
Applied Mathematics, 2017, 8, 1572-1589 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2017.811115  Nov. 17, 2017 1572 Applied Mathematics 
 

 
 
 

Assessing Relative Dispersion 

Thomas C. Redd1, Amal El Moghraby1, Tyler J. Tillman2 

1Department of Mathematics, North Carolina A & T State University, Greensboro, NC, USA 
2Department of Mathematics, Davidson County Community College, Winston-Salem, NC, USA 

 
 
 

Abstract 
We assess the four point method of relative dispersion proposed by Jones and 
Winkler to identify the hyperbolic trajectories of a system. We sample a dis-
crete analog to a quasi-geostrophic, single layered flow field and perform a 
comparison of the dispersion of neighboring points after iteration. We eva-
luate our method by performing a transformation to ( ),x y  space and com-

paring the trajectories corresponding to maximum dispersion with the ( ),x y  
values of trajectories of the Standard map, derived from traditional tech-
niques. We perform a similar evaluation using a 2D Ross by wave. We show 
that the method of relative dispersion is able to generate 2nd order accurate 
(on the scale of the discretization) hyperbolic trajectories. 
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1. Introduction 

Identifying the manifolds of finite time geophysical structures, which includes 
atmospheric and oceanographic circulations, is integral to understanding the 
mechanisms by which they evolve and move in both space and time. The 
geometry of the manifolds provide insight into intrinsic properties of the flows 
such as the transport and mixing within the system [1]-[7]. Due to the scale of 
some geophysical data (both oceanic and atmospheric) obtaining data can be 
extremely costly from a time, computational, and economic aspect. Traditionally, 
this information has been derived from sampled data taken from floats, weather 
balloons or even satellite imagery [8]. Unfortunately, the data sets available for 
effective investigations are often either too sparse in time or too large in space to 
be used to efficiently model and analyze with traditional numerical methods and 
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high resolution in space, time, or both, limiting the research investigations [9]. 
The expenses related to data acquisition and processing dictate that an effective 
method should be used for sensor deployment to ensure that the maximum 
amount of data is obtained from the investigation, while minimizing associated 
costs [10]. 

For chaotic and sub-chaotic systems, the existence of finite-time, invariant 
manifolds help to distinguish regions of uniform transport or chaotic motion 
from neighboring regions of transport [11]. The stable and unstable manifolds 
within a region act as barriers to transport and contain similar circulations. 
Depending upon the desired data, deploying sensors within, external to, or along 
the manifolds will be ideal for generating investigation appropriate data [10]. 
Data regarding manifold location is a major component to many studies, as they 
can help guide the investigation or assess the accuracy of the model itself [12]. 
For maps and computational velocity fields, the hyperbolic trajectories associated 
with given manifolds can be numerically and sometimes analytically derived 
from their Hamiltonian representation. In the case of observed data, a closed 
form representation of the system can only be assumed or approximated, leaving 
a great deal of room for errors. Other methods must be employed to efficiently 
locate trajectories of interest and boundaries to flow in more complex systems. 
The problem is not trivial and additional methods must be developed, applied, 
and assessed for use in locating features of various systems. 

Relative dispersion is a method that has been used to provide insight into the 
locations of key features within flows. We perform an assessment of how well 
relative dispersion locates trajectories of sample systems. As a first step to 
identifying the underlying mechanics of a system, the homoclinic and 
heteroclinic orbits of some well known 2D systems are used to evaluate relative 
dispersion. 

An early strain-based method for identifying stable and unstable manifolds in 
the context of two-dimensional, incompressible atmospheric flows involved 
initializing two particles in the vicinity of a hyperbolic point within a flow. By 
iterating forward in time, the distance between two particles straddling a 
manifold will grow as the particles followed their associated trajectories. The 
distance between the two initialized points after iteration, divided by the 
distance between them after iteration formed the basis for the assessment of 
finite strain [13]. An important aspect of the method is that it requires no a 
priori knowledge of the location of hyperbolic points within the flow, rather it is 
a tool that can be effective in locating the stagnation points. 

The two point method proposed by Bowman effectively detects the local 
extrema of strain, but is not sufficient to guarantee the existence of hyperbolic 
sets in the vicinity. The method is dependent upon the system running for an 
appropriate termination time, which may be unknown. For an appropriately 
chosen observational time interval however, the method is effective for identifying 
invariant manifolds at a given scale and provides a good approximation in test 
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cases [14]. 
A variation of the two point method was used to investigate transport and 

mixing in baroclinic vortices in atmospheric flows, particularly in the vicinity of 
developing eddies [15]. In this version, eight points were initialized at constant 
distance from a central grid point. All points were then iterated forward in time 
following their atmospheric model. The measure of the distance between each of 
the eight radial points and the center point at time, ft , was summed to form the 
measure. Experiments showed regions with large values for relative dispersion 
correlated to the areas on the boundaries between eddies that formed within the 
flow. Areas with low relative dispersion values were expected to correspond to 
regions within the forming eddies, however the experiments did not support that 
expectation. 

Both the two point and eight point methods have shortcomings relative to 
either reliability or computational implementation when applied to two dimen- 
sional systems. The two point method does not take into account stretching in 
directions orthogonal to the line segments formed by the points, while the eight 
point method includes duplicate information, unnecessarily increasing the 
number of required computations [16]. We assess the four point method [16] to 
balance accuracy with computational efficiency. While the method of relative 
dispersion has been used in many studies to approximate the locations of 
manifolds, the accuracy of the method has not been as widely explored. To 
better assess the method, we focus on a single parameter map with known 
stagnation points and velocity field and then expand its application to the time 
independent Rossby wave. 

2. Relative Dispersion in the Standard Map 

We use the four point method [16] of identifying the hyperbolic trajectories of a 
system based on the relative motion of particles that are initialized in close 
proximity to one another. To assess the effectiveness of the method and simulate 
regions of bounded chaotic motion in close proximity, we consider the Chirikov 
Standard Map. The Standard map is a classic example of nonlinear motion. It is 
an autonomous, two dimensional, area preserving map, with the degree of chaos 
dependent upon a single parameter, K. Often used in physics and mathematics 
as an initial model of gyre motion or motion within a vortex, it is a prime 
example of the conventionally known “kicked rotor”. The Standard map is a 
turbulent map that receives regular contributions to the motion of the next 
iteration from the previous iteration. It is well known for its distinct regions of 
chaotic motion, bound by invariant orbits, and existing at various scales [17] [18] 
[19]. The map is traditionally computed modulo 2π. In the case of 0K = , the 
map is equivalent to constant level-set rotation on a cylinder (invariant circles). 
For increasing values of K, the chaos inducing contribution is increased. The 
instance of 0.971635K =  is the traditionally accepted value for which the 
system becomes chaotic [20]. Increasing the parameter K will result in the 
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formation of chaotic seas surrounding coherent circulations. A phase portrait 
of the Standard map for 0.971635K = , and 13N =  iterations is provided 
(Figure 1). In the image, the existence of large, self contained circulations can be 
seen in both the upper and lower half of the phase space. Due to the coincidence 
of the lower and upper boundaries of the phase space, these halves form a single 
coherent structure. Between the two circulations, smaller structures mimicking 
eddy circulations can be seen, centered on the line πy = . The oscillating, chaos 
inducing contribution is weighted by the single parameter, K, in the for- 
mulation: 

( )1 1sinn n ny y K x+ += +                        (1) 

1n n nx x y+ = +                            (2) 

For the Standard map, relative dispersion is evaluated on the space of [ )0,2π  
in the x and y directions, using a mod of 2. The interval is discretized into a 
628 628×  grid and the resulting dispersion values for each gridpoint ( ),x y  
are stored in the 628 628×  matrix, ( ),R i j . A natural conversion from ( ),i j  
to ( ),x y  space is given by: 

12π
628r
ix −

=                             (3) 

1 2π
628r
jy −

=                            (4) 

To identify the hyperbolic trajectories, we use a filter to apply a threshold to 
our phase space and highlight regions that undergo large dispersion. For a given 
grid point, ( ),i j , and threshold value, τ , the filtered matrix of dispersion 
values is given by, 

( ) 1
0

ij
ij

ij

R
R

R
τ

φ
τ

≥=  <
                        (5) 

 

 
Figure 1. Phase portrait of the Standard map after 12 iterations 
for 0.971635K = . 
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The resulting binary, filtered matrix consists of ones in the ( ),i j  locations 
that correspond to relative dispersion values above a given threshold and zeroes 
elsewhere. The threshold is determined relative to the maximum possible 
dispersion value. Converting the resulting grid points from ( )ijRφ  intensity 
space to ( ),r rx y  space yields the path of maximum transport relative to 
neighboring points for the map. Based on distance arguments, relative 
dispersion on the [ )0,2  torus is bound. For the point located at ( ),x y , there 
are four neighboring points that are followed in iteration and used to calculate 
relative dispersion. The locations of the neighboring points are provided in 
Figure 2 and Figure 3. On the torus, separation distance in the horizontal 
direction is bound by the modulo value. Given initial particle locations  

( ) ( )1, 1, 1, 1,, , ,n n n n
i j i j i j i jx y x y− − + +  (Figure 2), each particle is advected with iteration to 

step, N. The resulting dispersion of the particles that were initialized in the 
horizontal direction relative to the center point is bound as follows: 

( ) ( )2 2

1, 1, 1, 1,
N N N N

h i j i j i j i jR x x y y+ − + −= − + −               (6) 

Similarly, for points ( ), 1 , 1,N N
i j i jx y− −  and ( ), 1 , 1,N N

i j i jx y+ + , the separation distance 
after advection is bound in the vertical direction by: 

( ) ( )2 2

, 1 , 1 , 1 , 1
N N N N

v i j i j i j i jR x x y y+ − + −= − + −              (7) 

For the Standard map: 

2π 2, 2π 2h vR R< <                     (8) 

h vR R R= +                            (9) 

In other versions of this method, the dispersion value is defined relative to the 
initial dispersion of the particles in the x and y directions. To apply the method 
to the Standard map, we use a uniformly spaced, square grid to generate the 
initial particle locations. Setting the initial dispersion in the horizontal and 
vertical directions to 210− , we can consider only the dispersion after iteration. 
Using Equations 8 and 9 the relative dispersion response can be bound by 

232π 17.771R < ≈                         (10) 

We compare the R value at each location, ( ),i j , with the upper bound of R 
values to generate our threshold as a percentage: 

( )max
RThresh

R
=                           (11) 

In applying the method of relative dispersion to the Standard map, we see that 
points that are initialized within one of the chaotic islands of the Standard map 
(below the line y Kx=  in the interval ( )0,3x∈ ) remain entrained within the 
circulation that travels between the upper and lower halves of the phase space. 
The particles that begin above the line y Kx=  are trapped outside of the 
chaotic islands and travel more as a packet, undergoing less dispersion relative 
to each other. 
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For initial positions near the hyperbolic trajectory as in Figure 3, the particles 
may follow different travel paths. Consider the particles on the horizontal axis, 
the particle on the left starts inside of the chaotic region, while the particle on 
the right is largely restricted to travel within the non-chaotic island. Similarly, in 
the vertical direction, the particle on the bottom will travel within the non- 
chaotic region while the corresponding particle at the top follows a path within 
the chaotic region. The result is a larger relative dispersion between points that 
begin in the vicinity of the central grid point (the lighter blue regions of Figure 
4). In instances where the quartet of points is initialized within the chaotic 
regions (or between the chaotic regions) dispersion is minimized, resulting in 
lower relative dispersion values (the darker blue regions of Figure 4). 

3. Relative Dispersion in a Rossby Wave 

A system representing an autonomous Rossby wave is used to further assess how 
well relative dispersion identifies hyperbolic trajectories. The use of the Rossby 
wave helps provide insight into the method’s impact and validity relative to 
dynamical systems. The general formulation of the Rossby wave under 
consideration: 

( ) ( )0 0
d sin sin
d
y a kx b t
t

ω= +                  (12) 

d
d
x y
t
=                            (13) 

The equation is often used to simulate gyre motion. The system as used can be 
considered a simple model for a double gyre flow (Figure 5). The Rossby wave is 
selected as an example of a physical, Hamiltonian system, providing some 
additional tools to aid in evaluation. Like the Standard map, the differential  
 

 
Figure 2. Relative locations of grid points used for calculating Relative 
Dispersion at ( ),x y . 
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Figure 3. Example of initial (squares) and final (triangles) positions of the 
four points used to find ijR . In the vicinity of the hyperbolic trajectory, 

some points may become trapped in a circulation while others are transported 
longer distances. 

 
equation uses a parameter, 0a , to control the non-linear “kick” for the system. 
The parameter, 0b  controls the time dependence [3]. The time independent 
case can be investigated by setting 0 0b = . The flow field and relative dispersion 
derived response for the time independent case are provided (Figure 6). We use 
the time independent case to assess the underlying mechanics and the ability of 
relative dispersion to identify the hyperbolic trajectories, as well as some elliptic 
orbits. A benefit of the selection of the representation is the existence of a closed 
form solution for the time-independent case: 

( )2 0
0

1 cos
2

ay kx c
k

ψ = − +                  (14) 

4. Comparisons 

We investigate the distribution of the relative dispersion values to determine 
optimal threshold values for isolating specific trajectories. The histograms in 
Figure 7, and Figure 8 depict the frequency distributions of dispersion values 
for the 395,641 grid points used. The majority of the points that are used 
generate a dispersion value, 2R < . Values of R in this range denote grid points 
whose neighbors do not travel large distances apart, and whose travel is more in 
the form of a packet. In focusing only on particles with larger dispersion values 
individual trajectories can be identified. An additional perk of the process allows 
for additional features to be extracted. Isolating mid-ranges of the R-values 
makes it possible to identify other orbits within the map. For the Standard map, 
the range of possible dispersion values is bound based on the periodicity of the  
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Figure 4. Relative dispersion derived portrait of the Standard map for 0.7K =  (sub- 
chaotic), 0.971 (chaos threshold), and 1.3 (chaotic). 
 

 
Figure 5. The intensity phase portrait and isoclines of the example Rossby 
wave for 0 1a = , 0 0b = , and 1k =  generated by the analytic solution to 
the system. 

 
map. There are also a large number of grid points whose relative dispersion 
value falls in the interval ( )2,7R∈ . While the number of grid points that result 
in an 7R >  decreases, the cumulative effect of relative dispersion for all values 
greater than 7R =  results in poor isolation of the trajectory. Other orbits are 
well defined at that value while values of 12R >  result in visually and  
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Figure 6. The flow field for a simple, time-independent Rossby wave and the relative 
dispersion response of the system. 
 
quantitatively closer approximations to the stable and unstable manifolds of the 
Standard map. The distribution of the 628 628×  grid of relative dispersion 
values is binned in Figure 7. Each spectrum of blue to dark red represents the 
628 columns of the relative dispersion intensity matrix. The horizontal axis uses 
the minimum and maximum dispersion values, ( )20, 32π  (10) to partition 
the range of dispersion values into ten intervals. The vertical axis shows how 
many grid points in each column returned a dispersion value in the given range. 
Each column is represented by the same color in each interval. We find that the 
majority of the particles that are initialized at a given grid point undergo 
dispersion of less than 2 units. We also find that a small subset of particles 
undergoes large scale dispersion, returning a dispersion assessment of 14R ≥ . 

To help evaluate how well the relative dispersion derived trajectories 
approximate the traditionally derived trajectories, Jacobian analyses are per- 
formed on each system. Using the results classifies and provides the orientations 
for the trajectories corresponding to the fixed point. 

In the Standard map, there are fixed points at ( )2π ,0n  and at ( )( )2 1 π,0n − . 
A Jacobian analysis classifies the points as hyperbolic fixed points and centers, 
respectively. 

0 1
cos 0

J
k x
 

=  
 

                      (15) 

( ) 1 20,0 : ,J k kλ λ→ = = −                 (16) 

( )( ) 1 22 1 π,0 : ,J n i k i kλ λ− → = = −              (17) 

In the Rossby wave, a Jacobian analysis of the fixed points for 0k >  on the 
interval ( )2π, 2πx∈ −  returns 2 real eigenvalues at ( )0,0  and 2 purely 
imaginary eigenvalues at ( )π,0± . The fixed points at ( )2π ,0n  are hyperbolic, 
while the fixed points corresponding to ( )( )2 1 π,0n −  result in centers. 

0

0 1
cos 0

J
a k x
 

=  
 

                      (18) 

( ) 1 0 2 00,0 : ,J a k a kλ λ→ = = −                 (19) 
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Figure 7. The top image displays the values returned by relative dispersion 
applied to the Standard map, uniformly parsed into 10 bins. The majority of 
grid points return a value less than 7 (40% of ( )max R ). The bottom image 

shows the 394,384 points grouped based on the dispersion value that is 
generated for their initial locations. 

 

( )( ) 1 0 2 02 1 π,0 : ,J n i a k i a kλ λ− → = = −              (20) 

With a cursory glance, one can anticipate lower dispersion values to be 
generated when the four points used are contained inside of either of the two 
constrained regions (Figure 5). Similarly, if all four points are located outside of 
the regions, the expectation is that they travel more as packet than not. When 
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some of the points are entrained within one of the regions centered at ( )π,0−  
or ( )π,0 , and the others are not, larger dispersion values are generated. 

Though a closed form solution exists for the system, the solution for all 
systems may not be easily found, if it is possible at all. In the case of observed 
data, the equations generating the motion are often unknown. The accuracy of 
the method must be investigated relative to data that is typically available. As in 
the case of the Standard map, the assessment is conducted by identifying a 
comparison hyperbolic trajectory, densely discretizing along it, and iterating in 
time. To generate the comparison trajectory, points are initialized along the 
hyperbolic trajectory for ( )0,0.1x∈ , requiring the sampling rate 0.1xδ �  and 
iterated forward in time. In the trial, 0.00001xδ = . After iteration, the distance 
between neighboring points along the trajectory is calculated, xδ ′ . The distance 
between any two successive points after iteration is required to be less than the 
grid discretization that is used in calculating the relative dispersion values 
( )0.01 . 

To compare the data, a rigid transformation from ( ),i j  space to ( ),x y  
space must again be applied to the data. Due to the difference in the domain size 
(as compared to the Standard map), a different scaling is required. The system is 
analyzed on the interval ( )2π, 2πx∈ −  and ( )π,πy∈ − . The conversion from 
( ),i j  to ( ),x y  space is 

1 14π 2π 2π π
x y

i jx y
N N
− −

= − = −                (21) 

where i and j are both integers and [ ]1, xi N∈  and 1, yj N ∈   . 

5. Results 

We performed a relative dispersion assessment for several values of K for the 
Standard map. Recall the parameter K controls the chaos in the map. Chaotic 
behavior in the map is traditionally associated with values of K above 0.971. We 
present the relative dispersion assessments for 0.971635K = . Each map was 
iterated for 16N =  steps to normalize the comparison. The trajectory of focus 
can be seen starting near ( )0,0 , peaking near ( )4.4,2  and oscillating as it 
approaches ( )2,0 . A full discussion of the features and dynamics of the 
Standard map can be found in numerous articles and books, and is omitted here. 
Examples of the intensity images returned from relative dispersion are pre- 
sented in Figure 9. For comparison, the same images are overlaid with the 
corresponding hyperbolic trajectories that are used for validation (in red). Per 
initial observations, relative dispersion seems to provide very good alignment 
with the manifolds. 

From our assessment of R distribution (Figure 7), we found that values of 
12R > , are the optimal focal points for efforts to delineate the key trajectories. 

We also found that values of 16R > , provided accurate but very sparse data for 
approximating the desired orbits. While values closer to ( )max R  would seem 
ideal, the accuracy relative to location that is gained from a higher threshold  
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Figure 8. The top image displays values returned by relative dispersion for a 
Rossby wave, uniformly parsed into 10 bins. The majority (95%) of grid 

points return a value less than 5 ( 18%�  of ( )max R ). The bottom image 

shows the total number of grid points returning a given dispersion value. 
The 31,752 points are grouped based on the dispersion value that is 
generated for their initial locations. 

 
value sacrifices density of data points used to delineate the trajectory. The loss of 
additional data points introduces room for interpolation errors. Therefore we 
have found that there is an inherent balancing act that must be performed by the 
investigator based on the desired outcome and intended use of the data. Values 
of ( )14,16R∈  were found to provide the best balance between accuracy of 
approximation and density of data. 

In an effort to generalize R thresholds for other maps and flows, the threshold 
has also been investigated as a percentage relative to the maximum dispersion value. 
We found values of ( ) ( )( )75% max ,90% maxR R R∈  provide a general form for 
the optimal R threshold values for delineating both the trajectories of the Standard 
map. These values are equivalent to an interval of ( )12.8147,15.377R∈ . 
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Figure 9. The Relative Dispersion generated intensity field for 
the Standard map. 

 

 
Figure 10. The Relative Dispersion generated intensity field, 
the locations that return a value above 80% of the maximum 
value, and the locations returning 80% of the maximum value 
superimposed on the orbits generated by a 4th order Runge- 
Kutta method. 

 
In Figure 9, the dark blue regions correspond to small dispersion values. 

Lighter blue and white correspond to larger dispersion values. The grid points 
that satisfy a given threshold value are highlighted in green. In each image, the 
corresponding trajectory (stable or unstable) is superimposed in red. In many of 
the images, the green is difficult to observe due to its (desired) coincidence with 
the superimposed, comparison trajectory, in red. 

A similar assessment is applied to the Rossby wave example. The Rossby 
example did not require as high a threshold as the Standard map (Figure 8). A 
threshold that isolates particles that have traveled in the top 50% of total  
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Figure 11. The Relative Dispersion generated intensity field, 
the locations that return a value above 15R = , and the 
locations returning a value above 15R =  superimposed on 
the hyperbolic trajectories generated by the map. 

 

 
Figure 12. The sum of registration error values from the 
approximation to the hyperbolic trajectories of a Standard 
map as a function of iteration. The locations of highest 
dispersion value are compared with the values derived from 
the map definition. 

 
distances eliminates many of the excess paths, while increasing to 80% refines 
the results. Increasing to 90% does not improve the results in the unstable 
directions, while losing some information in the stable directions (Figure 10). 

6. Discussion 

The relative dispersion response for the Standard map is presented for dispersion 
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Figure 13. The Relative Dispersion generated intensity field 
for the Rossby wave. 

 

 
Figure 14. The sum of registration errors for all points 
generated by the relative dispersion approximation to the 
hyperbolic trajectories of a Rossby wave, as a function of time. 
The locations of highest dispersion value are compared with 
the locations derived from a fourth order Runge-Kutta 
implementation. As the system evolves, the relative dispersion 
response converges to expected trajectories. 

 
values greater than 15 (the maximum possible is approximately 17.77) (Figure 
11). The relative dispersion approximation for the Standard map example is 
approximately second order accurate, after about 30 iterations of the map. In 
early steps of the iteration, the evolution of the system is in its infancy resulting 
in less dispersion of neighboring points, whether near the hyperbolic trajectory 
or not. The result is higher error in locating the desired orbit. As time progresses, 
there is an averaging out effect, as points near the trajectory undergo larger 
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relative dispersion than point quartets that are wholly located either inside or 
outside of the chaotic islands of the Standard map. The mean error is second 
order accurate. The dispersion error is calculated as the system evolves and the 
relative dispersion response is calculated, which contributes to the error 
convergence (Figure 12). The results may allow one to determine how long in 
time or iteration is necessary to allow a system to run to return sufficient 
representation of its behavior. 

When only the final time step is considered, and the per point error is plotted, 
additional information can be isolated. Initial locations near fixed points in the 
stable direction immediately undergo dispersion, and it grows with each time 
step. Values that begin near the unstable trajectory travel as a packet in the short 
term and undergo increasing amounts of dispersion as they near the next fixed 
point. 

In the Rossby wave example, the oscillations in the stable direction that occur 
in the Standard map are not present (Figure 13). Upon inspection, the relative 
dispersion generated approximation appears to be better. The mean error is 
improved, but more importantly is also on the scale of the discretization. The 
method for choosing the threshold used for delineation of the desired trajectory 
is updated. 

Instead of using a threshold involving an arbitrarily chosen dispersion value, 
the threshold is defined in terms of a percentage of the maximum dispersion 
value. All of the dispersion values are considered and only central locations that 
return 80% of the maximum dispersion value over the time period are used. The 
response from relative dispersion is similar to that of the Standard map, though 
with better delineation in the unstable directions. Using a filter of 80%, there is 
good consistency in the localization of the points. Superimposing the responses 
from the relative dispersion implementation, the Runge-Kutta derived trajectory, 
and the flow field generated by the equations results in good alignment upon 
inspection (Figure 10). The relative dispersion response shows better delinea- 
tion of the desired trajectories than in the Standard map example. 

To gauge the degree of accuracy of the approximation, an error calculation is 
performed. For each time step, the total registration error between the points 
generated by relative dispersion and Runge-Kutta is computed. The error 
decreases with time. There is very quick convergence of the relative dispersion 
response to the Runge-Kutta response, which can aid investigators in deter- 
mining the appropriate length of time to run the model (Figure 14). Depending 
on the needs of the project, the model may be able to be run for as few as 10 time 
steps rather than 45 depending on desired accuracy. 

In the future, an application to other time independent systems would provide 
further insight into the viability of the method for identifying stable and unstable 
trajectories and other orbits. While relative dispersion can and has been applied 
to time dependent systems, additional methods are needed for evaluating the 
results and may be informative. Modifying the parameters of the systems to 
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induce additional dynamics will give insight into the robustness of the method. 
In the larger scheme, expansion to three dimensional systems and an assessment 
of the method’s ability to accurately identify surfaces is a major goal. 
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