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1. Introduction

Fractional calculus is a very effective tool in the modeling of many phenomena
like control of dynamical systems, porous media, electro chemistry, viscoelastic-
ity, electromagnetic and so on. The fractional theory and its applications are
mentioned by many papers and monographs, we refer [1]-[9]. For nonlinear
fractional boundary value problem, many fixed point theorems were applied to
investigate the existence of solutions as in references [10] [11] [12] [13]. On the
other hand, there is another effective approach, Mawhin’s coincidence theory,

which proves to be very useful for determining the existence of solutions for
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fractional order differential equations. In recent years, boundary value problems
for fractional differential equations at resonance have been studied in many pa-
pers (see [14]-[21]). The main motivation for investigating the fractional boun-
dary value problem arises from fractional advection-dispersion equation.

Hu et al [22] investigated the two-point boundary value problem for fraction-

al differential equations of the following form
Dex(t)= f(t.x(t),x'(t)), te[04],
x(0)=0,x'(0)=x'(1),

where D7 is the Caputo fractional differential operator, 1<« <2,and
f :[O,l]x R? 5 R is continuous.
In [23], Hu et al. extended the above boundary value problem to the existence
of solutions for the following coupled system of fractional differential equations

of the form
Dzu(t) = f(tv(t).v'(t)), te(01),
DZv(t)=g(tu(t).u'(t)), te(0,2),
u(0)=v(0)=0, u'(0)=u’(1), v'(0)=V'(1).

where Dgi , Do’i are the Caputo fractional derivatives, 1< a <2,
1<p<2,and f,g:[0,1]xR?* >R iscontinuous.

It seems that there has been no work done on the boundary value problem of
system involving three nonlinear fractional differential equations. Motivated by
the above observation, we investigate the following three-dimensional fractional

differential system of the form

Dzu(t) = f,(tv(t).v'(t)), te(0
DAv(t)=f,(t,w(t),w(t)), te(0,1), (1)
fa (tu(

)
Drw(t)= fy(tu(t),u'(t)), te(0.1),

together with the Neumann boundary conditions,
u’'(0)=u'(1)=0, v'(0)=v'(1)=0, w'(0)=w'(1)=0,

where Dg’+ , D£ , D; are the standard Caputo fractional derivatives, 1< «, 3,y
<2,and f,f,,f, :[O,l]x RxR — R is continuous.

The main goal of this paper is to establish some new criteria for the existence
of solutions of (1). The method is based on Mawhin’s coincidence degree theory.

The results in this paper are generalized of the existing ones.

2. Preliminaries

In this section, we give the definitions of fractional derivatives and integrals and
some notations which are useful throughout this paper. There are several kinds
of definitions of fractional derivatives and integrals. In this paper, we use the
Riemann-Liouville left sided definition on the half-axis R, and the Caputo frac-
tional derivative.

Let X and Y be real Banach spaces and let L:domLc X —Y be a Fred-
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holm operator with index zero if dimKerL =codimImL <o and ImZ is closed
in Yand there exist continuous projectors P:X — X,Q:Y —Y such that
ImP=KerL, KerQ=ImL, X =KerL®KerP, Y=ImL®ImQ.

It follows that

L|dom LAKer P :domLnKerP - ImL

is invertible. Here K, denotes the inverse of L| dom LKar P *

If QO isanopenbounded subset of X, and domLNQ # ¢, then the map
N:X —Y will be called L-compact on Q,if QN (ﬁ) is bounded and
Kp (1 —Q) N:Q — X is compact, where 7is the identity operator.

Lemma 1. [14] Let L:domLc X Y be a Fredholm operator with index
zero and N:X —Y be L-compact on Q. Assume that the following condi-
tions are satisfied.

1. Lx= ANx for every (X,/l) e [(dom L\ Ker L)m@Q} ><(O,1) ;

2. NxgImL forevery XxeKerLnoQ;

3. deg (QN |Ke”_ ,Ker L mQ,O) #0, where Q:Y —Y isa projection such that
ImL=KerQ.

Then the operator equation Lx = Nx has at least one solution in
domLNQ.

Definition 1. [6] The Riemann-Liouville fractional integral of order a >0
ofa function y:R_— R on the half-axis R, 1isgiven by

(Ig+ y)(t) ::ﬁf;(t—v)“l y(v)dv for t>0

provided the right hand side is pointwise defined on R,.
Definition 2. [6] Assume that Xx(t) is (n—1) -times absolutely continuous
function, the Caputo fractional derivative of order o >0 ofx is given by

e\ e re IXO) 1 et
(Dwx)(t).z I o F(n—a)Io(t_V) x"(v)dv for t>0
where n is the smallest integer greater than or equal to «, provided that the

right side integral is pointwise defined on (0,+x).
Lemma 2. [6] Let a >0 and n=-[-a].If x"Y e AC [0.1], then

19D X (t) = X(t) +Co + it +C,t° +--- ¢, t"

0]

X (0

where ¢, = —# eR, 1=0,12,---,n-1, here nis the smallest integer greater
il

than orequalto « .

In this paper, let us take X =C'[0,1] with the norm "X"x = max {”X"w ,||X'||w}
and Y = C[O,l] with the norm ||y||Y = ||y _» where ||X||w = maxte[0‘1]|x(t)| . Then
we denote X = X x X x X with the norm "(U,V,W)")z = max{||u||x ’"V"x ’"W"x}
and Y =Y xY xY with the norm ||(x, Y, Z)"v’ = max {"x"Y ,||y||Y '"Z”v}' Clearly,
both X and Y are Banach spaces.

Define the operators L, :domL < X -V, (i=12,3) by
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Lu=DZu, Lv=D/v and L,w=Dw,

where

dom L, ={ue X|Dfu(t)eY,u'(0)=u'(1)=0},

domL, Z{VE X]| Do’iv(t)eY,v’(O):v’(l):O},
and

dom L, ={We X| D7 w(t) eY,W’(O)zW’(l)zO}.

Define the operator L:domLc X —Y by
L(u,v,w)=(Lu, Ly, Lw), (2)

where domL = {(U,V,W) € )Z|u edomL,,vedomL,,wedom LS}
Let the Nemytski operator N:X —Y be defined as

N (u,v,w) =(N,v,N,w,N,u),
where N,:X —Y is defined by
N (t) = f (v (t),v'(1)),
N,:X —Y isdefined by
N,w(t) = f, (t,w(t), w'(t)),
and N,:X —Y isdefined by
Ngu(t) = fy (tu(t),u’(t)).
Then Neumann boundary value problem (1) is equivalent to the operator eq-

uation

L(u,v,w)=N(u,v,w), (u,v,w)edom L.

3. Main Results

In this section, we begin with the following theorem on existence of solutions for
Neumann boundary value problem (1).
Theorem 1. Let f, f,, f, :[O,l]x RxR — R be continuous. Assume that
(H1) there exist nonnegative functions a;,b,,¢; €C[0,1], (i=1,2,3) with

I'(a)T(B)T(7)-(B,+C,)(B,+C,)(B,+C;) 0
L(a)T(B)T(7)
such that for all (u,v)e R?, te[O,l],

|fi(tuv)|<a (t)+b (t)|u|+c (t)v] for =123,

where A =|a], .8 =[b],.C =|c],. (i=123);
(H2) there exists a constant M >0 such that forall te [0,1], |u| >M, veR
either

uf, (t,u,v)>0, uf,(t,u,v)>0, uf(t,u,v)>0

or
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uf, (t,u,v) <0, uf,(t,u,v)<0, ufy(t,u,v)<O0;

(H3) there exists a constant M~ >0 such that for every m,m,,m,eR sa-
tisfying min{m,, m,,m,;} >M" either
m,N; (m,) >0, m,N,(m;)>0, m;N;(m,)>0
or
mN, (m,)<0, m,N,(m,)<0, mN;(m,)<O0.

Then Neumann boundary value problem (1) has at least one solution.
Lemma 3. Let L be defined by (2). Then

Ker L =(Ker L, Ker L,,Ker L)

:{(u,v,w)e )?|(u,v,w):(u(O),v(O),W(O))}, ®

and

ImL=(ImL,ImL,,ImL;)
={(x, y,z)e\7|_|'01(1—s)“2 x(s)ds (4)
= J‘:(l— s)"?y(s)ds = J'Ol(l—s)y_2 z(s)ds = 0}.
Proof. By Lemma 2, Lu=Du (t)=0 has the solution
u(t)=u(0)+u’(0)t.
From the boundary conditions, we have
Ker L, = {ue X|u=u(0)}.

For xelml,, there exists uedoml, such that x=LueY . By using the
Lemma 2, we get

u(t)=——[ (t-s)" " x(s)ds+u(0)+u'(O)t

Then, we have
1

u'(t)= mﬁ(t —5)“ 7 x(s)ds+u'(0).
By the boundary value conditions of (1), we can get that x satisfies
1 a-2
[[(1=5)""x(s)ds =0.

On the other hand, suppose x €Y and satisfies J-Ol(l—s)m2 X(s)ds=0. Let
u(t)= I(‘;X(t), then uedoml, and Dc‘)ﬂu(t) =X(t). Hence, xeImL,. Then

we get
ImL, = {x eY|.[:(1—s)°"2 x(s)ds = O}.
Similarly, we have
KerL, ={ve X|v=v(0)}, ImL, = {y eY|.|':(1—s)ﬂ’2 y(s)ds = 0},

and
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KerL, ={we X|w=w(0)}, ImL, :{z eY”J(l—s)y_2 z(s)ds=0}.

a
Lemma 4. Let L be defined by (2). Then L is a Fredholm operator of index
zero, P:X — X and Q:Y =Y are the linear continuous projector opera-

tors can be defined as
P(u,v,w) = (Pu, Py, Pw) = (u(0),v(0), w(0)),
(Qx, sz Q;2 )
( -s)" 2 X(s)ds,
(5- )j (1 )" 7 y(s)ds, (7 -1) [ (L-5) " 2(s)ds).
Further more, the operator K, :ImL — dom LnKer P can be written by
Ko (% y,2) = (15x(1), 12y (1), 17 2(t))-

Proof. Clearly, ImP =KerL and P?(u,v,w)=P(u,v,w).It follows that
(u,v,w) =((u,v,w)=P(u,v,w))+P(u,v,w) , we have X =KerP+KerlL . By
using simple calculation, we get that Ker LnKer P = {(0, 0, 0)} . Then we have

X =Ker P@®Ker L,

Qxy.2)=

For (X,Y,2) €Y , we have
Q°(x,¥,2)=Q(Qx. QY. Q2) =(Q7x,Q}y,Q}z)
By the definition of Q,, we get

Q' x=Qx-(a- )J'(l s)" 7 x(s)ds = Qx.

Similarly, we can show that Q7 y =Q,y and Q?z=Q,z. Thus, we can get
Q*(x,y,2)=Q(x,y,2).
Let
(x¥:2)=((%¥,2)-Q(%¥,2))+Q(x.y,2),

where (X,¥,2)-Q(x,y,z)eKerQ, Q(x,y,z)eImQ.Itfollows that
KerQ=ImL and Q°(x,y,z)=Q(xy,z), we get ImQNImL={(0,0,0)}. It
is clear that

Y=ImL®ImQ.

Thus
dimKer L =dimImQ = codimImL.

Hence L is a Fredholm operator of index zero.
From the definitions of P and K, , we will prove that K is the inverse of

L|dom L kerp - Infact, for (x,y,z) e ImL, we have

LK, (x,y:2) =(Dg (1%),D7 (12Y), D7 (12.2)) = (x ¥, 2)- (5)

Moreover, for (u,v,w)edomLnKerP, we have u(0)=v(0)=w(0)=0

and
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KoL (u,v,w)

(15 (Du(0). 17 (Bv(0)) 17 (D w(v)
=(u(t)-u(0)-u'(0)t,v(t)—v(0)—V'(0)t,w(t) —-w(0)—w'(0)t),

which together with the boundary condition u’(0)=Vv'(0)=w'(0)=0 yields
that

KpL(u,v,w)=(u,v,w). (6)

From (5) and (6), we get K, = (L], ...) - 0
Lemma 5. Assume Q c X isan open bounded subset such that
domLNQ # ¢, then N is L-compact on Q.
Proof. By the continuity of £, £ and £, we can get QN (ﬁ) and
Ke (1-Q)N (f_l) are bounded. By the Arzela-Ascoli theorem, we will prove
that K, (I-Q)N (()) c X is equicontinuous.
From the continuity of £, £ and £, there exist constants M, >0, (i =1, 2,3)
such that for all (u,v,w)e Q.

(1=Q)NV| <My, |(1-Q,)N,W| <M, |(1-Qy)Nu| < M,
Furthermore, for 0<t1 <t2£1(u vw)eﬁ we have

(Ko (1=Q)N (u(t,).v( ) (Ko (1=Q)N (u(t).v(t).w(t)))
=Ko (1-Q)(Nv(t,). N ()= Ke (1 ( V(1) Now(t,), Nou (t))
(1 (1=QNY(t,). 1] ( QZ)NW(tz) 17 (1-Q;)Nau (t,))
=1 (1= Q)N ()12 (1= Q) Now(t ), 17, (1= Qo) Nu (1))
(1 =Q)Nwv(t) =15 (1 -Q) Nov(t,),
(1= Q) Naw(ty) = 17 (1= Q) Nw(t,),
(1-Q)Ngu(t,) - 17, (1-Q;)Nau(t,)|.

2

12 (1= QN (1)~ 1% (1 - Q)N (1)
2t =5)"" (1 -Q)Nw(s)ds— (6 =) (1-Q)) Nyv(s)ct|

Srh€;)[j;1((tz—s)“l—(tl—s)“1)ds+.[;2(t2—s)”1ds:|: M ()

(12 (1-Q)Nw) (&) ~(12 (1 —g)w)’(q)‘

a-1|, w2 y »
g s (@) N (s)ds— [} (1 =) (1-Q) N (s)s
) r(l\a/ll_l) U;l((tz -s) = (t,-s)"” )dS +I;2 (t,—s)"" ds}
_ M1 a1l _ta-l
_F(a)(tz t )

0.:., Scientific Research Publishing 199
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Similarly, we can show that

12 (1@ Naw(t) 12 (1 -0, Nt ) < (¢ )

! !

(12 (1=Q)Now) (8) = (14 (1 -Q))Now) (1)

<

1 -0 N(t)-1; (1-Q) (| 2

M3
F(;/+1)

Since t, t“*, t/, !, t” and t"" are uniformly continuous on [0, 1], we
have K, (1-Q)N ((_2) < X is equicontinuous. Thus K (1-Q)N QX s
compact. g

Lemma 6. Assume that (H,), (H,) hold, then the set
Q= {(u,v,w) e domL \KerL| L (u,v,w)= AN (u,v,w), A e (0,1)}

(-,

(1 0-ema] €)= (1; (- e

is bounded.
Proof. Let (u,v,w)eQ,,then N(u,v,w)elmL.By (4), we get

j:(l— s)* 7 f,(s,v(s),v'(s))ds =0,
[(1=5)" £, (s, w(s),w(s))ds =0
and
J':(l— sy " f, (s,u(s),u’(s))ds =0.
Then, by integral mean value theorem, there exist constants &,7,¢ €(0,1)

such that f; (cf,v(cf),v’(cf)) =0, f, (U,W((n),w’(n))) =0 and
f,(£.u(£).u'(¢))=0. Then we get

V() fi(&v(€)v'(£))=0.w(n) T, (. w(n). W (1)) =0
and u(¢)fy(<,u(g).u'(¢))=0.

From (H,), we get |V(§)|§M, |W(77)|SM and |u(é’)|SM. Hence we
have

()] =u(¢)+ [ (s)os| <M + ], @
We obtain
Jul, <M+, ®
Similarly, we can show that
I, <M +|v], ©
and
[wl, <M +|w], (10)

By L(u,v,w)=AN(u,v,w),we get

K2
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I'(a)
)= 5 k(S (s W) asv0)
and
A gt y
w(t):mjo(t—s) fy(s.u(s).u’(s))ds+w(0)
Then
Jo(t=3)" fi(s.v(s).v'(s))
OR sy = GURRACORID)
and
A y-2
W)= H ) (e (5)os
So,
, 1 t a-2 ,
. = g it sv(e) v o)

! \ “? "(s)| |ds
—mfo(t—s) [a(s)+ b () ()] +au(s)v (s)]]d .
_ﬁ[A+BM+(B +CV, I (t=5)"ds

1 '
sr(a)[Ai+BlM +(B+Cy)v], |

Similarly, we have
U ERLURTCRCN VN )
and
lw ||w_r(y)[A3+BM+(B +Cy)u, |- (13)
Combining (13) with (12), we get
" ||rx><1—~ (BT (y)[(Az+BzM)r(7)+(Bz+Cz)(A3+BsM) (14)

+(B,+C,)(B, +C3)||u'||w}

Combining (14) with (11), we get
, 1
Ju]. SWW& +BM)T(B)T(7)+(B,+C,)(A, +B,M)T(7)
+(B,+C,)(B,+C,)(A +B;M)+(B,+C,)(B, +C, ) (B, +C3)||u’||w}.
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I(a)0(B)T(7)-(B,+C,)(B, +C,)(B; +C;)

Thus, from F(a)F(ﬂ)F(;/) >0 and (14), we
get
1
( )(AZ+BZM)F(;/)+(Bl+C1)(BZ+C2)(A3+B3M)]
=K,
v ”w— r(p 1"(7 |:(A2+B M)T(7)+(B,+C,)(A +B;M)

(BZ+CZ)(B3+C3)K1].: K,
and

, 1
"W ”OO Sm[% +B;M +(B3 +C3)K1] =K.

From (8), (9) and (10), we have
(u,v.w)], < max{K; +M,K, +M,K,+M} =K.

Hence €, isbounded. O
Lemma 7. Assume that (H,) holds, then the set

Q,= {(u,v,w)|(u,v,w) eKerL,N(u,v,w)eIm L}

is bounded.
Proof. For (u,v,w)eQ,, we have (uv,w)=(m;,m, m;), m,m, m eR.
Then from N(u,v,w)eImL,

[;(1-5)"" f,(s,m,,0)ds =0,
f:(l—s)ﬂ_z f,(s,m,;,0)ds =0
and
[[(1-5)"" £,(s.m,,0)ds =0,
From (H,) implythat |m|, [m,|, |m,[<M". Thus, we get
||(u,v,w)||)Z <M.

Therefore €, isbounded. O
Lemma 8. Assume that the first part of (H,) holds, then the set
Q, = {(u,v,w) e Ker L|2(u,v,w)+(1-2)QN (u,v,w) =(0,0,0), 4 [0,1]}
is bounded.

Proof. For (u,v,w)eQ,, we have (u,v,w)=(m;,m,,m,), m,m, m;eR

and

am,+(1-2) (e -1) [ (1-5)"" f,(s,m,,0)ds =0, (15)

am, +(1-2)(A-1) [ (1-5)"" f,(s,m;,0)ds =0 (16)
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and
am, +(1-2)(7 -1) [, (1-s)* ,(s.m;,0)ds =0. (17)

If 2=0,thenby (H,),weget m|, |m,|, |[m|<M".If 2=1,then
m =m, =m; =0.For 1&(0,1], we obtain |my|, |m,|, |[m;|<M". Otherwise, if
|m| or |m,| or |my|>M",from (H,),one has

am? +(1-2)(a-1) [ (1-s)" " mf,(s,m,,0)ds > 0
or

ams +(1-2)(f-1)[;(1-s)’ " m, £, (s,m,,0)ds > 0
or

amé +(1-2)(y -1) [-(1-s) * my £, (s,m,,0)ds > 0,

which contradict to (15) or (16) or (17). Hence, €, is bounded.
Remark 1 Suppose the second part of (H,) holds, then the set

Q; ={(u,v,w) e Ker L|- A(u,v,w)+(1-2)QN (u,v,w) =(0,0,0), 2 € [0,1]}

is bounded. O
Proof of the Theorem 1: Set Q = {(U,V,W) € )?|||(u,v, W)”x’ < maX{K, M *} +1}.
From the Lemma 4 and Lemma 5 we can get L is a Fredholm operator of in-

dex zero and N is L-compact on Q. By Lemma 6 and Lemma 7, we obtain
(1) L(u,v,w)#= AN (u,v,w) forevery

((u,v,w), ) e[ (domL\KerL) n6Q]x(0,1);

(2) NxglImL forevery (u,v,w)e KerLNoQ.
Choose

H((u,v,w),4) =22 (u,v,w)+(1- 2)QN (u,v,w).

By Lemma 8 (or Remark 1), we get H ((U,V,W),/l) #0 for
(u,v,w) e Ker LM aQ. Therefore
deg(QN|,, ,KerLnQ,0)=deg(H (.,0),KerL nQ,0)
=deg(H (.,1),KerLnQ,0)
=deg(+!,KerLnQ,0) = 0.

Thus, the condition (3) of Lemma 1 is satisfied. By Lemma 1, we obtain
L(u,v,w)=N(u,v,w) has at least one solution in dom LN~Q. Hence Neu-
mann boundary value problem (1) has at least one solution. This completes the

proof.

4. Examples

In this section, we give two examples to illustrate our main results.
Example 1. Consider the following Neumann boundary value problem of

fractional differential equation of the form
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(v(0)-8)+ S (v (), te(0n)

()= () -a)+Laostw (1), e (0), -
W(t):%(u(t)—8)+%sin2u'(t), te(0.1),

u'(1)=0, v'(0)=v'(1)=0, w'(0)=w'(1) =0.

O
c
—~
—
~
Il
0 |

W)

W)

~ QaIN CNlw S slo

c

o
~

I

w

Here o= %, L=—, Z . Moreover,

2

4>

f,(tv(t), V(1)) = %(v(t)—6)+%(1+v’(t))% :

3

fz(t,w(t),w’(t)):%(w(t)—4)+%coszw’(t),
fy (tu(t),u'(t)) = ((t) )+—S'n2U()

Now let us compute a(t), b (t), c,(t) from fl(t,v(t),v’(t)).

t2 1

£ (6v(0.v (0) = () -6)+ L {1+ v (1)
~2)-6)s St dv-
<2v()-6)+ L
[f(Lv) v @) <) L
From the above inequality, we get 4, ( )=g bl(t)=%, (t)=0. Also
£ (Lw(0). () = S(w(t)-4) +costr (1)
(L (0)w (1)) < g ()
Here, 2,(t) =2, b,(t)=<, ©,(t)=0. Finally

fa(tu(t),u'(1)) = ((t) )+—Sm2U()

, 1 8
|, (tu(t),u (t))|sE u(t)|+5.
4 1 1
We get, ag(t)zg, b3(t)=E, C;(t)=0. And we get, Bl(t)zg,
Bz(t)=%, B3(t)=%, C,(t)=C,(t)=C;(t)=0. Choose M=M"=8 .
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T(a)C(A)T(7) (B +C,)(B, +C,)(B; +C;)
L(a)0(A)T(7)

R e
()

~ 0.73605543 > 0,

where F(%)z&GZS, F(jj 1.225416702 and F(ZJ \/_ All the condi-

tions of Theorem 1 are satisfied. Hence, boundary value problem (18) has at
least one solution.
Example 2. Consider the Neumann boundary value problem of fractional
differential equation of the following form
2 1 t! ,
D3 u(t) =ﬁ(v(t)—15)+2—0Iog(1+v (t)).te(0.2),
6

Dfav(t):%(w(t)—7)+;—5(1+w'(t))§ te(0), (19)
Déw(t) = %(u (t)—ll)+%arctan u'(t), te(0,2),
u'(0)=u'(1)=0, v'(0)=v'(1)=0, w'(0)=w'(1)=0.

4 5 3
Here a=—, f=—, y =—. Moreover,
3 P73

f(tv(t),V/(t))= %(v(t)—15)+;—:)log (1+v'(1)),

6

fo (tw(t).w(1)= %(W(t)‘7)+;—5(l+ w’(t))% ,

f3(t,u(t),u’(t))—113( (t)- 11)+%arctanu (t).

Now let us compute a,(t), b (t), c,(t) from fl(t,v(t),v’(t)).

1 t*

f(tv(t),v'(t))= E(v(t)—15)+z—olog (1+v'(1))
= %(v(t)—15)+;—;[v'(t)— (V’(zt!)) +]

[ (L) (1)) s% v(t) +g+% v (o)

From the above inequality, we get a, (t) = 1—, (t)= 76 (t)= 2—10 Also,
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|f2(t,w(t),w’(t))|s£|w(t)| ; 215(1+—|W )|+ J

184 1,
_| (O 256 751" ()

Here, 2,(t) = 21b, ()= .G, (1) - 7—15 . Similarly,

1 ~ t’

:E(u(t) 1)+ —|u'(t)- 3t
, 1 1 1
|, (tu(t),u (t))|_Eu(t)|+E+Eu (t)
11 1 1
Here, as(t) 3 3(t) 13’Cs(t) We get, Bl(t)=l7' Bz(t)=§,
Ba(t):%v Cl(t)zz—lo, Cz(t)=7—15, C3(t)—— Choose M =M =15

()i i) sed)

~ 0.96872 > 0,

where F(%jz3.625, F[;j 0.1924 and F(ZJ Jr . Hence all the condi-

tions of Theorem 1 are satisfied. Therefore, boundary value problem (19) has at

least one solution.

5. Conclusion

We have investigated some existence results for three-dimensional fractional
differential system with Neumann boundary condition. By using Mawhin’s coin-
cidence degree theory, we established that the given boundary value problem
admits at least one solution. We also presented examples to illustrate the main

results.
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