
Applied Mathematics, 2016, 7, 2269-2284 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

DOI: 10.4236/am.2016.717179  November 30, 2016 

 
 
 

Nonparametric Regression Estimation with Mixed 
Measurement Errors 

Zanhua Yin, Fang Liu, Yuanfu Xie 

College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China 

 
 
 

Abstract 
We consider the estimation of nonparametric regression models with predictors be-
ing measured with a mixture of Berkson and classical errors. In practice, the Berkson 
error arises when the variable X of interest is unobservable and only a proxy of X can 
be measured while the inaccuracy related to the observation of the proxy causes an 
error of classical type. In this paper, we propose two nonparametric estimators of the 
regression function in the presence of either or both types of errors. We prove the 
asymptotic normality of our estimators and derive their rates of convergence. The fi-
nite-sample properties of the estimators are investigated through simulation studies. 
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1. Introduction 

Let ( ) ( )1 1, , , ,n nX Y X Y
 denote a sequence of independent and identically distributed 

random vectors. In traditional non-parametric regression model analysis, one is in- 
terested in the following model 

( ) ,i i iY g X e= +                                (1) 

where ( ).g  is assumed to be a smooth, continuous but unknown function; the 
random errors ie  are assumed to be normally and independently distributed with 
mean 0 and constant variance 2σ ; and 1, ,i n=  . Here, the predictor X is usually 
assumed to be directly observable without errors. Both the direct observation and 
error-free assumptions are however seldom true in most epidemiologic studies. For the 
violation of the error-free assumption, [1] considered an environmental study which 
studied the relation of mean exposure to lead up to age 10 (denoted as X) with 
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intelligence quotient (IQ) among 10-year-old children (denoted as Y) living in the 
neighborhood of a lead smelter. Each child had one measurement made of blood lead 
(denoted as W), at a random time during their life. The blood lead measurement (i.e., 
W) became an approximate measure of mean blood lead over life (X). However, if we 
were able to make many replicate measurements (at different random time points), the 
mean would be a good indicator of lifetime exposure. In other words, the measure- 
ments of X are subject to errors and W is a perturbation of X. In the measurement error 
literature, this is known as the classical error model and Model (1) becomes 

( ) , ,i i i i i iY g X e W X ε= + = +                        (2) 

where ( ), , , 1, ,i i ie X i nε = 
, are mutually independent and ε  represents the classical 

measurement error variable. Various methods and approaches for analyzing Model (2) 
such as deconvolution kernel approaches (e.g., [2] [3] [4]), design-adaptive local poly- 
nomial estimation method (e.g., [5]), methods based on simulation and extrapolation 
(SIMEX) arguments (e.g., [6] [7] [8] [9]), and Bayesian approach (e.g., [10]) have been 
extensively studied in the literature. 

In many studies, it is however too costly or impossible to measure the predictor X 
exactly or directly. Instead, a proxy W of X is measured. For the violation of the direct 
observation assumption, [1] modified the aforementioned environmental study in 
which the children’s place of residence at age 10 (assumed known exactly) were 
classified into three groups by proximity to the smelter—close, medium, far. Random 
blood lead samples, collected as describe in the aforementioned design, were averaged 
for each group (denoted as W), and this group mean used as a proxy for lifetime 
exposure for each child in the group. Here, the same approximate exposure (proxy) is 
used for all subjects in the same group, and true exposures, although unknown, may be 
assumed to vary randomly about the proxy. This is the well-known  Berkson error 
model. In other words, the predictor X are not directly observable and measurements 
on its surrogates W are available instead. The true predictor X is then a perturbation of 
W. The model of interest now becomes 

( ) , ,i i i i i iY g X e X W δ= + = +                         (3) 

where ( ), , , 1, 2, ,i i ie W i nδ = 
, are mutually independent. Model (3) was first con- 

sidered by [11] and the estimation of the linear Berkson measurement error models was 
discussed in [12]. Methods based on least squares estimation ([13]), minimum distance 
estimation ([14] [15]), regression calibration ([16]) and trigonometric functions ([17]) 
have been studied. 

The stochastic structure of Model (3) is fundamentally different from Model (2). 
Here, the measurement error of Model (2) is independent of X, but dependent on W. 
This distinctive feature leads to completely different procedures in estimation and 
inference for the models. In particular, nonparametric estimators that are consistent in 
Model (2) are no longer valid in Model (3), and vice versa. In most of the existing 
literature, the measurement error is supposed to be only one of the two types. In the 
Berkson model (3), it is usually assumed that the observable variable W is measured 
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with perfect accuracy. However, this may not be true in some situations. In such cases, 
W is observed through V W ε= + , where ε  is a classical measurement error. [18] 
presented a good discussion of the origins of mixed Berkson and classical errors in the 
context of radiation dosimetry. Under this mixture of measurement errors, we observe 
a random sample of independent pairs ( ),i iV Y , for 1, ,i n=  , generated by 

( ) , , ,i i i i i i i i iY g X e X W V Wδ ε= + = + = +                 (4) 

where i WW f , i fδδ  , i fεε   and ie  are mutually independent, and the re- 
spective error densities fδ  and fε  are assumed to be known. Due to its potentially 
wide applications, statistical procedures for analyzing Model (4) has received more 
attention recently. For instance, a regression calibration approach was proposed by [19] 
and [20] in a parametric context of random exposure. [21] considered a bayesian 
approach for a semi-parametric regression function. [22] developed a nonparametric 
density estimation approach for contaminated data with a mixture of Berkson and 
classical errors but without further extending to estimate the regression function. [23] 
proposed a two-step nonparametric kernel method for estimating the regression 
function but its calculation is complicated. In this paper, we propose two non- 
parametric estimators for the regression function curve ( ).g  with the predictor X  
being measured with either classical error, Berkson error, or a combination of both. 
The difficulty primarily depends on the relative smoothness of the error densities fδ  
and fε . When fδ  is smooth enough (relative to fε ), we are able to construct a 
nonparametric estimator that converges to the target curve at the parametric n  rate. 
For less smooth density fδ , we propose a kernel estimator that converges at rates 
ranging from n  to rates that are close to the deconvolution rates. 

This paper is organised as follows. In Section 2, we propose estimators for the 
regression function curve ( ).g . We then derive the asymptotic normality of our 
estimators under some regularity conditions and give the rates of convergence in 
Section 3. Section 4 presents some numerical results from simulation studies. A brief 
discussion will be given in Section 5. All technical results and proofs are deferred to the 
Appendix. 

2. Proposed Estimators 

Let ( ) ( )1 1, , , ,n nY V Y V  be a random sample from Models (4), and ( )X tφ , ( )W tφ , 
( )tδφ , ( )V tφ  and ( )tεφ  be the characteristic functions of iX , iW , iδ , iV  and 

iε , respectively. We have the following relationships: 

( ) ( ) ( ) ( ) ( ) ( ), .X W V Wt t t t t tδ εφ φ φ φ φ φ= =  

Hence, if ( )tεφ  does not vanish, 

( ) ( ) ( ) ( ).X Vt t t tδ εφ φ φ φ=  

Since ( )tδφ  and ( )tεφ  are assumed to be known, an estimate of ( )X tφ  can be 
computed as 
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( ) ( ) ( ) ( ) ( ) ( )
1

1ˆ ˆ ˆ, with exp .
n

X V V j
j

t t t t t itV
nδ εφ φ φ φ φ

=

= = ∑  

Noticing that, if ( )tφ  is absolutely integrable, the characteristic function ( )tφ  and 
its density function ( )f x  have the following relation 

( ) ( ) ( )1 exp d ,
2π

f x itx t tφ= −∫  

under the condition that ( ) ( ) ( )1t t Lδ εφ φ ∈  , the density estimator of iX  is then 
given by 

( ) ( ) ( ) ( )
1

1 1ˆ ˆexp d ,
2π

n

X X i
i

f x itx t t G x V
n

δ
εφ

=

= − = −∑∫               (5) 

where 

( ) ( ) ( )1 e d .
2π

itxG x t t tδ
ε δ εφ φ−= ∫  

As a result, we propose the following estimator for ( )g x  

( ) ( )
( )

1

1

1
ˆ .

1

n
i ii

n
ii

n G x V Y
g x

n G x V

δ
ε

δ
ε

=

=

−
=

−
∑
∑

                      (6) 

Example 1 Let the error densities fδ  and fε  in Model (4) be normal densities 
with mean zero and variances 2

δσ  and 2
εσ , respectively. It follows that  

( ) ( ) 2 2
1

1exp
2

t t tδ εφ φ σ = − 
 

 with 2 2 2
1 δ εσ σ σ= − . If we assume 2 2

δ εσ σ> , then the  

ratio ( ) ( )t tδ εφ φ  is the characteristic function of another normal random variable. By 
(6), the estimator of ( )g x  can be written as 

( ) ( ) ( )

( ) ( )
1

1

0,1

0,1

1
ˆ

1

n
i ii

n
ii

n x V Y
g x

n x V
σ

σ

ψ

ψ
=

=

−
=

−

∑
∑

 

where ( ) ( )
10, xσψ  is the density of the ( )2

1Normal 0,σ  variable. If 2 2
δ εσ σ< , the ratio 

( ) ( )t tδ εφ φ  is not integrable, and the estimators (5) and (6) can not be calculated. To 
overcome this issue, we propose an alternative approach for estimating ( )g x . 

Using a kernel function ( )K x  with a bandwidth h, we consider the following 
kernel estimator for ( )Vf x  

( )
1

1ˆ ,
n

i
V

i

x Vf x K
nh h=

− =  
 

∑  

and an estimator for ( )V tφ  is then given by 

( ) ( ) ( )
1

1ˆ exp ,
n

V i K
i

t itV th
n

φ φ
=

= ∑  

where ( )K tφ  is the characteristic function of the kernel function ( )K x . 
Proceeding as above, we get an alternative estimator of ( )Xf x  by 

( )
1

1 ,
n

i
X

i

x Vf x K
nh h

δ
ε

=

− =  
 

∑                        (7) 
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where 

( ) ( ) ( )
( )

1 e d .
2π

itx
K

t h
K x t t

t h
δδ

ε
ε

φ
φ

φ
−= ∫                       (8) 

Therefore, when (6) is no longer valid, we propose the following estimator for ( )g x  

( ) 1

1

1
.

1

n
i

i
i

n
i

i

x Vnh K Y
hg x

x Vnh K
h

δ
ε

δ
ε

=

=

− 
 
 =

− 
 
 

∑

∑
                          (9) 

Remark 1 To ensure that the proposed estimator (9) is well-behaved, we need to 
make the following assumption. 

Condition A: 
1. ( ) 0tεφ ≠  for all t; and 
2. ( ) ( ) ( )sup Kt t t h t hδ εφ φ φ < ∞  and ( ) ( ) ( ) dK t t h t h tδ εφ φ φ < ∞∫ . 
Example 2 We use the same model as in Example 1 with 2 2

δ εσ σ< . In this case, to 
ensure (A2) to be valid, it is rather common to choose kernels that have a compactly 
supported characteristic function ( )K tφ . For example, we choose the sinc kernel 

( ) ( )sin πK x x x= , which has characteristic function ( ) [ ] ( )1,11K t tφ −= , the indicator 
function of the interval [ ]1,1− . From (8), we have 

( ) ( )
( )2 2 2

1

20

1 cos exp d .
π 2

t
K x tx t

h
ε δδ

ε

σ σ − =  
  

∫  

Remark 2 
1. The above two nonparametric estimators of ( )Xf x  were given by [22]; 
2. When the variance of ε  in Models (4) is equal to 0, which is the Berkson error 

model, the estimator (6) becomes 

( )
( )

( )
1

1

1
ˆ ,

1

n

i i
i

n

i
i

n f x V Y
g x

n f x V

δ

δ

=

=

−
=

−

∑

∑
                        (10) 

where ( )f xδ  is the density function of δ ; and; 
3. When the variance of δ  in Models (4) is equal to 0, which is the classical error 

model, ( )g x  given in (9) reduces to the estimator of [2]. 

3. Theoretical Properties 

In this section, we study asymptotic properties of the estimators proposed in Section 2. 
In particular, the properties of the estimator ( )ĝ x  at (6) are clear. It is easy to check 
that the numerator and the denominator are both unbiased estimators of ( ) ( )Xg x f x  
and ( )Xf x , respectively and that, ( )ĝ x  converges at the fast parametric n  rate. 
Properties of the estimator ( )g x  at (9) need to further explore and, in what follows, 
we derive them. 
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3.1. Asymptotic Results for g  

In this section, we investigate the large-sample properties of the estimator ( )g x  at (9). 
For this purpose, we present the following regular conditions which are mild and can 
be found in [2]. 

Condition B: 
1. 1, , ne e  have zero means and uniformly bounded variances; 
2. Wf , Xf  and fε  are bounded, and Xf  and g have bounded kth derivatives; 
3. ( )K x  is a real and symmetric kernel and has finite moment of order k. Namely, 

( ) { }, 0d 1j
K j ju K u uµ == =∫  for 1, , 1j k= −  and , 0K kµ ≠ ; and 
4. The conditional moment ( )2E Y W uη+ =  is bounded for all u and some 0η > . 
Let ( ) ( )1

hK x h K x h−= . The mean squared error (MSE) of the estimator ( )g x  is 
described in the next Theorem. 

Theorem 1 ((MSCE)) Suppose that Conditions A and B hold. Then, for each x such 
that ( ) 0Xf x > , 

( ) ( ){ } ( )
( )

( ) ( ) ( ) ( ){ } ( )

( )
( ){ } ( ) ( )

2

2

2 2
2

1 d

1 1  d ,

X

X

h X
X

W
X

f x
E g x g x

f x

K x v g v g x f v v
f x

K u f f x uh u o
nnhf x

δ
ε ετ

−

 
= − − 
  

 + ∗ − +  
 

∫

∫





        (11) 

where ( ) ( ){ }22 E Y g x Wτ  ⋅ = − = ⋅  
. 

Explicit rates of convergence of the estimator ( )g x  can be found by examination of 
the asymptotic behaviour of the MSE. For the bias, using the Taylor expansion of the 
first term on the right-hand side of Equation (11), we have 

( )( ) ( ) ( )2 2 2 2Bias ,k k
kg x b x h o h= +  

where ( ) ( ) ( ) ( ) ( ){ }( ) ( ) ( ) ( ) ( ) ( )1
,1 ! !

kk k
k X K k X Xb x f x g x f x k g x f x kµ−  = − −  

. 

The second term on the right-hand side of Equation (11) describes the variance of 
( )g x . The asymptotic behaviour of this term is more difficult to evaluate since it 

depends on the tail behaviour of the ratio ( ) ( )t tδ εφ φ , as [14] discussed, which can 
be classified into the following: 

1. An exponential ratio of order β  is 

( ) ( ) ( ) ( )0 1
0 1exp exp , as ,d t t t t d t t tβ β β β

δ εγ φ φ γ≤ ≤ →∞      (12) 

with 0d , 1d , γ , 0β >  and 0β , 1 Rβ ∈ . 
2. A polynomial ratio of order β  is 

( ) ( )0 1 as ,d t t t d t tβ β
δ εφ φ− −≤ ≤ → ∞                (13) 

with 0d , 1 0d >  and 1β ≤ . 
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3.1.1. Asymptotic Mean Squared Error (AMSE) 
In this section, we study the asymptotic behaviour of the MSE where ( ) ( )t tδ εφ φ  
behaves like an exponential or a polynomial. 

Theorem 2 Suppose that Conditions A and B hold and that the first half inequality of 
(12) is satisfied. Assume that ( )K tφ  is supported on [ ]1,1− . Then, for each x such 
that ( ) 0Xf x > , we have 

( )( ) ( ) ( )22 12 2 1
1AMSE exp 2 1 ,k

kg x b x h n h h ββκ γ− −−= +  

with 1κ  being some positive constant and 
1

2 1 1
2

1
β

β β  >− 
 

= . 

When ( )tεφ  is exponentially smoother than ( )tδφ , we obtain a slower logarith- 
mic rate which is similar to the deconvolution rate for supersmooth error given in [2]. 
More precisely, the optimal bandwidth is of order ( ) ( )1 12 lnh d nβ βγ −=  with 1d ≥ , 
and the estimator ( )g x  then converges at the rate of ( )log kn β . 

Theorem 3 Suppose Conditions A and B hold, and that ( ) 22 dKt t tβ φ− < ∞∫ . Then,  

under the polynomial ratio (13), for each x such that ( ) 0Xf x > , we have 

( )( ) ( ) ( )2 2
2AMSE ,k

kg x b x h h nκ λ= +  

with 2κ  being some positive constant, and ( ) { } { }
2 1

1 2 1 2 11 1h h β
β βλ −
< ≤ ≤= + . 

We obtain that, when ( ) ( )t tδ εφ φ  behaves like a polynomial ratio of order β  in 
the tail, the convergence rates range from n  to deconvolution rate of ordinary 
smooth error of [2]. More precisely, the optimal bandwidth is of order ( )1 2const kh n−⋅  
when 1 2 1β≤ ≤ , and the estimator ( )g x  then converges at the rate of n . When 

1 2β < , the optimal bandwidth is of order ( )1 2 2 1const kh n β− − +⋅  and the estimator 
( )g x  converges at the rate of ( )2 2 1k kn β− + . 

3.1.2. Asymptotic Normality 
The theorem below establishes asymptotic normality in the exponential ratio case. 

Theorem 4 Under the conditions of Theorem (2), and for bandwidth  
( ) ( )1 12 lnh d nβ βγ −=  with 1d ≥ , 

( ) ( ) ( )( )
( )( )

( )
Bias

0,1 ,
var

dg x g x g x
N

g x

− −
→

 



 

where ( )( ) ( ) ( )Bias k k
kg x b x h o h= +  and ( )( ) ( )( )( )2

var Biasg x o g x =    . 

The next theorem establishes asymptotic normality in the polynomial ratio case. 
Theorem 5 Suppose that Conditions A and B hold and that the inequality of (13) is 

satisfied. Assume that ( ) dKt t tβ φ− < ∞∫  and ( ) 22 dKt t tβ φ− < ∞∫ . Then, under  
( ) ( )2kh n O hλ =  and 0h →  as n →∞ , for each x such that ( ) 0Xf x > , we have 

( ) ( ) ( )( )
( )( )

( )
Bias

0,1 ,
var

dg x g x g x
N

g x

− −
→

 



 

where ( )( )Bias g x  is the same as given in Theorem (4) and ( )( )var g x  is equal to 
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the second term on the right-hand side of Equation (11). 
The proofs of all theorems are postponed to the Appendix. 

3.2. Unknown Measurement Error Distribution 

When the error densities are unknown, they can be readily estimated from additional 
observations (e.g., a sample from the error densities, replicated data or external data) 
and these estimates can be substituted into (6) and (9) to produce the estimate of ( )g x . 
For sufficiently large sample size, the rates of convergence of the estimates remain 
unchanged when δφ  and εφ  are replaced by their consistent estimators (e.g., [4] [17] 
[24]). 

4. Simulation Studies 

We study numerical properties of the estimators proposed in Section 2. Note that we 
have defined two estimators, at (6) and (9). The first exists when ( ) ( )t tδ εφ φ  is inte- 
grable, and the estimator (9) otherwise. We use the notations ĝ  and g  for the esti- 
mators (6) and (9) respectively. We use the notation ˆ Ig  for the estimator that ignores 
the errors, that is, the estimator is the classical Nadaraya-Watson estimator of g  
based on direct data from ( ),i iY V , 1, ,i n=  . Note that ˆ Ig  is exactly equal to g  
when ( ) ( )t tδ εφ φ= . In addition, we use ˆCg  for the estimator of [23]. 
We apply the various estimators introduced above to some simulated examples (see, 
[23]): 

1. ( ) ( ) ( )25sin 2 exp 16 50g x x x= −  (sinusoidal), 
2. ( ) ( ) 1250 10 25g x x x

−
= + +  (sharp unimodal), and 

3. ( ) ( ) ( ) ( )0,1.5 1,2 2,54 4 4g x x x xφ φ φ= + +  (asymmetric); 
where ,µ σφ  is the density of an ( )2Normal ,µ σ  variable. For each of the above 
regression functions, we generate 200 data sets of n  randomly sampled vectors 
( ) ( )1 1,  , , ,  n nV Y V Y

, as follows. We generate a random sample 1, , nδ δ  from fδ , a 
random sample 1, , nε ε  from fε  and a random sample 1, , nW W  from Wf , and 
put i i iX W δ= +  and i i iV W ε= + , 1, ,i n=  , where Wf  is the density of an 

( )2Normal 0, Wσ  variable, and we take fδ  and fε  to be either normal or Laplace 
with zero mean. Then we generate a random sample 1, , nY Y  as ( )i i iY g X e= + , 
where the errors ie  are normally distributed with zero mean and variance 2

eσ , where 
( )2 20.1e gσ σ= ×  with ( )2 gσ  denoting the mean-squared deviation of g from its 

average value. We simply denoted Normalδ   and Laplaceε   by ( ) ( ), N,Lδ ε  , 
and other similar. 

In our simulations we consider sample sizes 50,100, 250n = , and in each case we 
generate 200 samples from the distribution of the random vector ( ),  V Y . Except if 
stated otherwise, we adopt the second order kernel K corresponding to  

( ) ( ) [ ] ( )
32

1,11 1K t t tφ −= − ⋅ , which is necessary to calculate g  and ˆCg . For the band- 
width h, it is necessary to calculate g , ˆ Ig  and ˆCg , we select the value h that mini- 
mises the cross-validation (CV) criterion, ( ){ }2est

1
n

j j jjCV Y g V−=
= −∑ , where the sub- 

script j−  meant that the estimator was constructed without using the jth observation. 



Z. H. Yin et al. 
 

2277 

We report the Integrated Squared Error, ( ) ( ){ }2estISE dg x g x x= −∫ , where ( )estg x  
is the estimator considered. In all graphs, to illustrate the performance of an estimator, 
we show the estimated curves corresponding to the first (Q1), second (Q2) and third 
(Q3) quartiles of the ordered ISEs. The target curve is always represented by a solid 
curve. In the tables we provide the average values, denoted by MISE, of the 200 cal- 
culated ISEs. 

Figure 1 and Table 1 illustrate the way in which the estimator improves as sample 
size increases. We compare, for various sample sizes, the results obtained for estimating 
curve (a) when ( )Normal 0,2W  , and ( ) ( ), N, Lδ ε   with the pair of variance 
ratios ( )2 2 2 2,W Wδ εσ σ σ σ  equals (0.1, 0.4), and for estimating curve (b) when W 

 
( )Normal 0,2  and ( ),δ ε  ~ (N, L), (N, N), (L, L) or (L, N) with ( )2 2 2 2,  W Wδ εσ σ σ σ =

 
( )0.1,0.4 . We see clearly that, as the sample size increases, the quality of the estimators 
improves significantly in all cases. 

For any nonparametric method for regression problem, the quality of the estimator 
also depends on the discrepancy of the observed sample. That is, for any given family of 
densities Wf , fδ  and fε , and any given the noise-to-signal ratios ( )2 2 2 2,W Wδ εσ σ σ σ , 
the performance of the estimator depends on the variances of W , δ  and ε . Here, 
we compare the results obtained from estimating curve (c) for different values of 
 

 
Figure 1. Estimation of curve (a) for samples of size n = 50 (left panel), n = 100 (middle panel) or n = 250 (right 
panel), when ( )Normal 0,2W  , and ( ) ( ), N,Lδ ε   with ( ) ( )2 2 2 2, 0.1,0.4 .W Wδ εσ σ σ σ =  The solid curve is the 

target curve. 
 

Table 1. MISE ( )410−×  for estimation of curve (b) when ( )Normal 0,2W  , and ( ),δ ε  ~ (N, L), (N, N), (L, L) 

or (L, N) with ( ) ( )2 2 2 2, 0.1,0.4W Wδ εσ σ σ σ = . 

n  
( ),δ ε   

Method 
(N, L) 
MISE 

( ),δ ε   

Method 
(N, N) 
MISE 

(L, L) 
MISE 

(L, N) 
MISE 

50 ĝ  at (6) 5.3524 g  at (9) 8.3704 21.7584 9.9570 

100  3.2803  6.8685 11.1636 6.7162 

250  2.7013  5.4176 6.8579 4.9409 
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( )2 2 2, ,W δ εσ σ σ . As expected, Figure 2 shows that the best performance usually occur for 
smaller error variance (e.g., ( ) ( )2 2 2, , 0.5,0.05,0.15W δ εσ σ σ = ). It is noteworthy that the 
effect of the variances on the estimator performance is obvious in model (4). 

Finally, we compare ĝ  (or g ), ˆ Ig  and ˆCg . Figure 3 shows the boxplots of the 
quantities of ( )log ISE ISEO I  and ( )log ISE ISEO C  for estimating curve (a) when 

250n =  and ( )Normal 0, 2W 
, where ISEO  is the ISE of our proposed estimator, 

ISE I  is the ISE of the estimator that ignores the errors, and ISEC  is the ISE of the 
estimator of [23]. Here, each boxplot is constructed from 200 samples. Here, in panel 
(a)-(L-L) (or (a)-(N-N)), the mixed errors are both Laplace (or both normal). Here, and 
also in panel (a)-(N-L) (or (a)-(L-N)), the errors are ( )2Normal 0, δδ σ  and ε   
Laplace  (or Laplaceδ   and ( )2Normal 0, εε σ ). In each panel, for X-axis = 1 to 7, 

( )2 2 2 2,W Wδ εσ σ σ σ  = (0.1, 0.4), (0.1, 0.3), (0.2, 0.3), (0.2, 0.2), (0.3, 0.2), (0.3, 0.1) or (0.4, 
0.1). The more a boxplot is located below the zero horizontal line, the better our 
method compared with the other two estimators. In the same situation, Table 2 and 
Table 3 report the average integrated square error (MISE) for estimating curves (b) and 
(c) respectively. As expected, our proposed estimator substantially outperformed the 
estimator that completely ignores any measurement errors. Our results show that our 
proposed estimator usually works better than the estimator proposed by [23] for 
estimating curves (a) and (b). It is noteworthy that the estimator proposed by [23] may 
perform better than our proposed estimator when curve (c) with 2 2

δ εσ σ>  is esti- 
mated. 

5. Discussion 

In this paper, we propose a new method for estimating non-parametric regression 
models with the predictors being measured with a mixture of Berkson and classical 
errors. The method is based on the relative smoothness of δφ  and εφ . When δφ  is 

 

 

Figure 2. Estimation of function (c) for samples of size 250n = , when ( )2Normal 0, WW σ , Laplaceδ   and 

( )2Normal 0, εε σ  with ( )2 2 2, ,W δ εσ σ σ  being (0.5,0.05,0.15), (1,0.1,0.3), and (2,0.15,0.45) (from left to right). The 

solid curve is the target curve. 
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Figure 3. Boxplots of the quantities of log(ISEO/ISEI) (row 1) and log(ISEO/ISEC) (row 2) for 
estimating regression curve (a) when ( )Normal 0,2W   and 250n = , for various error 

densities fδ  and fε  and various values of ( )2 2 2 2,W Wδ εσ σ σ σ . 

 
Table 2. MISE ( )410−×  for estimation of curve (b) when ( )Normal 0,2W   and n = 250, for 

various error densities fδ  and fε  and various values of ( )2 2 2 2,  W Wδ εσ σ σ σ . 

    ( )2 2 2 2,  W Wδ εσ σ σ σ    

( ),δ ε  Method 
(0.1,0.4) 

MISE 
(0.1,0.3) 

MISE 
(0.2,0.3) 

MISE 
(0.2,0.2) 

MISE 
(0.3,0.2) 

MISE 
(0.3,0.1) 

MISE 
(0.4,0.1) 

MISE 

(N, L) ĝ  2.7013 3.2803 3.2877 3.0648 3.0751 3.1708 3.2467 

 ˆ Ig  4.7107 4.3962 4.2197 4.0074 3.9953 4.2278 4.1772 

 ˆCg  4.2953 3.8815 3.5265 3.4723 3.2630 3.1153 2.8465 

(N, N) *ĝ  5.4176 3.8075 4.0953 3.8031 3.8860 4.2107 5.1018 

 ˆ Ig  5.7508 4.4523 4.3278 3.8031 4.5206 4.6225 5.5277 

 ˆCg  5.8240 4.1611 4.2753 3.5777 4.0363 4.3566 4.2559 

(L, L) ĝ  6.8579 5.6354 4.2114 3.3682 4.3915 3.9042 4.3463 

 ˆ Ig  8.2793 5.5021 4.2403 3.3682 4.2050 4.2479 4.7129 

 ˆCg  7.7004 7.8699 5.8145 3.3493 4.3965 3.2047 3.8581 

(L, N) ĝ  4.9409 4.3785 4.3101 3.6858 3.7947 4.5531 4.1757 

 ˆ Ig  5.3184 4.8508 5.3981 4.6511 4.3452 4.7562 4.8375 

 ˆCg  5.0408 4.4118 4.5309 3.9896 3.5704 3.3006 3.3726 
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Table 3. MISE for estimation of curve (c) when ( )Normal 0,2W   and n = 250, for various 

error densities fδ  and fε  and various values of ( )2 2 2 2,W Wδ εσ σ σ σ . 

    ( )2 2 2 2,  W Wδ εσ σ σ σ    

( ),δ ε  Method 
(0.1,0.4) 

MISE 
(0.1,0.3) 

MISE 
(0.2,0.3) 

MISE 
(0.2,0.2) 

MISE 
(0.3,0.2) 

MISE 
(0.3,0.1) 

MISE 
(0.4,0.1) 

MISE 

(N, L) ĝ  0.04895 0.04547 0.05037 0.05615 0.07006 0.06539 0.07410 

 ˆ Ig  0.07716 0.06840 0.06457 0.06395 0.07383 0.07897 0.07455 

 ˆCg  0.05446 0.05133 0.05042 0.05125 0.06842 0.05885 0.07185 

(N, N) *ĝ  0.06894 0.06061 0.08074 0.06868 0.07698 0.07855 0.08983 

 ˆ Ig  0.09306 0.07728 0.09156 0.06868 0.08166 0.08486 0.09174 

 ˆCg  0.07558 0.06368 0.08162 0.06442 0.07558 0.05729 0.08035 

(L, L) g  0.05102 0.04070 0.05352 0.05654 0.06965 0.06364 0.07761 

 ˆ Ig  0.07427 0.06039 0.06891 0.05654 0.06962 0.07184 0.08422 

 ˆCg  0.05678 0.05349 0.05355 0.05094 0.06400 0.04008 0.04855 

(L, N) g  0.07343 0.05983 0.07332 0.06923 0.07571 0.05997 0.06183 

 ˆ Ig  0.09334 0.07516 0.08357 0.07148 0.07932 0.07314 0.08148 

 ˆCg  0.07820 0.06183 0.07485 0.05864 0.06491 0.04676 0.05368 

 
smooth enough (relative to εφ ), we propose a nonparametric estimator (6) that 
converges to the target curve at the parametric n  rate. For less smooth function δφ , 
we propose a kernel estimator (9) that converges at rates ranging from n  to rates 
that are close to the deconvolution rates. Numerical results show that the new esti- 
mators are promising in terms of correcting the bias arising from the errors-in- 
variables. It generally preforms better than the approach proposed by [23]. The metho- 
dology can be readily extended to the prediction problem of nonparametric errors-in- 
variables regression (see, e.g., [16]). Extension of our method to the problems con- 
sidered in [5] is of future research interest. 
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Appendix 
Proof of Theorem 1 

Let ( ) ( ) ( ){ } ( ) 1
,1

n
n X n jjA x g x g x f x n U−

=
= − = ∑
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n j j

x V
U h K Y g x
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δ
ε

− − 
= − 

 
, we have 
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= ⋅ ∗ −

∫

∫

     (15) 

where ( ) ( ){ }22 E Y g x Wτ  ⋅ = − = ⋅  
. The result follows immediately from 14 and 15. 

Proofs of the Results of Section 3.1.1. 

Lemma 1 Suppose that ( )K tφ  is supported on [ ]1,1− , and 0εφ ≠  for all t. Then, for  

1
2 1 1

2

1
β

β β  >− 
 

= , we have 

( ) ( ) ( ){ } ( )2 2
2 2 2exp and d exp ,K x Ch h K x x Ch hβ βδ β δ β

ε εγ γ− −− −

∞
≤ ≤∫  

where, here, and below, C denotes a generic positive and finite constant. 
Proof. It follows from (A2) of Condition A that ( )min 0t Md tε εφ≤≡ >  for some 

large enough constant 0M > . Since ( ) 1tδφ ≤ , we have 
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The conclusion follows from 
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The proof for the other result is similar and requires Parseval's Theorem. 
From (14) and Lemma 1, we have 

( ) ( )( )22 12
, exp 2 1 .n jE U O h h ββ γ− −=  
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The proof of Theorem 2 follows from the expressions of ( ),n jE U  and ( )2
,n jE U . 

The proof of Theorem 3 is the same as the proof of Theorem 2, but in this case we 
need the following lemma. 

Lemma 2 Suppose that 0εφ ≠  for all t, ( ) dKt t tβ φ− < ∞∫  and  
( ) 22 dKt t tβ φ− < ∞∫ . Then, we have 

( ) ( ){ } ( )
2

and dK x Ch K x x Ch hδ β δ
ε ε λ

∞
≤ ≤∫  

with ( ) { } { }
2 1

1 2 1 2 11 1h h β
β βλ −
< ≤ ≤= + . 

The proof of Lemma 2 is similar to the proof of Lemma 1 and is omitted. 

Proofs of the Results of Section 3.1.2. 

A standard decomposition gives ( ) ( ) ( ) ( )1
X ng x g x f x A x−− =  , ( )Xf x  goes in pro- 

bability to ( )Xf x  and thus we only need to prove the asymptotic normality for 
( )nA x . As given in [25], a sufficient condition for the following asymptotical normality 
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is that the Lyapounov's condition holds, i.e., for some 0η > , 
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Under the conditions given in the theorem 4, we can prove that 
( ) ( ){ }( )2

2 2 1
, exp 2 .n jE U O h h

η β η η βη γ
+ − + − − −= +  

Under the conditions given in the theorem 5, we can prove that 

( ) ( )( )2 1
, .n jE U O h h

η β ηλ
+ −=  

The rest is standard and is omitted. 
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