e

h T

h e eT e

f u u h T

u u p
h T

u u h T Q Q

α

α

α

σ ω ε µ γ

γ γ

γ ω

−

∈

− −

≤ + ∆ −

+ − +

+ − + −

∑ 



 



      (53) 

Under the assumption that 2h Cp≤ , we have the following bound:  

( )
( )

( )

( )
( )

( ) ( )
( )

1
2

2

, ,

22

e p h T TT
T e T e

e e e

h T
C u u C f f

p

h e
Q Q

p

α γ γ

α

η

ω

∈ ∈

≤ − + −

+ −

∑ ∑Γ




 
         (54) 

Proof. Let e hT ∈int int  and e hT ∈ext ext  be the two elements which are 
incident upon e. Designate by eσ  the extension as in (49) of the polynomial  

( ) ( )
: h h

p e
u uQ

e e
π ε ε

∂ ∂
= − +

∂ ∂

int ext
int ext

n n
                 (55) 

over the whole patch ( ) e ee T T=  int ext  such that we have the restriction 
( )e p e e

e

ασ π ω σ= =  and such that we have the boundary value ( )
( )

0e
e

σ
∂

=


. 
An application of the Green identity, which describes the partial integration of a 
function with respect to a domain and its boundary, on eT int  and eT ext  yields  

( )



( )


e

e e

eT

h
e eT e T

u u

u
u u

e

ε µ σ

ε σ ε µ σ

− ∆ +

∂
= ∇ ⋅∇ − +

∂

∫

∫ ∫ ∫

int

int int

int int int int

int
int int int int int

n

             (56) 

( )



( )


e

e e

eT

h
e eT e T

u u

u
u u

e

ε µ σ

ε σ ε µ σ

− ∆ +

∂
= ∇ ⋅∇ + +

∂

∫

∫ ∫ ∫

ext

ext ext

ext ext ext ext

ext
ext ext ext ext ext

n

             (57) 
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Introduce the expressions:  

( ) ( )
: h h

e
u u

R Q
e e

ε ε
∂ ∂

= − +
∂ ∂

int ext
int ext

n n
                   (58) 

 

( )


( )
: h h

e e e e ee e e e

u u
a R Q

e e
σ σ ε σ ε σ

∂ ∂
= = − +

∂ ∂∫ ∫ ∫ ∫
int ext

int ext

n n
           (59) 

( )


( )


( )


( )


h h
e e e ee e e e

u uu u
e e e e

ε σ ε σ ε σ ε σ
∂ ∂∂ ∂

= − − +
∂ ∂ ∂ ∂∫ ∫ ∫ ∫

int extint ext
int ext int ext

n n n n
      (60) 

Apply now (56) and (57) to the last identity in order to obtain a b=  where  

( ) ( )

( )  ( ) 

( ) ( )

:
e e

e e

e e

h h e h h eT T

h e h eT T

h e h eT T

b f u u f u u

u u u u

u u u u

ε µ σ ε µ σ

ε σ ε σ

µ σ µ σ

= − + ∆ − − + ∆ −

+ ∇ − ⋅∇ + ∇ − ⋅∇

+ − + −

∫ ∫

∫ ∫

∫ ∫

int ext

int ext

int ext

int int int int ext ext ext ext

int int int ext ext ext

int int int ext ext ext

     (61) 

By adding ( )e ee
Q Q σ−∫  on both sides of a b= , one has on the one hand  

( ) ( ) ( )
: h h

e e e ee e

u u
A a Q Q Q

e e
σ ε ε σ

 ∂ ∂
= + − = − +  ∂ ∂ 

∫ ∫
int ext

int ext

n n
         (62) 

( ) ( )

2

h h
e ee

u u
Q

e e
αε ε ω

 ∂ ∂
= − +  ∂ ∂ 
∫

int ext
int ext

n n
                 (63) 

( ) ( )

2

h h
e e ee

u u
Q

e e
α αε ε ω ω−

  ∂ ∂ = − +   ∂ ∂   
∫

int ext
int ext

n n
              (64) 

( )2

22 2
e e e ee e

α ασ ω σ ω− −= =∫ 
                      (65) 

On the other hand, one has  

( ) ( )

( ) ( ) 

( )  ( )

( ) ( ) 

2 2

e

e e

e e

e

e e h h ee T

h h e h eT T

h e h eT T

h e e e e eT e

B b Q Q f u u

f u u u u

u u u u

u u Q Q α α

σ ε µ σ

ε µ σ ε σ

ε σ µ σ

ε σ ω σ ω−

= + − = − + ∆ −

− + ∆ − + ∇ − ⋅∇

+ ∇ − ⋅∇ + −

+ − + −

∫ ∫

∫ ∫

∫ ∫

∫ ∫

int

ext int

ext int

ext

int int int int

ext ext ext ext int int int

ext ext ext int int int

ext ext ext

      (66) 

Hence, we deduce  

( )


( )

( )


( )

( )


( ) ( )


( )

( )


( ) ( )


( )

( )
( )

2 2

2 2

1 11 1

2 22 2

2

2

e e

e e

e ee e

e ee e

h h eT T

h h eT T

h e h eT TT T

h e h eT TT T

e e e

B f u u

f u u

u u u u

u u u u

Q Q α

ε µ σ

ε µ σ

σ σ

σ σ

ω σ

+ ∆ −

+ + ∆ −

+ − + −

+ − + −

+ −

int int

ext ext

int extint ext

int extint ext

int int int int

ext ext ext ext

int int ext ext

int int ext ext

 

 

  

  







( )2

2
e e e

αω−



        (67) 

By using the definition of the extension together with the properties (50) and 
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(51), one has  



( ) ( ) ( )22

2 22

e
e e e e eT

h T ασ γ σ ω−


int

int                     (68) 



( ) ( ) ( )22

2 22

e
e e e e eT

h T ασ γ σ ω−


ext

ext                    (69) 



( ) ( )
( )( ) ( )1

2

2 22 2 1 21
e

e e e eT
e

p
h T

α ασ γ γ σ ω− − −+


int int
              (70) 



( ) ( )
( )( ) ( )1

2

2 22 2 1 21
e

e e e eT
e

p
h T

α ασ γ γ σ ω− − −+


ext ext
              (71) 

A combination of (68)-(71) with the expression of B  yields  

( ) ( )
( )

( ){
( ) ( )

( )( ) ( )

( ) ( )
( )}

( )
( ) ( )

2 2

1 2

2 2

2 2

2

2 2 1 2

2

2 2

1

T T
h h e eT eT e

h e eT e

h e eT e

e e e ee e

B f u u h T

u u p
h T

u u h T

Q Q

α

α α

α

α α

ε µ γ σ ω

γ γ σ ω

γ σ ω

ω σ ω

−

∈

− − −

−

−

+ ∆ −

+ − +

+ −

+ −

∑  

 

 

 




          (72) 

From the equality of A and B, one obtains for the interface edge he∈Γ :  

( ) ( ) ( )
( ){

( ) ( )
( )( )

( ) ( )} ( )
( )

2 2

1

2 2

2

2 2 1

2

1

T T
e e h he TT e

h T

h e eT e

f u u h T

u u p
h T

u u h T Q Q

α

α

α

σ ω ε µ γ

γ γ

γ ω

−

∈

− −

+ ∆ −

+ − +

+ − + −

∑ 



 




         (73) 

Consequently, from (52) and the definition (37) of the interface estimator 

,eαη
Γ , one obtains for each fixed polynomial degree 1p ≥ :  

( ) ( )
( ) ( )

( ){
( ) ( )

( )( )

( ) ( )} ( )
( )

2

1

2 2

2 2

,

2 2 2 1

22 2

2

1

T T
e h h TT e

h T

h e eT e

p f u u h T
h e

u u p
h T

u u h T Q Q

α

α

α

η ε µ γ

γ γ

γ ω

∈

− −

+ ∆ −

+ − +

+ − + −

∑ 



 




Γ

        (74) 

By inserting Tf  in the last right hand side and by multiplying with 
( ) ( )2h e p , one deduces  

( )
( )

( )
( )

( )

( )
( )

( )

( )
( )

( ) ( )
( )

2

1
2

2 2

2
2 2

,

22 2 1
2 2

2
22 2

T T
e T h h TT e

h T TT

h e eT e

h T
f u u

p

h Tp u u f f
p p

h T h e
u u Q Q

p p

α

α

α

η γ ε µ

γγ γ

γ
ω

∈

− −

 + ∆ −


 +
+ − + −  
 

+ − + −


∑ 



 




Γ

      (75) 
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Combine with the estimation of the local residual to obtain:  

( )
( )

( )
( ) ( )

( )
( )

( )

( )
( )

( )

( )
( )

( ) ( )
( )

1
2

1
2

2 2

2 242 2 2
, 2

22 2 1
2 2

2
22 2

e h T TT
T e

h T TT

h e eT e

h T h Tpu u f f
p ph T

h Tp u u f f
p p

h T h e
u u Q Q

p p

α

α

α

η γ γ

γγ γ

γ
ω

∈

− −

 − + −


 +
+ − + −  
 

+ − + −


∑ 



 




Γ

     (76) 

By regrouping the terms, one obtains  

( )
( )

( )

( )

( )
( )

( )
( )

( ) ( )
( )

1

22

2

2 2 12 23
,

2 2
2 2

22

e h T
T e

h T TT

e e e

pp u u
p

h T h T
u u f f

p p

h e
Q Q

p

α

α

α

γ γ
η γ

γ γ

ω

− −

∈

 + + −   
+ − + − 


+ −

∑ 








Γ

          (77) 

Then, for the local load oscillation ( )2

2
T Tf f−   and the local weighted flux 

oscillation ( )
( )2

22
e e e

Q Q αω−


 one has  

( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

1

2 2

22 2 1
3

,

22

e h T
T e

T e eT eT e

h Tpp u u
p p

h T h e
f f Q Q

pp

α

α

α

γ γ
η γ γ

γ
ω

− −

∈

∈

+
+ + −

+ − + −

∑

∑



 






Γ

       (78) 

By using the assumption 2h Cp≤ , one concludes the last estimate in the 
theorem.  

Theorem 2. Let e  be an internal edge in h
int  (resp. an external edge in 

h
ext ). Under the assumption that 2h Cp≤ , we have the following bound:  

( )
( )

( )

( )
( )

( ) ( )
( )

1
2

2

, ,

22

e p h T TT
T e T e

e e e

h T
C u u C f f

p

h e
Q Q

p

α γ γ

α

η

ω

∈ ∈

≤ − + −

+ −

∑ ∑ 



 

int

          (79) 

and respectively  

( )
( )

( )

( )
( )

( ) ( )
( )

1
2

2

, ,

22

e p h T TT
T e T e

e e e

h T
C u u C f f

p

h e
Q Q

p

α γ γ

α

η

ω

∈ ∈

≤ − + −

+ −

∑ ∑ 



 

ext

          (80) 

Proof. Define  

( ) ( )
: resp. :h h

e e e e
u u

e e
α ασ ε ω σ ε ω

 ∂ ∂
= =  ∂ ∂ 

   

   

   

   

   

int ext
int int ext ext

n n
         (81) 

and proceed as in the former proof.  
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Theorem 3. Let the domain oscillation be:  

( )2
2osc :

h
T T

T
f f

∈

= −∑ 


Ω                      (82) 

and the interface oscillation be:  

( )2
2osc :

h

e e
e

Q Q
∈

= −∑ 
Γ

Γ                       (83) 

The next estimate holds for the weighted error estimator  

( ) ( ) ( ) ( )1

2 2 22 2 2 2
, osc osc

h
h T

T
u u p h p hpα

αη
∈

  − ≤ + + 
  
∑


loc Ω Γ
Ω        (84) 

Proof. Due to (29), one has for ( ): ,hI u u w= −  from the bilinear form (33)  

( )

( )
h

h

h
h hT T

T

h
h hT T

T

uI fw Qw u u w w

uu u w w

ε µ ε

ε µ ε

∂
∈

∂
∈

 ∂
= + − − ∆ + + 

∂ 

 ∂
− − ∆ + + 

∂ 

∑∫ ∫ ∫ ∫

∑ ∫ ∫





int

ext

ext
int int int int int

Ω Γ

ext
ext ext ext ext ext

n

n

   (85) 

( )

( )
h

h

h
h hT T T

T

h
T T T

T

uI Qw fw u u w w

ufw v v w w

ε µ ε

ε µ ε

∂
∈

∂
∈

∂ = + + ∆ − − 
∂ 

∂ + + ∆ − − 
∂ 

∑∫ ∫ ∫ ∫

∑ ∫ ∫ ∫





int

ext

int int int int int
Γ

ext ext ext ext ext

n

n

     (86) 

Every side of T∂  is represented as an edge of h  which is categorized in 

h
Γ , h

0 , h
int , h

ext . As a consequence,  

( ){ }
( ){ }

h

h

h hT
T

T
T

I f u u w

f v v w A A A A

ε µ

ε µ

∈

∈

= + ∆ −

+ + ∆ − + + + +

∑ ∫

∑ ∫




int

ext

int int int int

ext ext ext ext int ext 0 Γ
     (87) 

:= , :
h h

h h
e e

e e

u uA w A wε ε
∈ ∈

∂ ∂
=

∂ ∂∑ ∑∫ ∫
   

   

   

    int ext

int int ext ext

n n
          (88) 

: , :
h h

h h h
e e

e e

u u uA w A Q wε ε ε
∈ ∈

 ∂ ∂ ∂ = = − −  ∂ ∂ ∂   
∑ ∑∫ ∫
 0 Γ

int ext
0 ext Γ int ext

n n n
   (89) 

where 0A ≡0  because 0w
∂

=Ω . Therefore,  

( ) ( ){ }
( ) ( ){ }

( )
( )

( )
( )

( )
( )

22

22

2 2
2 2

2
2

h

h

h h

h

h h TT
T

TT
T

h h
e e

e ee e

h h
e

e e

I f u u w

f v v w

u uw w

u uQ w

ε µ

ε µ

ε ε

ε ε

∈

∈

∈ ∈

∈

≤ + ∆ −

+ + ∆ −

∂ ∂
+ +

∂ ∂

∂ ∂
+ − −

∂ ∂

∑

∑

∑ ∑

∑

   

   

   

   







 
  


 

int

ext

int ext

Γ

int int int int

ext ext ext ext

int ext

int ext
int ext

n n

n n

     (90) 
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In particular, for ( ) ( )h h hw u u I u u= − − −  where hI  is the Clément 
interpolant in [17] [19]. Since ( )( ), 0h h hu u I u u− − = , one has  

( )( ) ( ), ,h h h h h hu u u u I u u u u u u− − − − = − −  .  

( ) ( )
( ) ( ) ( ){ }

( )
( ) ( ) ( ){ }

( )
( ) ( ) ( )

( )
( ) ( ) ( )

1
22

22

2
2

2
2

2

h

h

h

h

h

h h h h h h TT
T

h h h TT
T

h
h h h e

e e

h
h h h e

e e

e

u u f u u u u I u u

f v v u u I u u

u u u I u u

u u u I u u

Q

ε µ

ε µ

ε

ε

ε

∈

∈

∈

∈

∈

− ≤ + ∆ − − − −

+ + ∆ − − − −

∂
+ − − −

∂

∂
+ − − −

∂

+ −

∑

∑

∑

∑

∑

 

 

 

 

 

 

 

 

 






 


 



int

ext

int

ext

Γ

int int int int
Ω

ext ext ext ext

int

ext

in

n

n

( )
( ) ( ) ( )2

2

h h
h h h e

e

u u u u I u uε
∂ ∂

+ − − −
∂ ∂ 



int ext
t ext

n n

 (91) 

Use the interpolation property of the Clément interpolant [17] [19] to obtain  

( )
( )

( )( ) ( )
( )

( )( )1 1
2 2

,h hT eT e

h T h e
v I v v v I v v

p p
− ≤ − ≤   

      (92) 

Deduce therefore the next estimate  

( )
( )

( ) ( )( )

( )
( ) ( )( )

( )
( )

( )( )

( )
( )

( )( )

( )

1 1
2

1
2

1

2

1

2

2

h

h

h

h

h

h h h h TT
T

h TT
T

h
h e

e e

h
h e

e e

e

h T
u u f u u u u

p

h T
f v v u u

p

h e u u u
p

h e u u u
p

h e
Q

p

ε µ

ε µ

ε

ε

∈

∈

∈

∈

∈

 
− ≤ + ∆ − − 

 

 
+ + ∆ − − 

 

∂
+ −

∂

∂
+ −

∂

+ −

∑

∑

∑

∑

∑

 

 

 

 

 

 

 

 

 






 


 











int

ext

int

ext

Γ

int int int int
Ω

ext ext ext ext

int

ext

n

n

( )
( )( )1

2

h h
h e

e

u u u uε ε
∂ ∂

+ −
∂ ∂ 




int ext
int ext

n n

  (93) 

( )
( )

( )

( )
( )

( )
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( )
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2 2
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2
2
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2 2
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h

h

h h

h

h h h T
T

T
T

h h

e ee e

h h

e e

h T
u u f u u

p

h T
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p

h e h eu u
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h e u uQ
p

ε µ

ε µ

ε ε

ε ε

∈

∈

∈ ∈

∈

− ≤ + ∆ −


+ + ∆ −

∂ ∂
+ +

∂ ∂

∂ ∂
+ − + 

∂ ∂

∑

∑

∑ ∑

∑

   

   

   

   

 





  

 

int

ext

int ext

Γ

int int int int
Ω

ext ext ext ext

int ext

int ext
int ext

n n

n n

( )( )1

1 2

1 2
2

h
h T

T
u u

∈





  × − 
  
∑ 




   (94) 
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Deduce the results for the vanishing weight 0α ≡ :  

( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

21

2

1

2
2 22 2

0, 0,2

2 2 2
0, 0,

1 2
2

0,

h h h

hh h

h

h T T TT
T T T

e e e e
ee e

e h
e

h T
u u f f

p

h e
Q Q

p

u u

η η

η η

η

∈ ∈ ∈

∈∈ ∈

∈

− ≤ − + +


+ + + −

+ −


∑ ∑ ∑

∑ ∑ ∑

∑


  


 




int ext

int ext

int

int ext
Ω

int ext

Γ
Ω

   (95) 

Regroup the local terms with respect to the the local edges to obtain  

( ) ( ) ( )
( )

( )
( )21 2

2
22 22

0, 2
h h h

h T T eT e
T T e

h T h e
u u f f Q Q

pp
η

∈ ∈ ∈

− ≤ + − + −∑ ∑ ∑ 
  Γ

loc
Ω (96) 

For non-vanishing weights 0α ≠ , one applies the polynomial inverse esti- 
mate (47) to the polynomial  

:p T h hf u uπ ε µ= + ∆ −int int int int                   (97) 

in order to obtain  

( ) ( )
( )2 2

2 2
T h h T h h TT T

f u u p f u uα αε µ ε µ ω+ ∆ − ≤ + ∆ −
 

int int int int int int int int   (98) 

By using the same thing for the external domain, obtain ( ) ( )2 22
0, ,T Tp α

αη η≤loc loc . 
Hence,  

( ) ( ) ( )
( )

( )
( )21 2

2
22 222

, 2
h h

h T T eT e
T T e h

h T h e
u u p f f Q Q

pp
α

αη
∈ ∈ ∈

− ≤ + − + −∑ ∑ ∑ 
  

loc
Ω

Γ
(99) 

Theorem 4. For an element hT ∈int , respectively hT ∈ext , introduce:  

( ) ( ): , :T T h h T T T h h Tf u u f u uα ασ ε µ ω σ ε µ ω= + ∆ − = + ∆ −int int int int int ext ext ext ext ext  (100) 

One has for a fixed polynomial degree 1p ≥  the following estimates  

( )

( )

( ) ( )
( )

( )2 1 2

2
2 2

T T h T TT T T

p u u f f
h T

α
α ασ ω ω

−
− − + −

  
int int int       (101) 

( )

( )

( ) ( )
( )

( )2 1 2

2
2 2

T T h T TT T T

p u u f f
h T

α
α ασ ω ω

−
− − + −

  
ext ext ext       (102) 

Thus, the local expressions ,Tαη
int  and ,Tαη

ext  verify:  

( )

( ) ( )
( )1 2

2
, ,T p h T TT T

h T
C u u f f

p
α

α αη ω≤ − + −
 

int int int        (103) 

( )

( ) ( )
( )1 2

2
, ,T p h T TT T

h T
C u u f f

p
α

α αη ω≤ − + −
 

ext ext ext        (104) 

Proof. The following equalities hold:  

( ) ( )
2

22
T T T h h TTT

f u uα ασ ω ε µ ω− = + ∆ −∫
int int int int int          (105) 

( ) ( )h h T T TT T
f u u f fε µ σ σ= + ∆ − + −∫ ∫int int int int int int          (106) 
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( )
T T h TT T T

h T T TT T

u u u

u f f

ε σ µ σ ε σ

µ σ σ

= ∇ ⋅∇ + − ∇ ⋅∇

− + −

∫ ∫ ∫
∫ ∫

int int int int int int int int int

int int int int
       (107) 

( ) ( )
( ) 2 2

h T h TT T

T T T TT

u u u u

f f α α

ε σ µ σ

ω σ ω−

= ∇ − ⋅∇ + −

+ −

∫ ∫
∫

intint int int int int int

int
         (108) 

Consequently, one obtains  

( ) ( ) ( ) ( )
( ) ( )11

2 2 2

2 2 2
T T h T T T T TTT T T T

u u f fα α ασ ω σ ω σ ω− −− + −   
int int int int (109) 

Concerning the estimation of 
( )1T T

σ


int , one has  

( ) ( ){ }1

2

T T h h TTT
f u u ασ ε µ ω= ∇ + ∆ −∫

int int int int int         (110) 

( )
( )

22

2 22

T T h hT

T h h TT

f u u

f u u

α

α

ω ε µ

ε µ ω

≤ ∇ + ∆ −

+ + ∆ − ∇

∫

∫

int int int int

int int int int
           (111) 

For the first term, apply the polynomial inverse estimate (48) to the 
polynomial  

:p T h hf u uπ ε µ= + ∆ −int int int int                 (112) 

and the affine transform ˆ:TF T T→  in order to obtain  

( )
( )

( ) ( )
2 22 22
2T T h h T T h hT T

pf u u f u u
h T

α
α αω ε µ ω ε µ

−

∇ + ∆ − + ∆ −∫ ∫int int int int int int int int (113) 

As for the second term, split 
2

T
αω∇  into ( )2

x T
αω∂  and ( )2

y T
αω∂ , use the 

boundedness of T
αω  and apply the inverse estimate (47) to the polynomial (112) 

to obtain  

( )
( )

( ) ( )
2 2

2 222
2T h h T T h h TT T

pf u u f u u
h T

α
α αε µ ω ε µ ω

−

+ ∆ − ∇ + ∆ −∫ ∫int int int int int int int int (114) 

A combination of (111), (113) and (114) yields  

( )

( )

( ) ( )1

2 2
2

2T T h h TTT

p f u u
h T

α
ασ ε µ ω

−

+ ∆ −∫
int int int int int           (115) 

( )

( ) ( ){ }
( )

( ) ( )2

2 2 2

2

2 2
22

2

T h h T TT

T T T

p f u u
h T

p
h T

α
α α

α
α

ε µ ω ω

σ ω

−
−

−
−

= + ∆ −

=

∫



int int int int

int

           (116) 

As a consequence, one has  

( )

( )

( ) ( ) ( )

( )
( ) ( )

1
2 2

2 2

2
22 2

2 2

T T h T TT T T

T T T TT T

p u u
h T

f f

α
α α

α α

σ ω σ ω

ω σ ω

−
− −

−

−

+ −

  

 

int int int int

int

         (117) 

from which (101) follows. Thus, one deduces  
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( )

( )

( ) ( )
( )

( )2 1 2

2
22 2

T T h T TT T T

p u u f f
h T

α
α ασ ω ω

−
− − + −

  
int int int       (118) 

By using the definition (35) of the interior estimator, one has  

( ) ( )
( )2

2
2 22

, 2T T T T

h T
p

α
αη σ ω−=


int int                  (119) 

( )

( )

( ) ( )
( )1 2

22 2
2

2 2h T TT T

h Tp u u f f
p p

α
αω

−

− + −
 

 int int          (120) 

The other estimates are obtained in a similar manner.  

4. Practical Results  

The computer implementation is performed by a combination of C functions 
and C++ classes. Some LAPACK and BLAS routines are used sometimes to 
perform various linear algebraic operations. 

4.1. Exact Precision  

In this subsection, we concentrate fully on the exact precision for the purpose of 
obtaining insight and confidence about the accuracy of the results of the 
computer implementation. That is, we do not consider yet any description of the 
error estimator αη . We examine several parameters comprising the polynomial 
degree and the problem coefficients , , ,ε ε µ µ  

int ext int ext . The ε-ratio and the μ-ratio 
are the positive constants { }min ,ε ε ε εint ext ext int  and { }min ,µ µ µ µint ext ext int  
respectively. Since the FEM-level is used extensively, we introduce it very rapidly. 
For a given mesh h  on the current level  , another mesh on the next level 
( )1+  is constructed by subdividing every edge in the middle of which one 
inserts a new node. Therefore, that corresponds to a global uniform refinement 
where every element is locally subdivided. Only the mesh on the coarsest level 
(level 1=  in our entire study) is provided. Thus, one level incrementation 
amounts to reducing the mesh size from h to h/2. For the numerical compu- tations, 
we consider the unit square [ ]20,1  as the entire domain Ω  while the internal 
domain intΩ  is [ ]21 3,2 3 . The used mesh h  is a tensor product uniform 
triangular mesh. The exact solution is chosen to be ( ) ( ) ( )1 sin 3π sin 3πx yε int  
for the internal domain while it is ( ) ( ) ( )1 sin 3π sin 3πx yε ext  for the external 
one. It is globally continuous and it admits highly discontinuous derivatives at 
the interface = ∂ intΓ Ω  depending on the values of ε int  and ε ext . The right 
hand side function is obtained by applying the transmission operators (2) and (3) 
to the exact solution. The ∞ -norm is practically obtained by considering a 
very dense point sample { }T

ix  inside every element hT ∈ . The maximum 
values of ( ) ( )T T

i h iu u−x x  over all samples and over all elements will then be 
the practical ∞ -norm. 

The first configuration for the investigation of the exact precision corresponds 
to [ ], , , 1000,1,0.1,100ε ε µ µ  = 

int ext int ext  which associates to both the ε-ratio 
and the μ-ratio the value of 1:1000 . We use these parameters because they 
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highlight a situation where the internal and the external coefficients are very 
dissimilar. In particular, the ratio of the normal derivatives at the interface is 
proportional to the ε-ratio. Parameters tending to unity are very easy because 
that turns out to be the same as treating a problem without an interface in the 
whole domain Ω . The results of the computation are collected in Table 1 
where we consider three fixed polynomial degrees 1,2,3p = . For each degree, 
the FEM-levels are allowed to vary from one to five. The corresponding 2 - 
norms, 1 -seminorms and ∞ -norms are depicted there as well as the 
contraction which is the ratio between two consecutive errors as the FEM-level is 
incremented. The 1 -seminorm errors are in general two digit worse than the 

2 -norm. That is observed for different configurations related to the problem 
coefficients , , ,ε ε µ µ  

int ext int ext  and different simulation parameters. The ∞ - 
error is just a little worse than the 2 -error but not as imprecise as the error in 
the 1 -seminorm. Since the 1 -norm is quadratically the sum of the 2 - 
norm and the 1 -seminorm as ( ) ( ) ( )1 1

2

2 2 2⋅ = ⋅ + ⋅  Ω Ω Ω , the 1 -norm and 
the 1 -seminorm are practically of the same order because the 2 -norm is 
dominated by the 1 -seminorm. In the next description, we will be mainly 
interested in the 1 -norm or practically the 1 -seminorm. We observe 
practically constant contraction numbers depending on the used polynomial 
degree. The same test has been conducted for another configuration of 

[ ], , , 0.1,100,6.5,0.5ε ε µ µ  = 
int ext int ext  whose ε-ratio and μ-ratio are respec- 

tively 1:1000  and 1:13 . The outcome of the errors is collected in Table 2. In  
 
Table 1. Exact precision and contraction ratio for [ ], , , 1000,1, 0.1,100ε ε µ µ  = 

int ext int ext . 

p LEV 
2 -norm 1 -seminorm ∞ -norm 

error contr. error contr. error contr. 

1 

1 5.7321e−02 - 2.3888e+00 - 1.6108e−01 - 

2 1.4629e−02 3.918 1.2240e+00 1.952 4.2624e−02 3.779 

3 3.6735e−03 3.982 6.1565e−01 1.988 1.0884e−02 3.916 

4 9.1940e−04 3.996 3.0827e−01 1.997 2.7546e−03 3.951 

5 2.2992e−04 3.999 1.5419e−01 1.999 6.9275e−04 3.976 

2 

1 3.8753e−03 - 3.6522e−01 - 1.4418e−02 - 

2 5.0840e−04 7.623 9.4402e−02 3.869 1.8900e−03 7.628 

3 6.4531e−05 7.878 2.3812e−02 3.964 2.3861e−04 7.921 

4 8.0999e−06 7.967 5.9666e−03 3.991 2.9871e−05 7.988 

5 1.0136e−06 7.991 1.4925e−03 3.998 3.7335e−06 8.001 

3 

1 3.0985e−04 - 3.7160e−02 - 1.2728e−03 - 

2 1.8552e−05 16.702 4.6564e−03 7.981 8.1997e−05 15.522 

3 1.1356e−06 16.337 5.8099e−04 8.015 5.1667e−06 15.870 

4 7.0444e−08 16.121 7.2525e−05 8.011 3.2360e−07 15.966 

5 4.4716e−09 15.754 9.0587e−06 8.006 2.0238e−08 15.990 
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Table 2. Exact precision and contraction ratio for [ ], , , 0.1,100, 6.5, 0.5ε ε µ µ  = 
int ext int ext . 

p LEV 
2 -norm 1 -seminorm ∞ -norm 

error contr. error contr. error contr. 

1 

1 2.1732e−01 - 8.4222e+00 - 1.5435e+00 - 

2 5.6111e−02 3.873 4.3238e+00 1.948 4.0202e−01 3.839 

3 1.4141e−02 3.968 2.1761e+00 1.987 1.0142e−01 3.964 

4 3.5426e−03 3.992 1.0899e+00 1.997 2.5411e−02 3.991 

5 8.8609e−04 3.998 5.4515e−01 1.999 6.3560e−03 3.998 

2 

1 1.3871e−02 - 1.2940e+00 - 1.4155e−01 - 

2 1.8064e−03 7.679 3.3387e−01 3.876 1.8757e−02 7.546 

3 2.2846e−04 7.907 8.4192e−02 3.966 2.3773e−03 7.890 

4 2.8647e−05 7.975 2.1095e−02 3.991 2.9816e−04 7.973 

5 3.5838e−06 7.994 5.2769e−03 3.998 3.7301e−05 7.993 

3 

1 1.1161e−03 - 1.3220e−01 - 1.2773e−02 - 

2 6.6595e−05 16.760 1.6544e−02 7.991 8.2053e−04 15.566 

3 4.0520e−06 16.435 2.0601e−03 8.030 5.1666e−05 15.882 

4 2.5004e−07 16.205 2.5681e−04 8.022 3.2350e−06 15.971 

5 1.5580e−08 16.049 3.2053e−05 8.012 2.0264e−07 15.964 

 
contrast to the previous case, the value of ε int  is currently smaller that ε ext , 
although the ε-ratio remains the same. Nonetheless, the general characteristic of 
the errors remains unchanged which demonstrates the robustness of the method 
when put in practice. 

Our next simulation about a-priori error estimates focuses on the influence of 
the polynomial degree p. For that, we consider four configurations corresponding 
to [ ], , , 0.5, 2, 4,0.1ε ε µ µ  = 

int ext int ext , [ ], , , 1.5,500,0.5,7ε ε µ µ  = 
int ext int ext , 

[ ], , , 2,0.5,1, 4ε ε µ µ  = 
int ext int ext , [ ], , , 500,1.5,7,0.5ε ε µ µ  = 

int ext int ext . They 
have respectively the following ε-ratios 1: 4 , 1: 333.3 , 1: 4 , 1: 333.3  while 
the μ-ratios are 1: 40 , 1:14 , 1: 4 , 1:14 . The corresponding 2 -errors are 
depicted in Figure 2(b) while the errors using the 1 -seminorm are displayed 
in Figure 2(a). This situation confirms again the fact that the 2 -errors are 
about two digit worse than the 1 -errors. In those figures, the errors are 
computed in function of increasing polynomial degrees which range from one to 
six. We observe satisfactory error decrease for all considered four configurations. 
Both the 2 -error and the 1 -error decrease in exponential rate with respect 
to the polynomial degrees. In fact, the 2 -errors drop from an order of 0.1 to 
an order of 1.0 07e −  in the range of 1, ,6p =   while the 1 -errors drop 
from an order of five to an order of 1.0 5e −  as the polynomial degree grows. 
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(a) 

  
(b) 

Figure 2. A-priori error in function of the increasing polynomial degree for various 

values of , , ,ε ε µ µ  
int ext int ext : (a) 2 -error, (b) 1 -error. 

4.2. Practical A-Posteriori Error Estimation 

Now that we have gained insight about the a-priori accuracy, we want to turn 
our attention to the a-posteriori estimator αη . The principal role of an 
a-posteriori error estimator is twofold. For one, it serves as gaining some idea of 
whether to continue or to abort a simulation. The computation is aborted when 
the desired precision is provided by the estimator. Since the exact solution u is 
not known for real applications, an estimator is needed. A further purpose of the 
error estimator is to identify the regions within the domain Ω  where the 
precision is unsatisfactory. Mesh refinements are therefore applied at those 
regions to improve the local precision. The proposed estimator can be used for 
both purposes. But we have currently only the first utility in our computer 
implementation. We use different values of α  which comprise 0α = , 

0.25α = , 0.5α = , 0.75α = , 1α = . The results of the computer simulation is 
collected in Table 3 where we examine four polynomial degrees 1,2,3,4p = . 
For every fixed polynomial degree p, the value of the FEM-level is allowed to  
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Table 3. Exact and estimated accuracies for [ ], , , 10,1,5, 2ε ε µ µ  = 
int ext int ext . 

p LEV 
1hu u−


 

Estimated accuracy αη  

0α =  1 4α =  1 2α =  3 4α =  1α =  

1 

1 1.088e+00 1.111e+01 8.370e+00 6.520e+00 5.176e+00 4.160e+00 

2 5.475e−01 3.542e+00 2.495e+00 1.857e+00 1.432e+00 1.131e+00 

3 2.742e−01 1.348e+00 8.611e−01 5.862e−01 4.211e−01 3.158e−01 

4 1.371e−01 6.062e−01 3.633e−01 2.280e−01 1.495e−01 1.025e−01 

5 6.858e−02 2.939e−01 1.721e−01 1.041e−01 6.477e−02 4.142e−02 

2 

1 3.653e−01 1.771e+00 1.059e+00 6.788e−01 4.596e−01 3.255e−01 

2 9.446e−02 3.715e−01 2.023e−01 1.149e−01 6.749e−02 4.076e−02 

3 2.383e−02 9.121e−02 4.917e−02 2.757e−02 1.589e−02 9.346e−03 

4 5.970e−03 2.273e−02 1.224e−02 6.850e−03 3.941e−03 2.312e−03 

5 1.493e−03 5.679e−03 3.056e−03 1.710e−03 9.836e−04 5.770e−04 

3 

1 3.715e−02 1.530e−01 7.796e−02 4.200e−02 2.359e−02 1.371e−02 

2 4.657e−03 1.948e−02 9.905e−03 5.308e−03 2.956e−03 1.695e−03 

3 5.812e−04 2.454e−03 1.249e−03 6.698e−04 3.732e−04 2.140e−04 

4 7.256e−05 3.074e−04 1.566e−04 8.400e−05 4.682e−05 2.685e−05 

5 9.064e−06 3.846e−05 1.959e−05 1.051e−05 5.860e−06 3.361e−06 

4 

1 3.168e−03 1.386e−02 6.449e−03 3.208e−03 1.683e−03 9.218e−04 

2 2.016e−04 8.575e−04 3.988e−04 1.983e−04 1.040e−04 5.689e−05 

3 1.266e−05 5.337e−05 2.482e−05 1.234e−05 6.471e−06 3.539e−06 

4 7.970e−07 3.333e−06 1.550e−06 7.710e−07 4.042e−07 2.211e−07 

5 1.007e−07 2.120e−07 9.927e−08 4.973e−08 2.626e−08 1.446e−08 

 
range from one to five. We consider a configuration where the problem 
coefficients are [ ], , , 10,1,5,2ε ε µ µ  = 

int ext int ext  that corresponds to an ε-ratio 
and μ-ratio of 1:10  and 1: 2.5 . According to the proposed theory, it is 
sufficient to conduct a comparison between the 1 -error and the error 
estimator αη . For all values of α , Table 3 highlights that the estimator αη  
provides an efficient estimation of the exact precision as predicted theoretically. 
In addition, the decrease of the exact precision agrees well with the decrease of 
the error estimator αη  as the FEM-levels grow. That can be very well observed 
for various values of the fixed polynomial degree p. In fact, the estimations by 

αη  are somewhat influenced by the values of the chosen α . Nonetheless, the 
values of αη  are comparatively of the same order up to some constant scaling 
factors. The same tests but for other configurations yield the results in Table 4 
where we have [ ], , , 0.1,100,6.5,0.5ε ε µ µ  = 

int ext int ext . Comparable charac- 
teristics as in the preceding investigation are observed. That reveals again that 
the estimator is robust with respect to the problem configurations. 
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Table 4. Exact and estimated accuracies for [ ], , , 0.1,100, 6.5, 0.5ε ε µ µ  = 
int ext int ext . 

p LEV 
1hu u−


 

Estimated accuracy αη  

0α =  1 4α =  1 2α =  3 4α =  1α =  

1 

1 3.851e+00 1.113e+01 8.388e+00 6.534e+00 5.188e+00 4.170e+00 

2 1.935e+00 3.543e+00 2.496e+00 1.858e+00 1.433e+00 1.131e+00 

3 9.689e−01 1.348e+00 8.612e−01 5.863e−01 4.211e−01 3.158e−01 

4 4.846e−01 6.062e−01 3.633e−01 2.280e−01 1.495e−01 1.026e−01 

5 2.423e−01 2.939e−01 1.721e−01 1.041e−01 6.477e−02 4.142e−02 

2 

1 2.644e−01 2.918e−01 1.583e−01 8.954e−02 5.221e−02 3.123e−02 

2 6.656e−02 7.200e−02 3.880e−02 2.174e−02 1.252e−02 7.360e−03 

3 1.667e−02 1.796e−02 9.667e−03 5.411e−03 3.112e−03 1.826e−03 

4 4.170e−03 4.487e−03 2.415e−03 1.351e−03 7.771e−04 4.559e−04 

5 1.043e−03 1.122e−03 6.036e−04 3.378e−04 1.942e−04 1.139e−04 

3 

1 1.322e−01 1.530e−01 7.798e−02 4.201e−02 2.360e−02 1.371e−02 

2 1.654e−02 1.948e−02 9.906e−03 5.309e−03 2.957e−03 1.695e−03 

3 2.060e−03 2.454e−03 1.249e−03 6.699e−04 3.733e−04 2.141e−04 

4 2.568e−04 3.074e−04 1.566e−04 8.400e−05 4.682e−05 2.686e−05 

5 3.205e−05 3.846e−05 1.959e−05 1.051e−05 5.860e−06 3.361e−06 

4 

1 1.126e−02 1.386e−02 6.451e−03 3.209e−03 1.684e−03 9.221e−04 

2 7.143e−04 8.576e−04 3.989e−04 1.984e−04 1.040e−04 5.690e−05 

3 4.478e−05 5.337e−05 2.482e−05 1.234e−05 6.471e−06 3.539e−06 

4 2.800e−06 3.333e−06 1.550e−06 7.708e−07 4.041e−07 2.210e−07 

5 1.786e−07 2.111e−07 9.872e−08 4.938e−08 2.605e−08 1.433e−08 

 
At this point, we do no know exactly which value of the parameter α  to be 

chosen. There is no mathematical study to adjust it, let alone to find its optimal 
value. It is conceivable to choose the value of α  adaptively but we do not have 
that utility at the time being. As shown formerly, all values of α  in [ ]0,1  
provide an efficient a-posteriori error estimator. Thus, the purpose of the next 
study is to examine the comparison of the exact accuracy in term of the 1 - 
norm on the the one hand with the average of the estimators αη  on the other  

hand. In our case, the average is expressed as ( )avr 1 i

N
i Nαη η
=

= ∑  where we set  

5N =  while the values of α  are { }0,0.25,0.5,0.75,1 . We examine in Figure 
3(a) and Figure 3(b) the agreements of the exact precision ( )1hu u−  Ω

 and 
estimated precision avrη  when the FEM-level increases. In fact, we consider 
five levels for each test. Each curve corresponds to a fixed polynomial degree 

1,2,3,4p = . The problem parameters for the coefficients in the transmission 
PDE are [ ], , , 0.1,100,6.5,0.5ε ε µ µ  = 

int ext int ext  for the first test which is 
displayed in Figure 3(a). Those coefficients correspond to 1:1000  and 1:13   
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(a) 

 
(b) 

Figure 3. Comparison of the exact accuracy and the average avrη  in function of the FEM-levels: 

(a) [ ], , , 0.1,100, 6.5, 0.5ε ε µ µ  = 
int ext int ext ; (b) [ ], , , 10,1,5, 2ε ε µ µ  = 

int ext int ext . 

 
as ε-ratio and μ-ratio. As for the second test, we consider the problem 
coefficients [ ], , , 10,1,5,2ε ε µ µ  = 

int ext int ext  which yield the ε-ratio and the 
μ-ratio of 1:10  and 1: 2.5  respectively. An observation is that for both 
configurations, the curves for the exact accuracies and those for the estimated 
ones almost agree in shape and slope. That means that the exact accuracy is 
comparable to the estimated precision up to a constant factor. This highlights 
that using the average estimator avrη  makes sense to evaluate the desired 
precision. The constant factors are problem dependent in our case as they are 
affected by the problem parameters , , ,ε ε µ µ  

int ext int ext . As it can be observed 
in Figure 3(a), the estimated accuracies are in general somewhat smaller than 
the exact ones. In contrast, for the second test in Figure 3(b) where only the 
coefficients , , ,ε ε µ µ  

int ext int ext  differ from the first test, the estimated 
precisions are in general somewhat above the exact precisions. 

5. Conclusion 

We considered an interface problem where the internal and external PDEs admit 
different coefficients. The solution to the PDE is globally continuous but it may 
admit highly discontinuous derivatives across the interface separating the 
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internal and the external domains. We proposed an a-posteriori error estimator 
which has been theoretically demonstrated to be equivalent to the exact 
precision. The performance of the estimator has also been investigated 
practically. For every fixed polynomial degree, it provides satisfactory precisions 
which are comparable to the order of the exact accuracies on different 
FEM-levels. Several tests have been performed where one varies the problem 
configurations and the simulation parameters. 
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