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Abstract

This paper proposes numerical methods for solving hybrid weakly singular
integro-differential equations of the second kind. The terms in these equa-
tions are in the following order: derivative term of a state, integro-differential
term of a state with a weakly singular kernel, a state, integral term of a state
with a smooth kernel, and force. The original class of weakly singular inte-
gro-differential equations of the first kind is derived from aeroelasticity ma-
thematical models. Among the proposed methods, the method for solving li-
near cases is fully based on previously reported approximation scheme for
equations of the first kind. For nonlinear cases, a revised method is proposed.
Examples are presented to demonstrate the effectiveness of the proposed me-
thods, and the results indicate that the proposed methods facilitate achieving
satisfactory and accurate approximations.
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1. Introduction

The original class of integro-differential equations is from an aeroelasticity pro-
blem, in which the mathematical model comprises eight integro-differential eq-
uations [1]. In this model, the most determinate equation is a scalar weakly sin-
gular integro-differential equation of the first kind. For the current study, a new
equation comprising additional derivative terms and integro-differential terms
with smooth kernel was used. Under an integrable assumption in previous stu-
dies, this new equation can be transformed into a Volterra integral equation of
the second kind [2] [3] [4] [5] [6]. The remainder of this paper is organized as
follows: Section 2 presents the equations. Section 3 presents the approach to the
numerical methods from [7] for the linear cases and the revised version for the

nonlinear cases. Section 4 presents the numerical results obtained by the me-
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thods in Section 4. Section 5 presents the summary.

2. Problem Description

Consider the class of hybrid weakly singular integro-differential equations

%x(t)+%Dxt=x(t)+th+f(t), (1)
the initial condition
x(s)=¢(s), —b<s<0, (2)
where b is a positive constant. The operators Dand L are defined as follows:
Dx = [,9(s)% (s)ds O
Lx, = [° c(s)x(s)ds, (4)
where
X (s)=x(t+s). (5)

The weighting kernel gis integrable, positive, nondecreasing, and weakly sin-
gular at s =0. Kernel cis smooth on s. The force f(t) is assumed to be local-
ly integrable for t>0. Although a more general kernel g is suitable, in this
study, emphasis was placed on the Abel type kernel and considers ¢ (S) = |S|7p
and se[-b,0] for 0<p<l. A special value of p=0.5 corresponds to the
original aeroelastic problem. The initial condition ¢#(s),-b<s<0 isin L,
space, which is a weighted L, space with weight g(-). The initial value prob-

lems (1) and (2) can be expressed as
X(t)+ Dx, = Dx, +¢(0)+ _[;(x(r) + fbc(s) X(z+s)ds+ f (r))dr, (6)
provided that the function
t—>Dxt=J'fbg(s)x(t+s)ds (7)

is absolutely continuous and the function g(-)¢(-) belongs to L,[-b,0]. The

corresponding weakly singular Volterra integral equation of the hybrid kind is
x(t)+ j;|s —t[ " x(s)ds
=p(0)+ [Js] " #(s)ds+ [, (x(2)+ [ c(s)x(r+s)ds + 1 (¢))]dr,
for 0<t<h.
The proposed algorithms use the separating variables method to directly solve

Equations (1) and (2). Without loss of generality, assuming b = 1, the equation is
expressed as
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%x(t)Jr%J:OJsrpx(t+s)ds:x(t)+ﬁc(s)x(t+s)ds+f(t), (8)

for 0<t<1, with initial data
x(s)=¢(s), s<0, (9)
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where f(t),t>0 is a locally integrable function. By the form of the state in
the hybrid integro-differential Equation (8), we obtain the following result:
x(t+s) ox(t+s)
s '

-1<s<0,t>0, (10)

and Equation (8) can be rewritten as

0

j |s| P —x(t+s)d x(t)+Lc(s)x(t+s)ds+f(t). (11)

3. Numerical Method

3.1. Linear Problems

The proposed method entails discretizing Equation (1). The space mesh points
(corresponding to the svariable) are discretized as

-l=7,<7,,<--<71,<7,=0, and a new variable & is defined as follows:

£(t,s)=x(t+s),-1<s<0,0<t. (12)

Equation (12) can then be reformulated as a first-order hyperbolic equation
%5(t,s)=§§(t,s), -1<5<0, (13)
with the condition
—g (t0)+[° |s| £(ts)ds=¢(t,0)+ [ c(s)&(ts)ds+ f (t). (19)
Next, assume that the solution to Equations (13) and (14) has the form
é(t,s)zgki (t)B,(s), (15)

where the basis, B;(s),i=0,---,n isgiven by

-z 1(8 z.|+l) : Se|:Ti+1'z.i:|
1 .
B (s)= — (TH—S) : Se[ri,rH],
i-1 il
0 . otherwise

where B, (S) i=0,---,n is a piecewise linear function. After substituting the
special form of & expressed in Equation (15) into Equations (13) and (14), the

governing equations for «; (t), j=0,---,n can be expressed as follows:

G5 0= (50K (). i=1n 16)

d n

T3 (0B(0)+ )" Tk (5B ()
=k (0B, (0)+ [ e(5) X (08 (s)ds+ T (1),

i=0

(17)

where &, =7,,—17,>0, for i=1---,n.By defining constants ¢, and d;, for
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i=0,---,n, and applying the property of B,(s), Equation (17) can be written
as

e ()3 (1) = (£) 4 3 s (6) + £ (1), (18)

dt i—0 i-0

Note that Equations (16) and (18) can form a system of first order ordinary
differential equations. For time ¢, the discretization contains TOTL.... T™, for
0=T°<T!'<...<T"=1. Define A*=T"'—T* for k=0,---,m-1. Assume
aik =Ki(Tk), for i=0,---,n, and k=0,---,m. With first term of Equation
(18) replaced by the first order finite difference, Equations (16) and (18) can

now be expressed as follows:

%(0{5“ —a§)+§n]ciaik*1 S Y dak  f (T, (19)
i=0 i=0

for k=0,---,m-1. Furthermore, assume a uniform mesh for both space and
time variables, the mesh points are 7,,i=0,---,n, and T k=0,---,m. Specifi-

i k
cally, 7; =—— and T¥=— for some positive integers N and m. The corres-
n m

ponding differences are defined as A =T _T% k=0,---,m-1 for the time

. 1
variable, and & =7,,—7,, i=1-+,n, for the space variable. Thus, A* i
1 . )
and J = for k=0,---,m-1 and i=1---,n. Setting M=n leads to the re-

1 .
lation Ak=é‘i=ﬁ for k=0,--,m-1 and i=1:--,n and Equations (19) and

(18) lead to the following system:

ot = aik—l’ (20)

and

B Z% | o (cy—dy 1)+ (¢, - d,)
Ok (21)

et al™(c, —d, ) = £(T),

for k=0,1---,n-1. After defining the corresponding constants ej,e, €,
Equation (21) can be simplified as follows:

k+1 k+1 k+1, k+1 k+1
ag ey + ol e ko e ek al e, = (T, (22)

for k=0,1,---,n—1. The connection of the solution x(t) and a's is as fol-
lows: Because &(t,s)=x(t+s),for -1<s<0 and t>0,and

g(t,s)zzn:,(i (t)Bi(s). x(t) can be obtained for 1>t >0 in the following
i=0
case:

X(T) =25 (T))B(0)=ky(T!) =, for j=Lon.  (23)

1=0

Equations above with the initial condition can be set up as [A][x]=[b], where

the vector [X] comprises the unknowns aé, j=1,---,n. The structure of ma-

K2
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trix [A] is
e O 0 0
e 6 O 0
en—l en—Z e0 nxn

3.2. Nonlinear Problems

The second proposed method contains part of the first method. By assuming
X(t+s)=£(t,s), then the property of Equation (13):

L é(ts)=2¢ (1)

for —1<s<0 still holds. The discretized Equation (1) follows the study [7]:
d n2t x(t+r2.)—x(t+r2-+2)
—x(t)+ N ! ™/ ds
dt (1) ; -L21+2| | 2As
n/2-1

=x(t)+ > J.,Z;C(S)X(t““fzju)dSJf f(t),

=0

(24)

for n iseven. AS=1 =7 for j=0,1,---,n—1 is constant for uniform mesh.

j?
By applying the property of 7;,i=0,1,---,n, Equation (24) can be written as

n) _1]

%g(t'O)Jrg(t'O)LAs(l— p)

_ : (-7, )H
=£(t, 2)[—2 As(1 p)] 05

+mn§:[(_% )1_p _(_sz )H}
([E(try)-£ [ty )]+zAs”gc(fm)g(t,TZM)+ (1),
Next, assume that
£(5)= 2 (1B () (26)
where the basis, B;(s),i=0,1,---,n are the same as above.

3.2.1.c(s)=1
Equation (25) becomes

960
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%Ko(t)mo(t)[ (r) " _1}

— (-, )1_p
S (t){ZAs(l— p)} 27)
1 &t 1-p 1-p
+2AS(1— p) Z [<_T2j) _(_T2j+2) :|

j=0

<[5 ()= (t)]+zAsng,<m (t)+ £ (1),

A 0
Setting t=T', and assuming %K‘O (Tl):%:o(.r), then

%o (T i ) 1 (_Tz )1—p
245 O (r ){ZAs(l— p)_l}
:&+¢(ﬂ){ ()" }

2As 2As(1-p)

i) Ll el ]

x[¢(rzj4)—¢(rzmﬂ+ 2Asnji;l¢(rzj )+ f (Tl).

(28)

Similarly, setting t=T?, then

x, (T3 )P

of )+/<0(T2) () +KO(T1)[_L—2AS}
2As 2As(1-p) 2As

_ (—1-2 )1—P 1 n/2-1 - .
_¢(0){2A5(1_ p)]+2AS(1_ p) JZ:; [(—sz) —(—sz+2) } (29)
n/2-1

x[8(7252)~8(72)) |+ 288 Y $(2y )+ 1(T7):

=

For 3<i<n/2-1 and t=T*7

Ko (T ” ) 2i-1 (_Tz )Lp 2i-2 1
e +eo (T )[m—l}L%(T )[—ﬂ—ms}m

T (Tl)ZAS(ZlL— p)[(_fz' S -2 e ()]
= ¢(Tl){2AS ELl— D :||:(_T2i2 )Lp _(_Tzi )HJJ (30)
sy o) ) T[6(e )l )
+2Asr_1/_i1¢(rz i)+ F(T2).
For t=T7%,

%%
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i = S LA a B

24s 24s(1-p) 2As
-1 1-p 1-p
- ¢(O)|:m:||:(_72i2) _(_Tzi) J o
ZAS(::I-_— p) njz_‘i‘ [( bj )1") _(_TZHZ )17pj||:¢(12j72i)_¢(T2j—2i+2 )J

n/2-1

+2As ) ¢(72j—2i+1)+ f (TZi )’

=
then, for t=T",

fo (Tn)+,<0 (T“)[ (cra)” —1]+;<0 (T“)[—i—zAs}r---

2As(1-p) 2As

+ K, (Tl);_p)[(—rn_4 )l_p -2(-t,, )1_') +(-7, )1_"}

2As(1

) ¢(T1){2As(_11— p)}[(_THZ ) =)

(32)

+ ZAS(::II:_ p) nii_;l[(_rzj )17p —(_rzﬁz )kp:||:¢(72j72i+1)_¢(72j72i+3):|+ 2AS¢(O)+ f (T ”*1),

and for t=T",

KO(TH)I: L, Ca)” —1]+KO(T1)[—2AS]

245 28s(1-p)

R

400 g [ "o ()

By collecting Equations (28), (29), (30), (31), (32), (33) and assuming
ag =K, (Tk), for k=0,1---,n, the system [A][x] = [b] is constructed, where

A U
2As(1-p) 2As
[A]: * * * 0 e ... 0
* *. *
L nxn

and that of vector [b] is
B 1 n/2-1
S

Mol vrons g ola)

2 (_TZ )1—p &
1] f (T )+¢(O)—2As(1— o) 44 2AS ,Z:;’ ¢(sz_1)

£(1")-4(0) ("”;is([_(;g”)

dnx1

K2
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3.2.2.c(s)=s

In this case, Equation (25) becomes

—x (_72)17p
B 2('[){ZAs(l— p ] (34)

(1) -(1°)

Setting t=T', and assuming %KO (Tl): AS then
() =)
2As (T ){ZAs(l— p)_1
_@ (-7 )H
© 2As +¢(T1)[2As(1— p) (35)
1 n/2-1 1-p 1-p
* 20s(1- p) ; [(_TZJ) _(_T21+2) }

n/2-1

X|:¢(sz71)_¢(rzj+1):|+2As Jz::‘) T2j+1¢(sz )+ f (Tl).

Similarly, setting t=T?, then
Ko (T 3) 2| ()" 1 1
e + (T )|:2As(1— p)—l}ﬂco(T )[—E—ZAS}
_ (_Tz)l_p 1 &t WP 1-p
_¢(O)[2As(l— p) +2As(1— p) ;[( ) () } (36)
n/2-1
X[¢(T2j,z)—¢(fzj)]+2A3 ]Z:; 721+1¢(721—1)+ f (TZ).

For 3<i<n/2-1 and t=T%"7,
KO(TZi)

N
wm
+
o
—_
_|
N
N
SN—
1
N
> |
m"\
—
|_\N
I (¥
—c o
SN—"
[
=
| I
+
2
—
_|
N
o
SN—
1
[
N
>
w
iy
| I
+

[
=¢(T1)|: = :||:(_Tzi2)1p _(—Z'Zi )lipj| (37)
+ m”ﬁl[(_fzj )1-9 _ (_sz+2 )Lp } [¢(Tz,>zi+1) - ¢(721‘—2i+3)]

j=i
n/2-1

+2As ) sz+1¢(sz_2i+z ) + f (T ZH).

j=i-1

For t=T%,

963
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K, T2+ N -z, 1-p v N
(ZAS )“‘O(T )[2(AS(1)— p)_1]+K°(T )[_ﬁ_ZASq}'"+K°(T Jlrzasra]
-1 1-p 1-p
40 e o0
n/2-1 1-p 1-p
+m JZ::, [(—sz) _(_sz+z) j||:¢(72j—2i)_¢(z-2j—2i+2):|

n/2-1

+2AS z sz+1¢(z-21>2i+1)+ f (TZi )’
j=i
then, for t=T"%,

Ky (Tn)+/c0 (Tnl)[ (—Tz)lfp )_1}_’—’(0 (Tnz)[_i_ZAsq]i_m

2As 28s(1-p
o) gy T2 )] )
- ¢(Tl>[ﬁf_p)}[(—fnz F () ]+ 2855, 0(0)  £(T7),
and for t=T",

Ky (T)[ L +¢—1]+K0 (T*)[-24s7,]

2As 2As(1-p)

S o i S

40 gy [ T ()

(1-p

By collecting Equations (35), (36), (37), (38), (39), (40) and assuming
ag =K, (Tk ), for k=0,1---,n, the system [A][X] = [b] is constructed, where

Cn)” gy o]
2As(1-p) 2As
[A]= * * xk Q. .. 0
* *‘ *

and that of vector [b] is

i L 1 n/2-1
f(T )+¢(0)2—AS+...+2AS§ 7108(72))
2 (_72 )li ’ N &
(o] f (T )+¢(O)—2As(l— o) +00+ 248 ,Z:;‘ 705u#(2251)

f (T”)—¢(0)(‘T“§is({_(;§“)

K2
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4. Numerical Examples

A desktop computer (Intel Pentium 4 microprocessor, 2.80 GHz CPU, and 224

MB RAM) was used for testing the examples.

Example 1. ¢(s)=1¢(s)=s, f(t)=35-2t x(t)=t.

method Max error n
direct 5.4769e -13 100
direct 2.7453¢ -10 1000
revised 6.1062e —15 100
revised 6.2506e —14 1000
Example 2. ¢(s)=1¢(s)=0, f(t)=1+2t" —t—t*, x(t)=t.
method Max error n
direct 4.0992e -13 100
direct 2.6994e-10 1000
revised 0.0014 100
revised 4.6559% -5 1000
Example 3. c(s)=1 ¢(s) =5 f(t)=-5/3+7t—2t*, x(t)=t".
method Max error n
direct 4.3806 100
direct 4.3801 1000
revised 0.0231 100
revised 0.0026 1000
Example 4. c(s)= s, f(t)=8/3-1/2, x(t)=t.
method Max error n
direct 6.4217e-12 100
direct 7.9168e —10 1000
revised 1.7551e-5 100
revised 1.7528e -7 1000
Example 5. ¢(s)=s,4(s)=0, f(t)=1+2t"° —t+t°/6, x(t)=t.
method Max error n
direct 6.2783e 12 100
direct 7.7382e-10 1000
revised 0.0025 100
revised 5.3542e -5 1000

K2
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Example 6. ¢(s)=s,¢(s)=s", f(t)=-13/12+16t/3-t*/2, x(t) =t*.

method Max error n
direct 11.7022 100
direct 11.5983 1000

revised 0.0270 100

revised 0.0047 1000

5. S ummary

In this study, we present numerical methods for solving a class of hybrid inte-

gro-differential equations; the equation of the first kind originates from an aero-

elasticity model. The direct method from previous study provides satisfactory

results essentially for the linear cases. For the nonlinear cases, a revised method

is proposed to obtain more accurate results.
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