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Abstract 
In this brief communication we present a new integral transform, so far un-
known, which is applicable, for instance, to studying the kinetic theory of 
natural eigenmodes or transport excited in plasmas with bounded distribution 
functions such as in Q machines/plasma diodes or in the scrap-off layer of 
Tokamak fusion plasmas. The results are valid for functions of { }, ,p

SL σ µ  
function spaces—Lebesgue spaces, which are defined using a natural genera-
lization of the p-norm for finite-dimensional vector spaces, where   is the 
real set, Sσ  is the σ -algebra of Lebesgue measurable sets, and µ  the Le-

besgue measure. [ ] [ ]: 0, 0,p pAK L L L L→ , so that ( )f AK f→ . Note that, 
using a simpler notation, more natural/known to engineers, f could be consi-
dered any piecewise continuous function, that is: [ ]0, .f PC L∈  Here 

[ ]0,PC L  is a Euclidian space with the usual norm (inner product: ,f f ) 

given by: ( ) 22

0
, d

L
f f f f x x= =   ∫  [1].  
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1. Prolegomenon  

The mathematics that has hatched the novel operator presented in this paper is 
connected to the integral equation that arises from the technique to obtain ei-
genmodes of bounded plasmas, with the caveat of one-dimensional geometry 
and no particles collision, that is collisionless plasma, however coupled to an ex-
ternal electric circuit via the electrodes, a model which is very useful to describe 
the external control of plasma dynamics. In order to get the mathematics and 
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hence the operator under consideration, an integral-equation method was de-
veloped for solving a general linearized perturbation problem for an one-di- 
mensional, uniform and collisionless plasma with thin sheaths, bounded by two 
planar electrodes [2] [3] [4] [5] [6]. The operator is the result of a natural com-
bination of the basic equations involved in this technique. The underlying sys-
tem of integral equations related to this physical system consists of (1) the colli-
sionless Vlasov plasma kinetic equations for all particles species involved (elec-
trons and/or ions), (2) Poisson’s equation, (3) the equation of total current con-
servation, (4) the particles (distribution-function) boundary conditions at the 
left- and right–hand electrodes, fed by the plasma and the external-current sys-
tem, and (5) the external circuit condition.  

The method allows for very general equilibrium, boundary, and external cir-
cuit conditions. Using Laplace’s transformation in both time and space, it is set 
up to handle the complete linearized initial-value problem and also yields the 
solution to the eigenmode problem as a by-product, using the Nyquist technique 
in this case which is a very useful method to access the zeros of a complex func-
tion ( )f ω , considering ( )f ω  as a mapping of the complex ω  plane. For 
instance, this method is also applicable to studying the Pierce diode with 
non-trivial external circuit dynamics, and it is also useful to studying the impor-
tant problem of plasma-wall interactions in Tokamaks, which can induce unde-
sirable plasma cooling leading in many cases to termination of the Tokamak 
discharge and, hence of nuclear-fusion reactions. This problem is of paramount 
importance for present-day fusions machines such as JET—Joint European To-
rus and future ones, such as ITER and DEMO.  

Genesis of the AK Transform 
Here, to obtain the AK transform, it is sufficient to use the results of the spe-

cial case of longitudinal oscillations in the negatively biased single-ended Q ma-
chine. 

As already mentioned, the mathematical operator under consideration, takes 
shape just when we combine the Laplace-transformed integral-equation system 
for the perturbed plasma system variables—electric field, electric current, dis-
tribution functions. 

After combining the basic equations, the Laplace component of the perturbed 
electric-field solution of the posed problem can be written as 

( ) [ ] [ ]( ) [ ]( ){ } [ ]( ){ }1
5 8, , , , , , , , ,op eE x B x x k x j x k xω ω ω ω ω− ′ = +   

with [ ], ,opB x x ω′    an operator acting on x′  and defined as 

[ ] { } [ ] [ ]{ } ( ), , , , , ,opop opEB x x x x x xI J E xω ωω′ ′ ′      = +   

where opI  is the identity integral operator (Dirac delta) and opJ , 5k , 8k , ej , a, 
L, D, and all the remaining terms are defined in references [2] [3] [4] [5] [6] and 
need not be displayed/redefined here. Note that L and D are related to the phys-
ical dimension of the plasma machine and opJ  is a complicated operator de-
fined in [2] [3] [4] [5] [6], which, however, after some algebra assumes a simple 
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form, so that we can write 

[ ] {} {} ( ) {}
0

, , , sin d
L

op op
L yB x x I a x y

D
ω ω −  ′  ⋅ = ⋅ + ⋅       

∫  

where ( ),a x ω  is a function that depends on the physical problem under con-
sideration (type of machine and external circuit and type of plasma geometry 
and physical properties). 

We can write the operator ( ), ,opB x yω  (where y , the dummy variable-in- 
tegration variable, is in place of the original integration variable [ ]x′ ) in a 
“more mathematical” way, replacing the real plasma physical system operator 
for the operator seed of the AK transform, and also replacing, later, the electric 
field by an arbitrary more mathematical function f, thus 

( ) ( ) ( ) ( ) ( )
0

, , , ,i d ,  s n ,
L L yAK E E x a x E x Ly Dy F

D
ω ω ωω − = + ≡ 

 ∫  

In order to proceed, we work a bit further the concept of L– space, which will 
be useful to where we intend to move: 

The space [ ]0,pL L  is also called the space of thp —power integrable func-
tions, where 0 , d ,pp f µ< < +∞ < +∞∫  µ  the Lebesgue measure. 

We consider here, however, a much simpler way to start with our conjecture. 
Let us then assume that f is a piecewise continuous function Euclidian space 

[ ]0,  PC L , where L is a real number. Of course, the conjecture is also valid for a 
more formal space as [ ], ,p

SL σ µ . 
Therefore, we finally define our novel transform, namely the AK transform, as 

below, where here we have replaced, as mentioned above, the electric field with 
an arbitrary function ( )f x . Note that we leave ω out of this notation just for 
the sake of simplicity as AK operates only in functions from spaces defined by 
the domain of the variable x . The result of the operation of the transform AK 
on f is given by 

( ) ( ) ( ) ( ) ( )
0

sin d ,  ,  
L L yAK f f x a x f y y

D
F x L D− = + ≡ 

 ∫        (1) 

( ) ( )( ) ( ) ( )( ), , , ,AK f I S f F f x a x L D≡ + ≡  

where I  is the identity operator and  

( ) ( ) ( ) ( ) ( )
0

sin d ,
L L yS f a x f y y C L D a x

D
− = = 

 ∫ . 

In this way, we can write the operator AK as 

( )AK I S≡ + . 

where the integral operator S  is given by 

( ) ( ) ( )
0

* ( * sin d .
L L yS a x y

D
− =  

 ∫  

Here ( )a x  is a given/known continuous function or piecewise continuous 
function, at least, and L and D are free given/known positive real parameters.  
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We can also write 

( ) ( )( ) ( ) ( ),S f AK I f a x C L D≡ − = , 

( ) ( ) ( ) ( ),AK f f x a x C L D= + . 

We can show that AK is invertible, it is linear, it is injective, and it is limited.  
The inversion can be shown as below: 

( ) ( ) ( ) ( )1

1 ,
SAK F I F f x

A L D
−  

≡ − =  + 
, 

in a way that 1 1AK AK AK AK I− −≡ ≡ , where I is the identity operator and 
( )S AK I≡ − , L, D are positive real numbers, f is a continuous or piecewise con-

tinuous function and ( )a x  is a prescribed/given continuous or piecewise con-
tinuous function as well. 

2. Inversion 

Applying now AK to Equation (1) from the left-handside we have 

( ) ( )( ) ( ) ( )

( )( )
0

sin d

, ,

L L yAKAK f AK f x AK a x f y y
D

AK F x L D

 −  ≡ +   
  

≡

∫  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

, )

,   ,,  

AKAK f AK f x C L D AK a x

C LF x L D KD A a x

= +

+=
 

Thus, 

( ) ( ) ( )( ) ( ) ( )2 , ,AKAK f f x A L D C L D a x= + +            (2) 

where, 

( ) ( )
0

, sin d
L L yA L D a y y

D
− =  

 ∫ . 

Applying now 1AK −  from the left-hand side on both Equations (1) and (2), 
we, therefore, find again the original function ( )f x , 

( ) ( ) ( ) ( )( )1 1,f x AK f C L D AK a x− −= +               (1’) 

and, 

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 ,2 ,  ,,AK f AK f A L D C L D F x L DAK a x− −≡ + + =   (2’) 

We then have a system of two equations for 

( ) ( ) ( )( )1 1 and ,AK f C L D AK a x− − . 

This implies that, from (1’), 

( ) ( ) ( ) ( )( )1 1,AK f f x C L D AK a x− −= − , 

and from (2’), 

( ) ( )( ) ( )( ) ( ) ( )( )1 12 , ,AK f AK f x A L D C L D AK a x− −= − + . 
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Therefore, 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1

1

,

2 ( , ,

, , 2 , , .

AK f f x C L D AK a x

AK f A L D C L D AK a x

F x L D A L D C L D AK a x

− −

−

−

= −

= − +

= − +

 

Thus, 

( ) ( )( ) ( )
( )( ) ( )( )

( )( ) ( )( )

( )
( )( )

1,
1 ,

1 ,

, , ( )
.

1 ,

AK I
C L D AK a x f x

A L D

S f x
A L D

F x L D f x
A L D

− −
=

+

≡
+

−
=

+

 

In conclusion, 

( ) ( ) ( ) ( )( )

( )
( )( ) ( )

( )( ) ( )

1 1,

1 ,

1 ,

AK f f x C L D AK a x

Sf x f
A L D

SI f
A L D

− −= −

= −
+

 
= −  + 

 

( ) ( ) ( ) ( )( )

( )
( )( ) ( )

( )( ) ( )

( ) ( ) ( )
( )( )

( )( ) ( ) ( )
( )( )

1 1,

1 ,

1 ,

, ,
1 ,

, ,11
1 , 1 ,

AK f f x C L D AK a x

Sf x f
A L D

SI f
A L D

F x L D f x
f x

A L D

F x L D
f x

A L D A L D

− −= −

= −
+

 
= −  + 

−
= +

+

 
= − +  + + 

 

and so 

( )
( )( ) ( )1 ( )

1 ,
SAK f I f

A L D
− = −

+
, 

( )
1

1 ,
SAK I

A L D
−  
≡ −  + 

, 

( )
1

1 ,
SAK I

A L D
−  
≡ −  + 

. 

Therefore, 

( ) ( ) ( ) ( )1

1 ,
SAK F I F f x

A L D
−  

≡ − =  + 
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In fact, 

( )
( )( ) ( )1

1 ,
SAKAK f AK I f

A L D
−

 
= −  + 

 

But, 

( ).AK I S≡ +  

Thus, 

( )
( )( ) ( )

( )
( )( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )( )

( )
( )

1

1 ,

1 ,

,
1 ,

,( , )
1 ( , ) 1 ,

SAKAK f AK I f
A L D

SI S I f
A L D

a x
I S f x

f x

C L D
A L D

C L D S a xa x
S f

C L D
A L D A L D

f x

−
 

= −  + 
 

= + −  + 
 

=   + 

=
+ +

+ −

+

=

− −

 

So, indeed,  

( ) ( )1AKAK f f x− =  

Now consider, 

( ) ( ) ( ) ( ) ( )( )1 1 1 1,AK AK f AK F AK f C L D AK a x− − − −≡ ≡ +  

But, 

( ) ( )( ) ( )( ) ( )( )1,
1 ,

SC L D AK a x f x
A L D

− =
+

 

and 

( ) ( )
( )( ) ( )1

1 ,
SAK f f x f

A L D
− = −

+
 

Thus, 

( ) ( ) ( )( )

( )
( )( ) ( )

( )( ) ( )

( )

1 1 1( , )

1 , 1 ,

AK AK f AK f C L D AK a x

S Sf x f f
A L D A L D

f x

− − −= +

= − +
+ +

=

 

We have then, 

( ) ( ) ( )1 1AK AK f AK F f x− −≡ = . 

Therefore, we have completed the two ways inversion. 
The AK’s transform can be extended to square integrable functions, that is: 

( ) ( ) ( ) ( ) ( )e d ,  xp L yAK f f x a x F xf j y
D

Dy ω
∞

−∞

 −  = + ±  


=
 

∫   
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Moving further, we will show that: 

3. Properties 

Moving further, we will show some fundamental properties of AK. 

3.1. Linearity 

In fact, consider ( ) ( ): 0, 0, ,p pAK L L L L→  so that ( )f AK f→  where 

( )( ) ( ) ( ) ( )
0

sin d
L L yAKf x f x a x f y y

D
− = +  

 ∫  

Thus, 

( )( ) ( )( ) ( ) ( )( )
0

sin d
L L yAK f g x f g x a x f g y y

D
α µ α µ α µ − + = + + +  

 ∫  

( )( ) ( ) ( )

( ) ( )

0

0

sin d

  sin d

L

L

L yAK f g x f yf x y
D

L yg x g y y
D

α µ α

µ

 −  + = +  
  

 −  + +  
  

∫

∫
 

3.2. AK Is Injective 

Since AK is linear, we have only to show that ( ) 0 0AK f f= ⇒ = . 
Indeed, 

( ) ( ) ( ) ( )
0

0 sin d
L L yAK f f x a x f y y

D
− = = +  

 ∫  

( ) ( ) ( )
0

sin d
L L yf x a x f y y

D
 −  =     
∫  

Thus, 

( ) ( ) ( )
0

sin d
L L yf x a x f y y

D
− ≤  

 ∫  

( ) ( ) ( )
0

d
L

f x a x f y y≤ ∫  

if we assume 1p =  (i.e. city block distance/Manhattan distance). 

If we use now the inequality ( ) ( )
0 0

1 d d 0,
L L

a x x f x x − ≤  ∫ ∫
 

(note that we 

are free to choose this ansatz, since we can specific ( )a x
 

in a way that

( )
0

d 1.
L

a x x <∫ ) we have ( )
0

1 d 0
L

a x x − >  ∫ , since ( )
0

d 1
L

a x x <∫ . 

Thus, we are forced to conclude that 

( )
0

d 0 0.
L

f x x f≤ ⇒ =∫  

if 1.p >  
Here we can also show that if  

( ) ( ) ( )

1 11

0,0 0 0
1 d 1 d d p

p
L L Lqq pp

L Lf y y y f y y L f
−

  ≤ ≤     
∫ ∫ ∫  
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1 1 1
1

pq
p q p
+ = ⇔ =

−
 

Also, 

( ) ( ) ( )0, 0, 0,1 0 0!p p pL L L L L Lf a f f≤ < ⇒ = ⇒ =  

3.3. AK Is Limited 

We show here that AK is limited (i.e. continuous).  
Indeed, 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0, 0
0,

0, 0, 0

0, 0, 0

1

0, 0, 0,

1

0, 0,

sin d

sin d

d

1

p
p

p p

p p

p p p

p p

L

L L
L L

L

L L L L

L

L L L L

p
p

L L L L L L

p
p

L L L L

L yAK f f x a x f y y
D

L yf a f y y
D

f a f y y

f a L f

a L f

−

−

− = +  
 

− ≤ +  
 

≤

 
 

+

≤ +

≤ + 
 

∫

∫

∫  

and so it is limited. 

4. Conclusions 

In short, a new integral operator AK has been created which is useful to studying 
kinetic theory for bounded plasmas, a subject of paramount importance for 
nuclear fusion applications (mainly to study plasma wall interactions), as well as 
all types of technological plasma applications. 

From the mathematical point of view, much can still be done in studying this 
operator to fully understand its mathematical structure and applicability to 
solving problems involving, for instance, differential, integral, and integrodiffe-
rential equations. 
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