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Abstract 
We use the Morawetz multiplier to show that there are no nontrivial solutions 
of certain decay order for a biharmonic equation with a p-Laplacian term and 
a system of coupled biharmonic equations with p-Laplacian terms in the en-
tire Euclidean space. 
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1. Introduction 

Recently, there has been an active research on the biharmonic equation with a 
p-Laplacian term  

( ) ( )22 , 0.pu u u u f uα β−∆ + ∇ ⋅ ∇ ∇ + ⋅ + =x           (1.1) 

as well as the evolutionary biharmonic equations with a p-Laplacian term 

( ) ( )22 ,pu t u u u u f uα β−∂ ∂ = ∆ + ∇ ⋅ ∇ ∇ + ⋅ + x           (1.2) 

and 

( ) ( )22 2 2 ,pu t u u u u f uα β−∂ ∂ = ∆ + ∇ ⋅ ∇ ∇ + ⋅ + x         (1.3) 

where , 2, 1n n p∈ ≥ >x R , α and β are real constants. 
Equation (1.1) is the stationary state of the Equation (1.2) while the traveling 

wave solution for (1.3) satisfies an equation of the form (1.1) as was shown in 
Strauss [1]. For the analysis and applications of (1.1), (1.2), and (1.3), see, for 
example, [2]-[42]. In this article, we shall use the Morawetz multiplier [43] [44] 
[45] to show that there are no nontrivial solutions of certain decay order for (1.1) 
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and a system of coupled biharmonic equations with p-Laplacian terms, 

( ) ( ) ( ) ( )22 2 2, 0,pu u u u f u a u b v uα β−  ∆ + ∇ ⋅ ∇ ∇ + ⋅ + + + = x x x  (1.4a) 

( ) ( ) ( ) ( )22 2 2, 0,pv u v v g v c u d v vσ µ−  ∆ + ∇ ⋅ ∇ ∇ + ⋅ + + + = x x x  (1.4b) 

where ( )u u= x , ( )v v= x , ( ) ( ) ( ), ,a b cx x x  and ( )d x  are real-valued func- 
tions, , 2n n∈ ≥x R , , , ,α β σ µ  are all real constants. 

As usual, ( )1 2, , , nx x x=x 
, ∇u denotes the gradient of u, u∇ ⋅  denotes the 

divergence of u, and r = x . Also the subscript denotes the partial derivative, 
thus su u s= ∂ ∂ . We also use the notation ( )ru u r r u= ∂ ∂ = ⋅∇x  and  

j jx∂ = ∂ ∂ . ( ),rF sx  denotes ( ) ( ) ( ), ,xF s r r F s∂ ∂ = ⋅∇x x x . ( )k nC R  is 
the space of functions whose partial derivatives of order up to and including k 
are continuously differentiable. 

Define eight sets of functions ( ) ( ) ( ) ( ) ( ),, , , ,n n n n n
m m h k m nA B D E FR R R R R ,  

( )n
nG R , ( )nNF R  and ( )nNG R  which we will use in this article: 

( ) ( ) ( )( )

( ) ( ) ( )

1| ,sup for some 0

and 0, and 2 0

mn n
m

r

A a a C x a

m ra n a

ρ
ρ−

≥


= ∈ < ∞ >



> − − ≤ 



x
R R x

x x
 

( ) ( ) ( )( )

( ) ( ) ( )

1| ,sup for some 0

and 0, and 2 3 0

mn n
m

r

B b b C b

m rb n b

ρ
ρ−

≥


= ∈ < ∞ >



> − − ≤ 



x
R R x x

x x
 

( ) ( ) ( )( )

( ) ( )

,

0

1 2 1 2

1 2 1 2

such tha

| , lim sup 0,

for all multi-indices and and

, , , , , , , , ,

a

t

w

n

he

,

re

d

n k n
h k R R

n

n n

n n

D u u C D u

h

k α α α β β β

α α α β β β

→∞ ≤

  = ∈ =  
  

∈ ≤

≤ = =


= + + + = + + + 



x
R R x x

N

 

 

α β

α β α

β α β

α β

 

( ) ( ) ( )( )1| ,sup for some 0 and 0 ,mn n
mE a a C x a m

ρ
ρ−

≥

 
= ∈ < ∞ > > 
 x

R R x  

( ) ( )( )| lim sup , 0 ,n n
n R R

F u R F u
→∞ =

   = =  
   x

R x x

( ) ( )( )| lim sup , 0 ,n n
n R R

G v R F v
→∞ =

   = =  
   x

R x x
 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )| , , 1 2 , d 0 ,
n

n
rNF u nF u rF u n f u u

   = + − − ≤    
∫

R

R x x x x x x x x
 

and 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )| , , 1 2 , d 0 ,
n

n
rNG v nG v rG v n g v v

   = + − − ≤    
∫

R

R x x x x x x x x
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where ( ),F ux  and ( ),G vx  are the antiderivative of ( ),f ux  with respect to 
u and ( ),g vx  with respect to v, respectively, such that ( ),0 0F =x  and  
( ),0 0G =x . 
Remark 1. A function u is said to be of decay order (h, k) if and only if  

( ),
n

h ku D∈ R . 
All the functions are assumed to be real-valued. 

2. A Biharmonic Equation with a P-Laplacian Term 

We consider the equation (1.1) in this section. Multiplying both sides of the eq-
uation (1.1) by the Morawetz multiplier ( ) ( )( )( )–1 2ru n u rζ + , where  

( )3 nCζ ∈ R  and ( ) ( ) ( )rζ ζ ζ= =x x , we get 

( ) ( ) ( ) ( )( )( )220 , 1 2

,

p
ru u u u f u u n u r

Y Z

α β ζ− = ∆ + ∇ ⋅ ∇ ∇ + ⋅ + + −  
= ∇ ⋅ +

x
(2.1) 

where Y depends on ζ and u as well as their partial derivatives up to and includ-
ing the third order and ( ),F ux , and 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ){
( ) ( )( ) ( ) ( )( ) }
( ) ( ) ( )( )( ){

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) }
( )( )( ) ( ) ( ) ( )( ) ( ) ( )

2 22 2 2

2 2

2 2 2 2

2 2

3 2

– 1 2

– 2 1 2 1

1 2 1

–1 2 1 1 2 3 2

– 1 , 1 2 , ,

r r

p
r r

p

r r r r r r

r

r r

Z u A u B u u Cu r P

r u u n r u u

p pr n p n u

u u u u r u u

n r r n r u

n r F u n r f u u F u

ζ ζ ζ

α ζ ζ

ζ ζ

β ζ ζ ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ

−

′ ′= ∆ + + ∇ − + + −

 ′+ ∇ + − 

 ′+ + − − ∇ 

− ∇ + ∇ ⋅∇ − + − ∇ −

 + − ∆ + − 

+ − + − −x x x
 

where 

( )( ) ( )( ) ( )27 2 1 3 2 ,A n n r rζ ζ ζ′′′ ′= − − − − −          (2.2) 

( ) ( )( ) ( )2 23 2 5 2 19 2 ,B n r n n r rζ ζ ζ ζ′′′ ′′ ′= − + − − + − −     (2.3) 

( )( ) ( ) ( ) ( ) ( )( ) ( )
( )( )( ) ( )

2 3

4

–1 2 2 3 3 7 2

– 3 3 5 2 ,

C n '''' r n r n n r

n n r r

ζ ζ ζ

ζ ζ

 ′′′ ′′= + − + − −
′− − − 

 (2.4) 

and 

( ) ( ) ( )( )22
2 0,ij j ijP r S u x r S u 

  
= − ≥∑ ∑ ∑            (2.5) 

where 

( ) ( ) ( )( )3 2– – .ij i k k j j k r j k k i i ku x r x x x u x r x x u  = ∂ ∂ + ∂ ∂ ∂  ∑ ∑S
 

Note that we use the Einstein summation notation in the expressions for P  
and ijuS . 

Theorem 1 
Let u be a 4c  solution of (1.1) such that u ϵ ( ) ( ) ( ),3

n n n
n nD F NFR R R  . 
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Assume 0β ≤ . 
(a) If ( ) ( )2 1p n n≥ +  and 0α ≤ , then 0u ≡ . 
(b) If ( ) ( )1 2 1p n n< ≤ +  and 0α ≥ , then 0u ≡ . 
Proof: 
Let 0R > . Integrating both sides of (2.1) in R≤x  and using the Diver-

gence theorem, we get 

( )d d 0.
R R

Y R Z
= ≤

⋅ + =∫ ∫
x x

x s x  

Let R →∞ . We get 

( )lim d d 0.
nR

R R

Y x R Z
→∞

=

⋅ + =∫ ∫
x

s x  

Thus 

( )

( )( ) ( ) ( ) ( ){
( )( ) ( ) ( ) ( )( ){

( ) ( )( ) ( ) ( )( ) }
( ) ( ) ( )( )( ){

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) }
( )( )( ) ( ) ( ) ( )( ) ( )

2 22 2 2

2 2

2 2 2 2

2 2

0 lim d

3 2

1 2

2 1 2 1

1 2 1

–1 2 1 1 2 3 2

– 1 , 1 2 ,

n

R
R

r r
R

p
r r

p

r r r r r r

r

r

Y R

u A u B u u Cu r P

r u u n r u u

p pr n p n u

u u u u r u u

n r r n r u

n r F u n r f u u

ζ ζ ζ

α ζ ζ

ζ ζ

β ζ ζ ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ

→∞
=

−

= ⋅

′ ′+ ∆ + + ∇ − + + −

 ′+ − ∇ + − 

 ′+ − + − − ∇ 

− ∇ + ∇ ⋅∇ − + − ∇ −

 + − ∆ + − 

+ − + − −

∫

∫

x

x s

x x ( )}, d ,rF ux x

(2.6) 

where A, B, C, P are defined as in (2.2)–(2.5). 
The above equation (2.6) can be written as 

( )

( )( ) ( ) ( ) ( ){
( )( ) ( ) ( ) ( )( ){

( ) ( )( ) ( ) ( )( ) }
( ) ( ) ( )( )( ){

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) }
( )( )( ) ( ) ( ) ( )( ) ( )

2 22 2 2

2 2

2 2 2 2

2 2

0 lim d

3 2

1 2

2 1 2 1

1 2 1

1 2 1 1 2 3 2

1 , 1 2

d

,

n

R
R

r r
R

p
r r

p

r r r r r r

r

r

Y R

u A u B u u Cu r P

r u u n r u u

p pr n p n u

u u u u r u u

n r r n r u

n r F u n r f u u

ζ ζ ζ

α ζ ζ

ζ ζ

β ζ ζ ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

→∞
=

−

= ⋅

′ ′+ ∆ + + ∇ − + + −

 ′+ − ∇ + − 

 ′+ − + − − ∇ 

− ∇ + ∇ ⋅∇ − + − ∇ −

 + − − ∆ + − 

= + − − −

∫

∫

x

x

x s

x x ( )}, d ,
n

rF uζ+∫
R

x x

 

Let ( ) ( ) ( )r rζ ζ ζ= = =x x . 
Since u is assumed to be of decay order ( ),3n  and ( )n

nu F∈ R , 
( )lim d 0

R
R

Y R
→∞

=

⋅ =∫
x

x s , after substituting ζ by r. 

Thus 
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( )( ) ( ) ( )( ) ( ) ( )( ) ( ){ }
( ) ( )( ) ( ) ( )

223 2 1 1 2 1 2 1 2 d

, 1 2 , , d .

n

n

p

r

u p p n p n u u

nF u n f u u rF u

α β ∆ + − + − − ∇ − ∇ 

 = − − + 

∫

∫
R

R

x

x x x x
(2.7) 

To prove the assertion (a), since β ≤ 0, we have 

( )( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )

23 2 1 1 2 1 2 1 d

, 1 2 , , d

n

n

p

r

u p p n p n u

nF u n f u u rF u

α  ∆ + − + − − ∇ 

 ≤ − − + 

∫

∫
R

R

x

x x x x
 

Thus  

( )( ) ( )( ) ( ){ }
( ) ( )( ) ( ) ( )

23 2 2 1 2 d

, 1 2 , , d

n

n

p

r

u n n p p u

nF u n f u u rF u

α  ∆ + − + ∇ 

 ≤ − − + 

∫

∫
R

R

x

x x x x
 

Since ( ) ( )0, 2 1p n nα ≤ ≥ + , and ( )nu NF∈ R , we have 

( )( ) ( ) ( )( ) ( ) ( )20 3 2 d , 1 2 , , d 0,
n n

ru nF u n f u u rF u ≤ ∆ ≤ − − + ≤ ∫ ∫
R R

x x x x x  

Thus ( )( )23 2 d 0
n

u∆ =∫
R

x . Since ( ),3 , 0n nu D R u∈ ≡  
Assertion (b) follows with a similar argument from (2.7). 
Remark 2. As an example for ( ),f ux , let ( ) ( ) 1, , 1sf u q u u s−= ≥x x . Then 
( ) ( )( ) ( ) 1, 1 1 ,sF u s q x u += +x  where ( ) ( ) ( )q q q r= =x x . 

Assume ( )n
mq E∈ R . 

For u to be in ( )n
nF R , we need 

( )( )lim sup , 0,n

R R
R F u

→∞ =

 
= 

 x
x x  

that is, 

( ) ( )( )1
lim sup 0,

sn

R R
R q u

+

→∞ =

 
= 

 x
x x  

This would be satisfied if 

( )( )1
lim sup 0.

smn

R R
R u

+

→∞ =

 
= 

 x
x x                 (2.8) 

The above condition (2.8) would be satisfied if u is of decay order ( ),0n m+ . 
As for u to be in ( )nNF R , since 

( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( )( ) 1

, , 1 2 ,

1 1 1 2 ,

r

s
r

nF u rF u n f u u

n s q r s q n q u +

+ − −

 = + + + − − 

x x x
 

u would be in ( )nNF R  if ( )( ) ( )( ) ( )( )1 1 1 2 0.rn s q r s q n q+ + + − − ≤  
Thus, if ( )( )1 2rrq ns n s q≤ − − − , then u is in ( )nNF R . 
Therefore, if u is of decay order ( ),1n m+  and ( )( )1 2rrq ns n s q≤ − − − , u 

satisfies the assumptions of Theorem 1 on u. 
Remark 3. A similar conclusion can be obtained for  
( ) ( ) ( )1 1

1 2, ,a bf u q u u q u u− −= +x x x  where 1a b> ≥ . 
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3. A System of Biharmonic Equations with p-Laplacian 
Terms 

We consider the system (1.4.a) and (1.4.b) in this section. Let ( ),F ux  and 
( ),G vx  be the antiderivatives of ( ),f ux  with respect to u and ( ),g vx  with 

respect to v, respectively, such that ( ),0 0F =x  and ( ),0 0G =x . 
Assume also ( ) ( )b c=x x . Multiplying both sides of (1.4.a) by 

( ) ( )( )( )1 2ru n u rζ + −  and both sides of (1.4.b) by ( ) ( )( )( )1 2rv n v rζ + − , 
then adding them up, we get 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )( )

22 2 2

22 2 2

0 , 1 2

, 1 2

· ,

p
r

p
r

u u u u f u a u b v u u n u r

v v v v g v c u d v v v n v r

Y Z

α β ζ

σ µ ζ

−

−

 = ∆ + ∇ ⋅ ∇ ∇ + ⋅ + + + + − 

 + ∆ + ∇ ⋅ ∇ ∇ + ⋅ + + + + − 

= ∇ +

x x x

x x x  

where Y depends on ζ, u, and v as well as their partial derivatives up to and in-
cluding the third order, ( ),F ux , ( ),G vx , , , ,α β σ µ , ( )a x , ( )b x , ( )c x , 
and ( )d x . Here we assume ( ) ( )b c=x x . Z is similar to Section 2 with appro-
priate modification to allow terms containing , ,v σ µ , ( )a x , ( )b x , ( )c x , and 
( )d x . 
Theorem 2 
Let u and v be 4C  solutions of the system (1.4.a) and (1.4.b) with 
( ) ( )b c=x x . Assume ( ),2

n
ka A∈ R , ( ),2

n
mb B∈ R  and ( ),2

n
hd A∈ R . Let  

{ }max , , ,s k m h n= . Assume 0β ≤  and 0µ ≤ . 
Assume further that ( ) ( ) ( ),3

n n n
s nu D F NF∈ R R R   and  

( ) ( ) ( ),3
n n n

s nv D G NG∈ R R R  . 
(a) If ( ) ( )2 1 , 0p n n α≥ + ≤  and 0σ ≤ , then 0u ≡  and 0v ≡ . 
(b) If ( ) ( )1 2 1 , 0p n n α< ≤ + ≥ , and 0σ ≥ , then 0u ≡  and 0v ≡ . 
Proof: 

Let ( ) ( ) ( )r rζ ζ ζ= = =x x . Following the same steps as in Theorem 1, we get 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( ){
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) }

2 2

4

4

2 2

0 3 2 d

, 1 2 , ,

, 1 2 , ,

1 4 2

1 4 2

1 2 3 2 d

0,

n

n
r

r

r

r

r

u v

nF u n f u u rF u

nG v n g v v rG v

ra n a u

rd n d v

rb n b u v

≤ ∆ + ∆

 ≤ − − + 

 + − − + 

+ − −  

+ − −  

 + − − 

≤

∫

∫
R

R

x

x x x

x x x

x x

x x

x x x

 

since ( ) ( ) ( ) ( ) ( ) ( ),3, , ,n n n n n n
k m h s na A b B d A u D F NF∈ ∈ ∈ ∈R R R R R R    

and ( ) ( ) ( ),3
n n n

s nv D G NG∈ R R R  . 
Thus  

( ) ( ) ( )( )2 23 2 d 0.
n

u v∆ + ∆ =∫
R

x  
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Since u  and ( ),3
n

sv D∈ R , 0u ≡  and 0v ≡ . 
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