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Abstract

This paper studies spectral density estimation of a strictly stationary r~vector valued
continuous time series including missing observations. The finite Fourier transform
is constructed in L-joint segments of observations. The modified periodogram is de-
fined and smoothed to estimate the spectral density matrix. We explore the proper-
ties of the proposed estimator. Asymptotic distribution is discussed.
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1. Introduction

Although spectral analysis is one of the oldest tools for time series analysis, it is still one
of the most widely used analysis techniques in many branches of sciences, [1]-[6]. For
zero mean r-vector valued strictly stationary time series, the spectral estimation has
been studied, [7]-[17]. Time series with missing observations frequantly appear in
paractice. If a block of observations is periodically unobtainable, Jones [18] provides
a development for spectral estimation of a stationary time series. The theory of
amplitude-modulated stationary processes has been developed by Parzen [19] and
applied to periodic missing observations problems [20]. The case where an observation
is made or not according to the out come of a Bernoulli trial has been discussed by
Scheinok [21]. Bloomfield [22] considered the case where a more general random
mechanism is involved. Broersen ef al [23] and [24] developed models for time series
with missing observation and discussed their use for spectral estimation. Unbiased

spectral estimators have been formulated assuming wavelet models of stationary time
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series by [25]. Their asymptotic properties have been also investigated.

In this paper, we will discuss the spectral analysis of a strictly stationary r-vector va-
lued continuous time series with randomly missing observations in joint segments of
observations. The paper is organized as follows. Section 2 introduces the basic defini-
tions and assumptions. The modified series is defined in Section 3. Section 4 considers
the expanded finite Fourier transform and its properties. The modified periodogram,

the spectral density estimator and its properties are given in Section 5.

2. Observed Series

Let X (t)(teR) beazero mean r-vector valued strictly stationary time series with

E{X (t+u)X'(t)} =Cy (u),(t,ueR), (2.1)
and

T |Cx (u)|du < oo, (2.2)

where |C><x (u)| denotes the matrix of absolute values, the bar denotes the complex
conjugate and " ' denotes the matrix transpose. We may then define f,, (1) the rxr

matrix of second order spectral densities by
o (2) = (20) " [Cp (U)exp(—idu)du,(2 €R). (2.3)

Using the assumed stationary, we then set down
Assumption I. X (t) is a strictly stationary continuous series all of whose moments
exist. Foreach j=1,2,---,k—-1 and any 4tuple &;,a,,---,a, we have
J. |ujCa1.»~,ak (ulv Ty uk—l )| <o, k= 21 31 tee (24)
]
where
Cal,...vak (Ul, u2|"' ’ uk—l) = Cum{xal (t + u]_)v Xaz (t + uz)," Yy Xak (t)} ’ (25)

(a,8,,--,8,=12,---,r; u,uy, -, u,_,teRk=2-.).

Because cumulants are measures of the joint dependence of random variables, (2.4) is
seen to be a form of mixing or asymptotic independence requirement for values of
X (t) well separated in time. If X (t) satisfies Assumption I we may define its

cumulant spectral densities by

oy (A t)

k-1
= (2n)" j Coproa (UpyeeiU )% exp[—iz AU ]du1 --du, ,,
j=1

k-1

(2.6)

( —0 <A <0,a,8,,, 8 =12,---,r;k=2,---). If k=2 the cross-spectra fala2 (/1)
are collected together in the matrix f,, (1) of (2.3).

Assumption II. Let h{gT) (t) =h, (%j te [O,T) is bounded, is of bounded variation

and vanishes for all #outside the interval [O, T) , that is called data window.
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3. Modified Series
Let D(t)={D,(t),teR} _,,  be a process independent of X (t) such that, for
every t
P{D,(t) =1} = p.P{D, (t) =0} = q,
note that

E{D, (t)} = p.

The success of recording an observation not depend on the fail of another and so it is

independent. We may then define the modified series
Y (t)=D(t) X (t),
with components,
Y, (t)=D, (1) X, (1),

where

b (t 1 if X, (t)is observed
()= 0 if X, (t)is missed

4. Expanded Finite Fourier Transform in L-Joint Segments of
Observations

In the case when there are some randomly missing observations, Elhassanein [17]
constructed the expanded finite Fourier transform on disjoint segments of observations.
In this section the expanded finite Fourier transform is constructed in Z-joint segments
of observations for a strictly stationary r-vector valued time series. Expression for its
mean, variance and cumulant will be derived. The results introduced here may be
regarded as a generalization to [13] and [17]. Let X (t)(t e(O,T)) be an observed
stretch of data with some randomly missing observations. Let T=L(N-M)+M,
where L is the number of joint segments and N is the length of each segment and M is
the length of joint parts, 0<M <N, where M =0 we get the results in [17]. The

expanded finite Fourier transform of a given stretch of data, is defined by

(141)(N-M )+M TRE
dY'(N’M)(/I)=(27t | [h(N)(t—I(N—M))J dt
I(N-M) (4.1)
(I41)(N=M }+M
< | A (1 (N = M))exp(-iAt)Y (t)dt,
I(N-M)

where —0<A<o,1=0,1,---,L-1, and h(t) is the data window satisfies Assump-
tion I1.

Theorem 4.1. Let X (t)(t €(0,T)) be a strictly stationary r-vector valued time
series with mean zero, and satisfy Assumption I. Let d;(NfM) (/1) be defined as (3.1),
and h, (t) satisfy Assumption II, for a=1,2,---,r, then
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E{a," ™ (2)f=0 (4.2)
Cov{d!”‘““(m dy" ™ (<4y)}
B exp(-i(4 -2l (N M) JCu (e(-ize) M A -Z) G3)
:pzexp(—i(ﬂ,l—/lz)l (N-M)) ifab oY) (4 —v, 4, —v)dv

where
=) =20 [0 ) (1) |
xThﬁlN)(u+t)ht(,N)(t)exp(—it(/11—/12))dt,
and
(o) =2 | T (W0 (40 e, |
xHM () HM ™ (4;)
where

for 4 =4,=1,a=b then

Var [d") (2)} = p [ £, (2 -v) ol (v)dv, (4.4)

C“m{d'““ ") (), 04 ()
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k N 2 k _k
1 k[l_]l:j( ( )) J B8 (1'1/12 ﬂ'k ) k(;ﬂ]j+0( J
=10 =
(4.5)
k
where O(NZJ isuniformin A4,4,,---, A4, as N—>o, k=2,--- and
N( K
G, = j[]‘[hgjm (tj)]exp(—ixlt)dt, A#0,2,teR,
0\ j=l
Proof We will prove (4.5), by (4.1) we get
Cum{d('(N*M))(ﬂl)’,_,,d('(N*M))(/Ik)}
kT (R 2 S
=(2n)z p [Hj(haj (tj)) dtj] [ .[{Hhaj (tJ)Jexp( |Zijtj]
i=lo 0o o\t =1
><Cala2 -y (t1_tkv t s tk)dtl' dt,
2143
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let t; -t =u;,t =t j=12,---,k—1, and since

T(ﬁhe(um (u; + t)] h" (t)exp (-iat)dt - T[f{hi,”) (t, )J exp(—iAt)dt

k-1
< A'C Z|uj|
=1
for some constants A,C and (tj,uj,/le R, j :1,~~-,k),weget

C“m{dﬁi‘“*“””w),-'-,dﬁ'f“*“””uk)}

where

a1 ay, 8 (ull'“luk—1)|du1"'duk—1

since hng) (t j) satisfy Assumption Il for j=1,---,k then

T ) o, 7T, ) o

i=lo =

-

which implies to & =0 (T J , using (2.6) the proof is completed. O

5. Estimation

Using expanded finite Fourier transform (4.1), we construct the modified periodogram

as
1
|:1(13NM)(’1)=[275F’2 J h;N)(t)héN)(t)dt] a;(N’M)(/i)ag'(N’M)(/l), (5.1)

such that

(I+41)(N-M }+M

2

a"M(2)=J2n [ [HM(@)] ddl™ (2),
I(N-M)

where the bar denotes the complex conjugate. The smoothed spectral density estimate

is constructed as

) (2 _—jlabNM A)du,a,b=1,2, (5.2)

Theorem 5.1. Let X (t)(teR) be a strictly stationary r-vector valued continuous
time series with mean zero, and satisfy Assumption I. Let |§P (2) ={I§p (/I)}
be given by (3.6), and @, (t) satisfy Assumption IIfor a=1,2,---,r, then

a,b=1,2,---r
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E{15"™ (A)) = +o( ). po1 (5.3)
Cov {107 (2), 1107 (4,)} = Gy, Gy @) (0) L) (0))
|:Ga1aszlb2(Da1a2 (ﬂ'l ﬂ'z) blbz) (Al 2“2) aa, (2'1) bib, (_ﬂl) (5.4)
+G,, G,, o

aby “bjay by (ﬂ’l ﬂ"z) blaz (/11 +ﬂ‘2) by (j'l) ba, (_Al)
+ (Zn)Ga1b132bz(I)(a1b1)azbz (O) abashy (/11’_2'1’ ;{2):| + ( _1)

Cum {107 (4), -+ 1) (2]

[HGa,, (Y )le{f_[Gajb, exp[—"k (N —M)g(uj +7] )j (5.5)
<o (07, )Tt ) r0()

where the summation extends over all partitions

{(corm) (A7)} {(Ce 24 ). (de 77 )}, into pairs of the quantities

(a4 ). (b =4). (a4 ). (b —4 ) excluding the case with u; =-y, =4, for
some |,M, where O( 1) is uniformin A,---, 4, .

Proof. By (5.1), we have

E{II(N—M)

£ ()} =(p'e,0l) (0)  Efd ) (1) (1)
= Cov{d, "™ (2),d," ™ ()}

then by (4.3) the proof of (5.3) is completed. From (5.1), and by Theorem (2.3.2) in [10]
p- 21, we have

Cov{iipn ™ (4), 1™ (%)}
= Covd ”‘M)w)d;}“-““(—m,daz (a)d"““” )|
- oumfdl" ™ (2), 8 (=4). 4 (). 0" (~2,)]
+Covfa] “W), (g, )}cOv{d:fWm,déi“*“)(—ﬂz)}
") (2), ) (<2, Cov{di ™ (<2), i (2,)).
By Theorem (4.1) the proof of (5.4) is completed. From (5.1), we have
Cum{l.j,llg“’M) (4),, |;kk$—M) (4 )} =p* (ﬁeaibicpg“bi) (O)J—l

y Cum{d|1(N M)(//Ll)dl;lll(N—M)(_ﬂi)’“_’d;l;(N—M)(ﬂk)dé:k(N—M)(_zk)}

+Cov{

By Theorem (2.3.2) in [10] p. 21, we get

Cum{d'l(N M)(ﬂi)délh(NfM)(_ﬂi),'._’d;i(N—M)(ﬁk)dl;lik(N—M)(_ﬂk )}

=ZCum{d"(N’M)(A,,);i evl}mCum{d'i(N’M)(l,);i evs},
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where the summation extends over all indecomposable partitions v =[Usj:lv]} el,
I =(a,--,a;b, b)), 1<s<k ofthe transformed table

(@A), (0 =2) (e, ), (dyrr)}
(aZ'}“Z)’(b '_2‘2) _){(Czuuz)'(dp?/z)}

(a4 ). (b —4) {(Ck.’f“k)'(dk%)}'

Then, by Theorem (4.1), we get the proof of (5.5). O
Theorem 5.2. Let X (t)(te R) be a strictly stationary r-vector valued time series

with mean zero, and satisfy Assumption I. Let |¢5N‘M)(1):{|;E)N‘M)(l)}a i be

given by (3.6), 24;,4;%4 #£0(mod2n) for 1<j<k<J and ®,(t) satisfy
Assumption IT for a=1,2,---,r. Then IY'(YN’M)(/lj), j=12,---,J are asymptotically
independent WS (1, frx (/Ij )) variates. Also if A=+m, +3m, . then I\ (A) is
asymptotically W, (1, fy, (1)) independent of the previous variates. Where, W, (7,Z)
denotes an rxr symmetric matrix-valued Wishart variate with covariance matrix X
and 7 degree of freedom and WS (y,Z) denotes an rxr Hermitian matrix-valued
complex Wishart variate with covariance matrix ¥ and y degree of freedom.

Proof. The proof comes directly from Theorem (4.2), for more details about Wishart
distribution see [26]. O

Theorem 5.3. Let X (t)(t€R) be a strictly stationary r-vector valued time series with
mean zero, and satisfy Assumption I. Let fa(bT) (l) be given by (3.7), a,b=12,---,r,
then

E{f) (A1)} = fu (2)+O(N) (5.6)
Cov{ 1) (4). 15 (&)}
= (Lol (o)l ( )ﬂ( (1) G (1.1,))

| Gy ()G, (1)U (2 =2 0] (£~ 2)

xexp(=il, (N =M)(4 = 4,)) fu, (4) iy, (-41) (5.7)
+ Gy, (I113) Gy, (11,1 D) (A + 2 ) DL (4 +2;)
XeXp( 2 (N=M)(Z +2,)) fup, () Fog, (=41)
+(21) Gyt (b bl 1) ©Uls, (0) T, (Ai,—ﬂi,ﬂ?)]dulduerO(N’l)
Proof. By (5.2), we have
1) ()} = L [Ef (2)
then by (5.3) the proof of (5.6) is completed. From (5.2), we get

Cov{f o (). o ( }=_”C0V{ " (A), ;(E;M)(ﬂz)}dulduz.
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which completes the proof of (5.7). O
Theorem 5.4. Let X (t)(teR) be a strictly stationary r-vector valued time series
with mean zero, and satisfy Assumption I. Let fa'éNfM) (4) be given by (5.2),
a,b=12--r, 22,4, £ 4 #0(mod2r) for 1< j<k<J,Then
Lfa',ENfM) (/”LJ-), j=1,2,---,J are asymptotically independent W* (L, fa (Aj )) variates.
Also if 2 =2m,43r,-. then Lfy" ™) (1) is asymptotically W, (L, f;,(4)) indepen-
dent of the previous variates.
Proof. The proof comes directly by Theorem (5.3) and Theorem (7.3.2) in [26] p.

162. t
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