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Abstract 
The key objective of this paper is to improve the approximation of a sufficiently 
smooth nonperiodic function defined on a compact interval by proposing alternative 
forms of Fourier series expansions. Unlike in classical Fourier series, the expansion 
coefficients herein are explicitly dependent not only on the function itself, but also 
on its derivatives at the ends of the interval. Each of these series expansions can be 
made to converge faster at a desired polynomial rate. These results have useful im-
plications to Fourier or harmonic analysis, solutions to differential equations and 
boundary value problems, data compression, and so on. 
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1. Introduction 

There is perhaps no better way starting the discussion than quoting directly from 
Iserles and Nørsett [1]: “By any yardstick, Fourier series are one of the greatest and 
most influential concepts of contemporary mathematics. … It is thus with a measure of 
trepidation and humility that we wish to pursue a variation upon the Fourier theme in 
this paper.” Since trigonometric series was first used by d’Alembert in 1747, the full 
formation of Fourier theories surprisingly took more than a century of endeavors hig-
hlighted by the famous d’Alembert-Euler-Bernoulli controversy and many important 
and/or pioneering contributions from Euler, Dirichlet, Lagrange, Lebesgue and other 
leading mathematicians of the time. Nevertheless, it was not long before mathemati-
cians and scientists came to appreciate the power and far-reaching implications of 
Fourier’s claim that any function could be expanded into a trigonometric series. Fouri-
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er’s discovery is easily ranked in the “top ten” mathematical advances of all time. 
Despite what has been said, the Fourier series will lose much of its luster when used 

to expand a sufficiently smooth nonperiodic function defined on a compact interval. It 
is well known that a continuous function can always be expanded into a Fourier series 
inside the interval (the word “inside” is highlighted to emphasize the fact that the two 
end points shall not be automatically included). This is actually the primary reason for 
the inefficiency of the Fourier series in approximating a nonperiodic function, and, 
understandably, in solving various boundary value problems. This work is aimed at 
overcoming the said difficulties associated with the conventional Fourier series. 

It is known that a continuous function f(x) defined on the interval [−π, π] can always 
be expanded into a Fourier series  

( ) 0
1

2 cos sin ,    π πm m
m

f x a a mx b mx x
∞

=

= + + − < <∑ ,          (1.1) 

where the expansion coefficients are calculated from 

( )π

π

1 cos d
πma f x mx x

−
= ∫ ,                     (1.2) 

and 

( )π

π

1 sin d
πmb f x mx x

−
= ∫ .                     (1.3) 

The Fourier series, (1.1), reduces to 

( )
1

sinm
m

f x b mx
∞

=

= ∑                         (1.4) 

if f(x) is an odd function;  
and to 

( ) 0
1

2 cosm
m

f x a a mx
∞

=

= +∑                      (1.5) 

if f(x) is an even function.  
The convergence of the Fourier series, (1.1), is well understood through the following 

theorems. 
THEOREM 1. If ( )f x  is an absolutely integrable piecewise smooth function of pe-

riod of 2π, then the Fourier series of ( )f x  converges to ( )f x  at points of continui- 

ty and to ( ) ( )1 0 0
2

f x f x+ + −    at points of discontinuity. If ( )f x  is continuous 

everywhere, then the series converges absolutely and uniformly.  
Proof. Pages 75-78 of Ref. [2]. 
THEOREM 2. For any absolutely integrable function ( )f x , its Fourier coefficients 

satisfy  

lim lim 0.m mm m
a b

→∞ →∞
= =                         (1.6) 

Proof. Pages 70-71 of Ref. [2]. 
THEOREM 3. Let ( )f x  be a continuous function of period 2π, which has n deriva-
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tives, where n − 1 derivatives are continuous and the n-th derivative is absolutely in-
tegrable (the n-th derivative may not exist at certain points). Then, the Fourier series of 
all n derivatives can be obtained by term-by-term differentiation of the Fourier series of 
( )f x , where all the series, except possibly the last, converge uniformly to the corres-

ponding derivatives. Moreover, the Fourier coefficients of the function ( )f x  satisfy 
the relations 

lim lim 0.n n
m mm m

a m b m
→∞ →∞

= =                      (1.7) 

Proof. Pages 84, 130, and 131 of Ref. [2]. 
As a matter of fact, (1.7) can be replaced by more explicit expressions [3] [4] 

( )1n
m ma b m− −= = O                         (1.8) 

and 

( ) ( ) ( )
π π
max n

Mx
f x S x M −

− ≤ ≤
− = O                    (1.9) 

where ( )MS x  is the partial sum of the Fourier series defined as 

( )
1

0
1

2 cos sin .
M

M m m
m

S x a a mx b mx
−

=

= + +∑               (1.10) 

The aforementioned convergence theorems are established based on the condition 
that f(x) is a periodic function of period 2π. It is known that the Fourier series of an 
analytic 2π-periodic function can actually converge at an exponential rate [5]. However, 
once the periodicity condition is removed, the convergence of a series expansion can be 
seriously deteriorated or even there is no convergence in the maximum norm. When 
f(x) is defined only on a compact interval [−π, π], it can be viewed as the part of the 
2π-periodic function which is the periodic extension of f(x) onto the whole x-axis. 
Thus, even f(x) is sufficiently smooth on [−π, π], the extended periodic function may 
only be piece-wise smooth due to the potential discontinuities at π 2 πx m= ±  
( 0,1, 2,m =  ). As a consequence, the series expansion of f(x) converges to f(x) for 
every x ∈ (−π, π), and to ( ) ( )π 2f fπ− +    at x = ±π. Understandably, such a 
Fourier expansion converges very slowly.  

Assume, for example, that ( )f x  is continuous on [−π, π] with an absolutely in-
tegrable derivative (which may not exist at certain points). Then we have 

( ) ( )
1

~ ( 1) cos sin  
2

m
m m

m

cf x mb c mx ma mx
∞

=

 ′ + + − − ∑          (1.11) 

where am and bm are the Fourier coefficients of ( )f x  and ( ) ( )1 π π
π

c f f= − −   . Since  

the Fourier coefficients of an absolutely integrable function tend to zero as m →∞  
(Theorem 2), it is obvious that 

lim 0mm
ma

→∞
= ,                         (1.12) 

and 

( ) 1lim 1 m
mm

mb c+

→∞
 − =  .                      (1.13) 
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If ( ) ( )π πf f= − , then we have 
lim 0mm

mb
→∞

=                           (1.14) 

which recovers the convergence rate for a continuous 2π-periodic function. Unfortu-
nately, the condition, ( ) ( )π πf f= − , is generally not true for an arbitrary function.  

In recognizing this slow convergence problem, the subtraction of polynomials has 
been developed to remove the Gibbs phenomenon with ( )f x  (or its related deriva-
tives) and to thus accelerate the convergence of resulting Fourier expansions [6]-[12]. 
In polynomial subtraction schemes, a new (or corrected) function ( )F x  will be 
created with a desired smoothness through removing the potential jumps, such as, at 
the end points 

( ) ( ) ( )f x F x h x= +                        (1.15) 

where ( )h x  is a polynomial of degree 2K + 1, satisfying  
( ) ( ) ( ) ( ) ( )π π , 0,1,2, , .k kh f k K± = ± =                 (1.16) 

The polynomials can be easily constructed, for example, using the Lanczos’s system 
of polynomials:  

( )1 πp x x= ,                                 (1.17) 

( ) ( )1 ,    2,3,k kp x p x k−′ = =                     (1.18) 

and 

( ) ( )2 1 2 10 π 0,      1, 2, .k kp p k+ += = =                  (1.19) 

Lanczos polynomials of even (odd) degrees are obviously even (odd) functions. It 
should be noted that Lanczos polynomials are closely related to Bernoulli polynomials 
which are also widely used in the methods of polynomial subtraction.  

The first few Lanczos polynomials can be explicitly expressed as 

( )1 πp x x=                                     (1.20) 

( ) ( )2 2
2 3 π 6πp x x= −                            (1.21) 

( ) ( )3 2
3 π 6πp x x x= −                             (1.22) 

( ) ( )4 2 2 4
4 15 30π 7π 360πp x x x= − + .                (1.23) 

For complete Fourier expansion of ( )F x , 

( ) ( ) ( ) ( ) ( ) ( )1
0

1 π π
2

K
k k

k
k

h x f f p x+
=

 = − − ∑ .              (1.24) 

For the sine expansion of ( )F x , 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
2 1 2 1

0
0 π π

K
k k

k k
k

h x f p x f p x+ +
=

 = − + ∑ .         (1.25) 

For the cosine expansion of ( )F x : 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1
2 2 2 2

0
π 0 π

K
k k

k k
k

h x f p x f p x+ +
+ +

=

 = − − ∑ .        (1.26) 



W. L. Li 
 

1828 

Assume that ( )f x  is Cn−1 continuous on [−π, π] and its n-th derivative is absolute-
ly integrable. Then the corrected function ( )F x  can be periodically extended into a 
2π-periodic function of: a) CK continuity for K ≤ n − 1 in (1.12); b) C2K+1 continuity for 
2K + 1 < n in (1.13) and c) C2K+2 continuity for 2K + 2 < n in (1.14). 

By recognizing the slower convergence of sine series than its cosine counterpart, a 
modified Fourier series was proposed as [1] 

( ) 0
1

12 cos sin .
2m m

m
f x a a mx b m x

∞

=

 = + + − 
 

∑             (1.27) 

If ( )f x  is differentiable and its derivative has bounded variation, the expansion 
coefficients, am and bm, in (1.15) will both decay like ( )2m−O  [13] [14], which is still 
considered relatively slow in many cases. 

2. An Alternative Form of Fourier Cosine Series 

For a sufficiently smooth function ( )f x  defined on a compact interval [0, π], it can 
always be expanded into  

( ) 0
1

2 cos ,      0 πm
m

f x a a mx x
∞

=

= + ≤ ≤∑                (2.1) 

where 

( )π

0

2 cos d
πma f x mx x= ∫ .                      (2.2) 

It is known that expansion coefficients am decay like ( )2m−O . 
To accelerate the convergence and maintain a close similarity to classical Fourier se-

ries, an alternative trigonometric expansion of ( )f x  is here sought in the form of 

( ) [ ]( )
2

,2 0
1 1

2 cos  sin ,    0 π
P

P m p
m p

f x f x a a mx b px x
∞

∞
= =

= = + + ≤ ≤∑ ∑F     (2.3) 

where 

( )
2π

0
1

2 sin cos d
π

P

m p
p

a f x b px mx x
=

 
= − 

 
∑∫                 (2.4) 

and coefficients bp are to be determined as described below.  
THEOREM 4. Let ( )f x  have Cn−1continuity on the interval [0, π] and its n-th de-

rivative is absolutely integrable (the n-th derivative may not exist at certain points). If n 
≥ 2, then the Fourier coefficient am, as defined in (2.4), decays at a polynomial rate as  

( )2lim 0   2P
mm

a m P n
→∞

= ≤                       (2.5) 

provided that  

( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 2 1
2

1
2 1 π 0 2

P q q q q
p

p
b p f f− − − −

=

 = − + ∑            (2.6) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1
2 1

1
2 1 1 π 0 2,    1, 2, , .

P q q q q
p

p
b p f f q P− − −

−
=

 − = − − = ∑     (2.7) 
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Proof. By integrating by part, we have  

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

π

0
π

π

0
0

π
π

2 20
0

1 ππ2 1 2
2 201 0

1
2 1 2 1

2

π 2 cos d

sin 1 sin d                 

cos 1 cos d                 

1 cos 1
cos d                 

1
1 π 0

m

q QQ
q Q

q Q
q

q
m q q

q

f f x mx x

mx f x f x mx x
m m

mx f x f x mx x
m m

mx
f x f x mx x

m m

f f
m

−
−

=

−
− −

=

′= −

′ ′′= −

− −
= +

−  = − − 

∫

∫

∫

∑ ∫

( ) ( ) ( )2
2

1 0

1
cos d .

QQ
Q

Q
q

f x mx x
m

π

=

−
+∑ ∫

 (2.8) 

Denote ( )
2

1
sin  

P

p
p

h x b px
=

= ∑ , then 

( )

( ) ( )

( ) ( )

( )

( )

( )

π2

1 0
π2

1 0
π

2

1 0
2

2 2
1

3 52

2 4 6
1

2 1
2

1

π 2 sin cos d

1 sin sin d
2

cos cos1
2

1 1

1 1

1 1 1

P

m p
p

P

p
p

P

p
p

P p m
p

p

P p m
p

p

Q
p m q

pq
q p

h b px mx x

b p m x p m x x

p m x p m x
b

p m p m

pb
m p

p p pb
m m m

p b
m

=

=

=

+

=

+

=

+ −

=

=

= + + −  

+ − 
= − + 

+ − 

 = − − −

  = − − + + +    

 = − − 

∑ ∫

∑ ∫

∑

∑

∑

∑



( )
2

2 2

1

P
Qm− −

=

 
+ 

 
∑ O

          (2.9) 

for sufficiently large m. 
Substracting (2.9) from (2.8) leads to  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 12 1 2 1
2

1 1

1 2 12 1 2 1
2

1 1

2 2 2
2

0

1
π 2 π 2 π 1

1
0 1

1
cos d  .

m qQ P q pq q
m m m pq

q p

qQ P qq q
pq

q p

Q
Q Q

Q

a f h f b p
m

f b p
m

f x mx x m
m

π

+ −
+ −− −

= =

−
−− −

= =

− −

−  
= − = − − 

 

−  
− − − 

 

−
+ +

∑ ∑

∑ ∑

∫ O

 (2.10) 

The first two terms in (2.10) vanish if  

( ) ( ) ( )
2 1 2 12 1

1
1 π

P q p qq
p

p
b p f+ − −−

=

− =∑                   (2.11) 

and 

( ) ( ) ( )
2 1 2 12 1

1
1 0 ,   1,2, , .

P q qq
p

p
b p f q Q− −−

=

− = =∑              (2.12) 
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In order to have a unique and smallest set of coefficients, bp, we set Q = P in (2.11) 
and (2.12), or equivalently, in (2.6) and (2.7). The convergence estimate, (2.5), becomes 
evident from (2.10) according to Theorem 2.                                  

Remark. If 2P n< , the relationship, (2.5), in Theorem 4 can be modified to  
2 1lim 0P

mm
a m +

→∞
=                          (2.13) 

or, more explicitly,  

( )2 2~ .P
ma m− −O                         (2.14) 

Alternatively, (2.4) can be expressed as 

( )
2π

0
1

2 cos d
π

P

m mp p
p

a f x mx x bα
=

= −∑∫                  (2.15) 

where 

( )
( )2 2

2 1 1
         for ,

π

0                                 for .

m p

mp

p
m p

m p

m p

α

+  − −  ≠=  −


=

               (2.16) 

Equations (2.6) and (2.7) can be rewritten in matrix form as 

1 1 1

2 2 2

     
=    

     

A B F
A B F
0

0
                      (2.17) 

where 

[ ] ( )2 1
1 ,

2 1 q
p q p −= −A                        (2.18) 

[ ] ( )2 1
2 ,

2 q
p q p −=A                          (2.19) 

{ }T
1 1 3 2 1 2 1p Pb b b b− −=B                   (2.20) 

{ }T
2 2 4 2 2p Pb b b b=B                     (2.21) 

( ) ( ) ( ) ( ) ( ) ( ){ }T1 3 2 1 2 1
1 1 1q Pq Pf f f f− −

− − − −= − − −F           (2.22) 

and 

( ) ( ) ( ) ( ) ( ) ( ){ }T1 11 3 2 1 2 1
2 1 1q Pq Pf f f f− −− −

+ + + += − − −F          (2.23) 

in which 
( ) ( ) ( ) ( ) ( )2 1 2 1 2 1π 0 2q q qf f f− − −
+

 = +                   (2.24) 

and 
( ) ( ) ( ) ( ) ( )2 1 2 1 2 1π 0 2q q qf f f− − −
−

 = −  .                (2.25) 

Determination of the coefficients, B1 and B2, involves the inversion of a Vander-
monde-like matrix  
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( )

1 2
3 3 3 3
1 2

2 1 2 1 2 1 2 1
1 2

2 1 2 1 2 1 2 1
1 2

            , 1, 2,3, ,

j P

j P

i i i i
j P

P P P P
j P

x x x x
x x x x

i j P
x x x x

x x x x

− − − −

− − − −

 
 
 
 

= = 
 
 
 
  

X

 

 

     



 

     

 

   (2.26) 

which is always invertable if xk ≠ xj for j ≠ k.  
Consider a polynomial of degree 2P − 1 

( )
2 2

2 1
2 2

11

P P
kk

i ik
kki i k

k i

x xxx c x
x x x

φ −

==
≠

−
= =

− ∑∏ .                 (2.27) 

Then it is obvious that 

( ) 2 1

1

P
k

i j ik j ij
k

x c xφ δ−

=

= =∑                      (2.28) 

where δij is Kronecker’s symbol.  
According to (2.28), matrix C = [cik] is actually the inverse of matrix X. 
To find an explicit expression for matrix C, let 

( ) ( )
1

2 2 2 2 2 2
2 2 2 2

0 01 1

1 1 
P PP P

q q
q q q q

q qq qi i
q i

x x x x x x
x x x x

β α
−

= == =
≠

− = = − =
− −∑ ∑∏ ∏     (2.29) 

where 

( )
1 2

1

2 2 2

1
 1

P q
P q

q
q j j j

j j P
x x xα

−
−≤ < < ≤

= −∑


                 (2.30) 

and 

2
2 2

0

1 q
s

q s iq
si

x
x

β α+
=

= − ∑ .                      (2.31) 

Thus, we have 

( )
( )

1
2 2 1

2 1
2 2 1 0

1

1 1 qP
s q

i s iP q
q si

i j
j
j i

x x x
xx x

φ α
−

−
+

= =

=
≠

 
= −  

 −
∑ ∑

∏
.            (2.32) 

Comparing (2.32) with (2.27) leads to 

( )

1
2

0

2 1 2 2

1

k
s

s i
s

ik P
k

i i j
j
j i

x
c

x x x

α
−

=

+

=
≠

= −
−

∑

∏
                     (2.33) 

or 

( )

( )

1
1

1

1 2 2

1
, ,

2 2

1

1
P k

P k
P k

k
j j

j j P
j j i

ik P

i j i
j
j i

x x

c
x x x

−
−

−

+

≤ < < ≤
≠

=
≠

−

=
−

∑

∏







.                 (2.34) 
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In light of (2.34), the coefficients bp ( 1, 2, , 2p P= 
) can be obtained as  

( ) ( ) ( ) ( ) ( ) ( )
( )

1
1

1

2 2

1
, ,2 1 2 1

2 21

1

1 π 1 0 ,

P k
P k

P k

j j
j j PP p p j j ik k

p P
k

i j i
j
j i

x x

b f f
x x x

−
−

−

≤ < < ≤
≠− −

=

=
≠

 = − + − 
−

∑
∑

∏







 

( )
2 1    if  is odd

 ,      1, 2, ,
2       if  is eveni

i p
p x i P

i p
−

= = =


 .           (2.35) 

By making use of (2.21), the first few coefficients, for example, are readily found as:  
( )1

1b f−= −                            (2.36) 

and 
( )1

2 2b f+=                           (2.37) 

for P=1; 
( ) ( )1 3

1 9 8 8b f f− −= − −                       (2.38) 

( ) ( )1 3
2 2 3 24b f f+ += +                       (2.39) 

( ) ( )1 3
3 24 24b f f− −= +                       (2.40) 

and 
( ) ( )1 3

4 12 48b f f+ += − −                      (2.41) 

for P = 2; 
( ) ( ) ( )1 3 5

1 75 64 17 96 192b f f f− − −= − − −                (2.42) 

( ) ( ) ( )1 3 5
2 3 4 13 192 768b f f f+ + += + +                  (2.43) 

( ) ( ) ( )1 3 5
3 25 384 13 192 384b f f f− − −= + +               (2.44) 

( ) ( ) ( )1 3 5
4 3 20 24 960b f f f+ + += − − −                   (2.45) 

( ) ( ) ( )1 3 5
5 3 640 192 1920b f f f− − −= − − −                (2.46) 

and 
( ) ( ) ( )1 3 5

6 60 192 3840b f f f+ + += + +                  (2.47) 

for P = 3. 
EXAMPLE 1. Consider function ( ) ( )2  0 πf x Ax Bx C x= + + ≤ ≤ . Its conventional 

Fourier expansions are easily obtained as  

( ) ( )2

2
1 1

ππ π cos 2  sin 2 ,      0 π
3 2 m m

B AA B Af x C mx mx x
mm

∞ ∞

= =

+
= + + + − < <∑ ∑  (2.48) 

or 

( )
1

2π π 0 π
3

cos
2

,m
m

A Bf a mxx C x
∞

=

= + + ≤+ ≤∑           (2.49) 

where 
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( ) ( )
2

2 1 2 4 π
.

π

m

m

B B A
a

m
− + − +

=                    (2.50) 

Under the current framework, this function can be expanded as:  

( )

( )
1

π cos
2

1πsin π sin 2 ,  0 π
2

m
m

BA C a mx

A x x

f x

A xB

∞

=

= + + +

− + ≤+ ≤

∑
           (2.51) 

where 

( )
( )
( )

2 2

2 2

4 if is even
1

16 π
if is odd

π 4

m

A m
m m

a
A B

m
m m

−
 −

=  +
 −

                 (2.52) 

for P = 1; 

( ) ( )

( ) ( )

2

1

1 π 9 π20 3π cos sin
9 2 8

2 π 1π sin 2 sin 3 π sin 4 ,
3 24

 
12

0 π

m
m

B AA C a mx x

AB A x

f x

xx B A x

∞

=

= + + + + −

+ + − + ≤+ ≤

∑
   (2.53) 

where 

( )( )
( )

( )( )

2 2 2

2 2 2

36 if is even
1 9

256 π
if is odd

π 4 16

m

A m
m m m

a
A B

m
m m m


 − −

=  − +
 − −

             (2.54) 

for P = 2; 

( )
( )

( ) ( )

( )

2

1

518 75π π 75 πcos sin
225 2 64

3 25 π 3π sin 2 sin 3 π sin 4
4 384 20
3 π 1sin 5 π sin 6 ,
640 6

0 π
0

 

m
m

A B AC a mx x

AB A x x B A x

A x B A x

f x

x

∞

=

+
= + + + −

+ + + +

− + + ≤

−

≤

∑

      (2.55) 

where 

( )( )( )
( )

( )( )

2 2 2 2

2 2 2 2

900 if is even
1 9 25

9216 π
if is odd

π ( 4) 16 36

m

A m
m m m m

a
A B

m
m m m m

−
 − − −

=  +
 − − −

         (2.56) 

for P = 3. 
A graphic display of the results, (2.48), (2.49), (2.51), (2.53) and (2.55), is given in 

Figure 1 for A = 4, B = 2, and C = 1. The corresponding truncation errors are plotted in 
Figure 2 and Figure 3.  
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Figure 1. Decays of expansion coefficients:  bm in (2.48),  am in (2.49),  
am in (2.51),  am in (2.53), and  am in (2.55).  

3. An Alternative Form of Fourier Sine Series 

Similarly, ( )f x  can also be expanded into sine series:  

( ) [ ]( )
2

,2
1 1

sin  cos ,     0 π
P

P m p
m p

f x f x a mx b px x
∞

∞
= =

= = + ≤ ≤∑ ∑F        (3.1) 

where bp are the expansion coefficients to be determined, and  

( )
2π

0
1

2 cos sin d
π

P

m p
p

a f x b px mx x
=

 
= − 

 
∑∫ .               (3.2) 

THEOREM 5. Let ( )f x  have Cn−1 continuity on the interval [0, π] and the n-th de-
rivative is absolutely integrable (the n-th derivative may not exist at certain points). 
Then for 2 1P n≤ +  the Fourier coefficients of ( )f x  defined in (3.1) decay at a po-
lynomial rate as  

( )2 1lim 0   2 1P
mm

a m P n−

→∞
= ≤ +                     (3.3) 

provided that  

( ) ( ) ( ) ( ) ( ) ( )2 2 1 2 2 2 2
2

1
2 1 π 0 2

P q q q q
p

p
b p f f− − − −

=

 = − + ∑            (3.4) 

and 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
2 1

1
2 1 1 π 0 2,     1, 2, ,

P q q q
p

p
b p f f q P− − −

−
=

 − = − + = ∑  .  (3.5) 

Proof. By integrating by part, we have  

( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2π

0
1

π π2 2

1 100

2 12 2 2 22 2 2 2
2 1 2 1

1 1

π 2 cos sin d

cos 1cos ( ) cos cos d                 

1 1
π 1 0 1

P

m p
p

P P

p p
p p

q m qQ P p q qq qq q
p pq q

q p

a f x b px mx x

mxf x b px f x b px mx x
m m

f b p f b p
m m

=

= =

+
+ − −− −− −

− −
= =

 
= − 

 

   
′ ′= − − + −   

   

− − 
= − − − − − 

 

∑∫

∑ ∑∫

∑ ∑

( ) ( ) ( ) ( )

2 1

1

π 2
2 1 2 1

2 1
10

1
cos cos d .

P

p

Q P
Q Q

pQ
p

f x b px mx x
m

=

− −
−

=

 
 
 

−  
− − 

 

∑

∑∫

 (3.6) 

The first two terms in (3.6) will both vanish if 

( ) ( ) ( )
2 1 2 22 2

1
1 π

P p q qq
p

p
b p f+ − −−

=

− =∑                    (3.7) 

and 
 

 

Figure 2. Truncation errors, ( ) [ ]( ),2M Pf x f x− F , for the series expansions:  (2.48),  (2.49), 

 (2.51),  (2.53), and  (2.55). M = 20.  
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Figure 3. Errors, ( ) [ ]( ),2Mf x f x− F , for series expansion (2.51):  M = 10,  M = 20 and 

 M = 40.  
 

( ) ( ) ( )
2 1 2 22 2

1
1 0 ,     1, 2, , .

P q qq
p

p
b p f q Q− −−

=

− = =∑               (3.8) 

In order to have a unique and smallest set of coefficients, bp, we set Q = P in (3.7) and 
(3.8), or equivalently, in (3.4) and (3.5). The convergence estimate, (3.3), then becomes 
evident according to Theorem 2.                                            

Remark. If 2 1P n< + , the relationship (3.3) can be modified to  
2lim 0P

mm
a m

→∞
=                           (3.9) 

which can be further written in a shaper form as  

( )2 1~ ,    for sufficiently large .P
ma m m− −O               (3.10) 

The expansion coefficients, am, can be alternatively expressed as 

( )
2π

0
1

2 sin d
π

P

m mp p
p

a f x mx x bβ
=

= −∑∫                  (3.11) 

where 

( )
( )2 2

2 1 1
         for ,

π

0                                 for .

m p

mp

m
m p

p m

m p

β

+  − −  ≠=  −


=

               (3.12) 
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Actually,  

mp pmβ α=  (see (2.16)).                     (3.13) 

We can rewrite (3.4) and (3.5) in matrix form as 

1 1 1

2 2 2

     
=    

     

A B F
A B F
0

0
                     (3.14) 

where 

[ ] ( )2 2
1 ,

2 1 q
p q p −= −A                        (3.15) 

[ ] ( )2 2
2 ,

2 q
p q p −=A                          (3.16) 

( ) ( ) ( ) ( ) ( ) ( ){ }T1 10 2 2 2 2 2
1 1 1q Pq Pf f f f+ +− −

− − − −= − − −F         (3.17) 

and 

( ) ( ) ( ) ( ) ( ) ( ){ }T0 2 2 2 2 2
2 1 1q Pq Pf f f f− −

+ + + += − − −F   .       (3.18) 

Following the same procedures as described earlier, coefficients bp can be obtained 
from 

( ) ( ) ( ) ( ) ( ) ( )
( )

1
1

1

2 2

1
, ,2 2 2 2

2 21

1

1 π 1 0

P k
P k

P k

j j
j j PP p p j j ik k

p P
k

j i
j
j i

x x

b f f
x x

−
−

−

≤ < < ≤
≠− −

=

=
≠

 = − + − 
−

∑
∑

∏







, 

( )
2 1    if  is odd

,      1, 2, , .
2       if  is eveni

i p
p x i P

i p
−

= = =


            (3.19) 

Using this formula, the first several coefficients are easily determined as:  
( )0

1b f−= −                            (3.20) 

and 
( )0

2b f+=                             (3.21) 

for P = 1; 
( ) ( )0 2

1 9 8 8b f f− −= − −                       (3.22) 

( ) ( )0 2
2 4 3 12b f f+ += +                       (3.23) 

( ) ( )0 2
3 8 8b f f− −= +                         (3.24) 

and 
( ) ( )0 2

4 3 12b f f+ += − −                       (3.25) 

for P = 2; 
( ) ( ) ( )0 2 4

1 75 64 17 96 192b f f f− − −= − − −                (3.26) 

( ) ( ) ( )0 2 4
2 3 2 13 96 384b f f f+ + += + +                   (3.27) 
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( ) ( ) ( )0 2 4
3 25 128 13 64 128b f f f− − −= + +                (3.28) 

( ) ( ) ( )0 2 4
4 3 5 6 240b f f f+ + += − − −                    (3.29) 

( ) ( ) ( )0 2 4
5 3 128 5 192 384b f f f− − −= − − −                (3.30) 

and 
( ) ( ) ( )0 2 4

6 10 32 640b f f f+ + += + +                     (3.31) 

for P = 3. 
EXAMPLE 2. Consider function ( ) ( )2  0 πf x Ax Bx C x= + + ≤ ≤ . The classical sine 

series expansion of this function is easily found as  

( )
1

sinm
m

f a mxx
∞

=

= ∑                        (3.32) 

where 

( )

( )

2 2

3

2 2 π π 8
if is odd,

π
2 π

if is even.
m

m c B A A
m

ma
B A

m
m

 + + −

= 

+
−

           (3.33) 

In the context of the current framework, this function can be expressed as  

( ) ( )

( )

2

1

2

1sin π π cos
2

1 2 π π cos 2 π,  
2

0

m
m

a mx B A x

C B xA

f x

x

∞

=

= − +

+ + ≤+ ≤

∑
            (3.34) 

where 

( )
( )

( )
( )

2 2

3 2

2

32 8 2 π 1 π
if is odd

4 π

2 π
if is even

1

m

A m C B A
m

m m
a

B A
m

m m

  − + + + 
 −= 

+


−

        (3.35) 

for P = 1; 

( ) ( )

( ) ( )

( )

1

2

2

9sin π π cos
16

1 18 4 π 4 π cos 2 π π cos3
6 16
1 2 π π co 4 ,
6

 πs 0

m
m

a mx B A x

A C B A x B A x

A

f

C B A x

x

x

∞

=

= − +

+ + + + + +

+ + + ≤− ≤

∑

     (3.36) 

where 

( )
( )( )

( ) ( )
( )( )

2 2

2 2 2

3 2 2

18 π
if is even

1 9

128 2 π 32 5 4π 16
if is odd

π 4 16

m

B A
m

m m m
a

m C B A m
m

m m m

 +
−

− −=   + + + −  


− −

   (3.37) 
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for P = 2. 

4. An Alternative Form of Fourier Series Expansion 

Let ( )f x  be defined on the interval [−π, π]. It can also be expanded into a complete 
trigonometric series as 

( ) [ ]( )

( )( ) ( )( )
( )

,2 ,2

0 2 , 2 ,
1

2 , 2 ,

2 sgn cos sgn sin

0,  for 2 ; 0,  for 2 ,    π π

P Q

m Q m m P m
m

Q m P m

f x f x

a a a x mx b b x mx

a m Q b m P  x

∞

∞

=

=

= + + + +

≡ > ≡ > − ≤ ≤

∑

F

   (4.1) 

where am and bm are the expansion coefficients to be calculated from 

( ) ( )
2π

2 ,π
1

1 sgn sin cos d
π

P

m P p
p

a f x b x px mx x
−

=

 
= − 

 
∑∫            (4.2) 

( ) ( )
2π

2 ,π
1

1 sgn cos sin d
π

Q

m Q q
q

b f x a x qx mx x
−

=

 
= − 

 
∑∫             (4.3) 

and 2 ,Q ma  and 2 ,P mb  are to be determined as follows. 
THEOREM 6. Let ( )f x  have Cn−1 continuity on the interval [−π, π] and the n-th 

derivative is absolutely integrable (the n-th derivative may not exist at certain points). 
Then the Fourier coefficients of ( )f x , as defined in (4.2)and (4.3), decay at a poly-
nomial rate as  

( )2lim 0   2P
mm

a m P n
→∞

= ≤                       (4.4) 

and 

( )2 1lim 0   2 1Q
mm

b m Q n−

→∞
= ≤ +                     (4.5) 

provided that  

( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 2 1
2 ,2

1
2 1 π π 4

P r r r r
P p

p
b p f f− − − −

=

 = − − − ∑                    (4.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1
2 ,2 1

1
2 1 1 π π 4,      1, 2, ,

P r r r r
P p

p
b p f f r P− − −

−
=

 − = − − − = ∑   (4.7) 

( ) ( ) ( ) ( ) ( ) ( )2 2 1 2 2 2 2
2 ,2

1
2 1 π π 4

Q
r r r r

Q q
q

a q f f− − − −

=

 = − − − ∑                   (4.8) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
2 ,2 1

1
2 1 1 π π 4,   1, 2, ,

Q
r r r r

Q q
q

a q f f r Q− − −
−

=

 − = − − − = ∑  . (4.9) 

Proof. Function ( )f x  can be considered as the superposition of an even function
( ) ( ) ( ) 2g x f x f x= + −    and an odd function ( ) ( ) ( ) 2h x f x f x= − −   . Theorems 

4 is then directly applicable to g(x) on [0, π]. Thus, (4.4) holds if  

( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 2 1
2 ,2

1
2 1 π 0 2

P r r r r
P p

p
b p g g− − − −

=

 = − + ∑           (4.10) 
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and 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1
2 ,2 1

1
2 1 1 π 0 2,    1, 2, ,

P r r r r
P p

p
b p g g r P− − −

−
=

 − = − + = ∑  . (4.11) 

Since 
( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1

0
0 2 0r r r

x
g f x f x− − −

=
 = − − ≡              (4.12) 

and 
( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1π π π 2r r rg f f− − − = − −  ,              (4.13) 

(4.10) and (4.11) can be rewritten as (4.6) and (4.7), respectively.  
Similarly, relationship (4.5) is readily obtained from applying Theorem 5 to the odd 

function h(x) on interval [0, π] by recognizing that  
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

0
0 2 0r r r

x
h f x f x− − −

=
 = − − ≡              (4.14) 

and 
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2π π π 2r r rh f f− − − = − −  .              (4.15) 

The expansion coefficients of g(x) are determined from  

( ) ( )

( ) ( )

( )

2π
2 ,0

1

π 0

0 π

2 2π 0
2 , 2 ,0 π

1 1

2π π
2 ,π π

1

2 sin cos d
π 2
1 1cos d cos d
π π

1 1sin cos d sin cos d
π π

1 1( )cos d sgn sin cos d .
π π

P

m P p
p

P P

P p P p
p p

P

P p
p

f x f x
a b px mx x

f x mx x f x mx x

b px mx x b px mx x

f x mx x b x px mx x

=

−

−
= =

− −
=

+ − 
= − 

 

= +

− +

 
= −  

 

∑∫

∫ ∫

∑ ∑∫ ∫

∑∫ ∫

    (4.16) 

Similarly, the expansion coefficients of h(x) are determined from 

( ) ( )

( ) ( )

2π
2 ,0

1

2π π
2 ,π π

1

2 cos sin d
π 2

1 1sin d sgn cos sin d .
π π

Q

m Q q
q

Q

Q q
q

f x f x
b a qx mx x

f x mx x a x qx mx x

=

− −
=

− − 
= − 

 
 

= −  
 

∑∫

∑∫ ∫
     (4.17) 

The even (odd) extension of ( )
2

2 ,
1

sin
P

P p
p

g x b px
=

−∑  ( ( )
2

2 ,
1

cos
Q

Q q
q

h x a qx
=

−∑ ) onto 

[−π, 0) will lead to an even (odd) function ( ) ( )
2

2 ,
1

sgn sin
P

P p
p

g x b x px
=

−∑   

( ( ) ( )
2

2 ,
1

sgn cos
Q

Q q
q

h x a x qx
=

−∑ )on [−π, π]. Expression (4.1) will then become evident.  

Alternatively, (4.2) and (4.3) can be expressed as 

( )
2π

2 ,π
1

1 cos d
π

P

m mp P p
p

a f x mx x bα
−

=

= −∑∫                (4.18) 
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and 

( )
2π

2 ,π
1

1 sin d
π

Q

m qm Q q
q

b f x mx x aα
−

=

= −∑∫                 (4.19) 

where mpα  is given in (2.16). 
The coefficients 2 ,P pb  and 2 ,Q qa  are readily calculated from (2.35) and (3.19), re-

spectively, by letting 
( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2 1π π 4,     1, 2, ,r r r rf f f f r P− − − −
+ −

 = = − − =         (4.20) 

and 
( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2π π 4,    1, 2, , .r r r rf f f f r Q− − − −
+ −

 = = − − =        (4.21) 

EXAMPLE 3. Consider function ( ) ( )2  π πf x Ax Bx C x= + + − ≤ ≤ . Its classical 
Fourier expansion is easily found as  

( ) ( ) ( )2

2
1 1

1 1π 4 cos 2  sin ,    π π
3

m m

m m

Af x C A mx B mx x
mm

∞ ∞

= =

− −
= + + − − < <∑ ∑ . (4.22) 

By setting P = 0 and Q = 1 in (4.1), we have 

( ) ( )
2 ,1 2 ,2

π π π
4 2Q Q

f f Ba a
− −

= − = − = −                (4.23) 

and 

( ) ( ) ( )

( )

2

2
1

1

π sgn cos
2

π sg

1π 4 cos
3

 sin ,            n cos 2
2

   π π

m

m

m
m

B x x

B x x

Af x C A mx
m

b mx x

∞

=

∞

=

−
= + +

+ − ≤+ ≤

−∑

∑
     (4.24) 

where 

( )

( )

( )

1

2 ,1 1 2 ,2 2

2

2

2 if is even,
1

8 if is odd.
4

1 2m

m Q m Q m

B

B m
m m

B m
m

b a

m

a
m

α α
+

−

−

−
= − −



=

−








                (4.25) 

It is seen from (4.25) that the sine series now converges at a rate of m−3 which is fast-
er than m2 for its cosine counterpart. If desired, the convergence of the series expansion 
in the form of (4.1) can be further accelerated by setting P = Q = 1. Accordingly, in ad-
dition to (4.23), we have 

( ) ( )
2 ,1 2 ,22

π π
π

4

P Pb b

f f
A

= −

′ ′− −
= − = −

                  (4.26) 

and 
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( ) ( ) ( )

( ) ( )

( )

2

1

π πsgn cos sgn cos 2
2 2
ππ sgn sin

π 2
3

cos sin ,    π

sgn sin

π

2
2

m m
m

B Bx x x x

AA x x x x

Af x C A

a mx b mx x
∞

=

− +

−

= + −

+ + − ≤

+

≤∑

       (4.27) 

where 

( ) ( )

( )
2 ,1 1 2 ,2 2

2 2

2 2

4 if is even,
1

16 if is d

1

od .
4

4m

m P m P m

A m
m m

A
A

a
m

m m

b b
m

α α




− = − − =

−


−

−




    (4.28) 

The series expansion given in (4.27) will converge at a rate of m−3 in comparison with 
m−2 for that in (4.24).  

5. Corollaries 

COROLLARY 1. Let ( )f x  have Cn−1continuity on the interval [0, π] and the n-th de-
rivative is absolutely integrable (the n-th derivative may not exist at certain points). 
Assume n ≥ 2. Then ( )f x  can be expanded as 

( ) [ ]( ) ( ) ( ),2 0
1

2 cos ,   0 if 2 ,   0 πP m m m
m

f x f x a A mx m P xθ θ
∞

∞
=

= = + − ≡ > ≤ ≤∑F  (5.1) 

and 

( )2lim 0   2 .P
mm

A m P n
→∞

= ≤                       (5.2) 

Provided that  

2 2           for 1 2
                      otherwise
m m

m
m

a b m PA
a

 + ≤ ≤= 


                 (5.3) 

and 

( )1tanm m mb aθ −=                         (5.4) 

where ma  and mb  are calculated from(2.4) and (2.35), respectively. 
Proof. For 1 2m P≤ ≤ , denote 

cosm m ma A θ=                           (5.5) 

and 

sinm m mb A θ=                           (5.6) 

or, alternatively, (5.3) and (5.4).  
Then expansion (5.1) follows immediately from (2.3) in view that 

( )cos sin cos cos sin sin cos .m m m m m m m ma mx b mx A mx A mx A mxθ θ θ+ = + = −  

Since m mA a=  for 2m P> , (5.2) is evident from (2.5).                       
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COROLLARY 2. Let ( )f x  have Cn−1 continuity on the interval [0, π] and the n-th 
derivative is absolutely integrable (the n-th derivative may not exist at certain points). 
Then for 2 1P n≤ + , ( )f x  can be expanded as 

( ) [ ]( ) ( ) ( ),2
1

sin ,    0 if 2 ,   0 πP m m m
m

f x f x A mx m P xθ θ
∞

∞
=

= = + ≡ > ≤ ≤∑F   (5.7) 

and 
2 1lim 0P

mm
A m −

→∞
=                           (5.8) 

provided that Am and mθ  satisfy (5.3) and (5.4), and ma  and mb  are calculated from 
(3.2) and (3.19), respectively. 

Proof. By (5.5) and (5.6), we have  

( )
sin cos cos sin sin cos

sin , for 1 2 .
m m m m m m

m m

a mx b mx A mx A mx
A mx m P

θ θ

θ

+ = +

= + ≤ ≤
        (5.9) 

Thus, (5.7) and (5.8) become obvious from (3.1) and (3.3), respectively.           
COROLLARY 3. Let ( )f x  have Cn−1 continuity on the interval [−π, π] and the n-th 

derivative is absolutely integrable (the n-th derivative may not exist at certain points. 
Then for 2P n≤  and 2 1Q n≤ + , ( )f x  can be expanded as 

( ) [ ]( )

( )( ) ( )( )
( )

,2 ,2

0
1

2 cos sgn sin sgn ,   

     0 if 2 , 0 if 2     π π

P Q

m m m m
m

m m

f x f x

a A mx x B mx x

m P m Q x

θ φ

θ φ

∞

∞

=

=

 = + − + + 

≡ > ≡ > − ≤ ≤

∑

F

  (5.10) 

and 
2lim 0P

mm
A m

→∞
=                          (5.11) 

and 
2 1lim 0Q

mm
B m −

→∞
=                         (5.12) 

provided that  

2 2
2 ,           for 1 2

                      otherwise
m P m

m

m

a b m P
A

a

 + ≤ ≤= 


               (5.13) 

2 2
2 ,         for 1 2

                         otherwise
m Q m

m

m

b a m Q
B

b

 + ≤ ≤= 


                (5.14) 

( )1
2 ,tanm P m mb aθ −=                       (5.15) 

and 

( )1
2 ,tanm Q m ma bφ −=                       (5.16) 

where ma , mb , 2 ,Q ma  and 2 ,P mb  are defined in the same way as those in (4.1).  
Since Corollary 3 is obvious from Theorem 6 and Corollaries 1 and 2, its proof will 

not be given here.  
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Notice that in (5.1) 

( ) ( ) ( )( )cos e e e e
2

m mi mx i mx imx imxm
m m m m

A
A mx C Cθ θθ − − − −

−− = + = +       (5.17) 

where 

( ) ( ) 2        1 2e 1 cos sin
2 2 2                      otherwise 

mi
m mm

m m m m m
m

a ib m PA
C A iA

a

θ

θ θ
−  − ≤ ≤= = − = 


  (5.18) 

and *
m mC C− =  (superposed * indicates taking complex conjugate).  

Remark. In Corollary 1, (5.1) can be alternatively written as 

( ) [ ]( ),2 e ,    0 πimx
P m

m
f x f x A x

∞

∞
=−∞

= = ≤ ≤∑F              (5.19) 

where 

( ) 2        1 2
2                      otherwise 

m m
m

m

a ib m P
A

a
 − ≤ ≤= 


                (5.20) 

and *
m mA A− = . 

Similarly, (5.7) in Corollary 2 can be written as 

( ) [ ]( ),2

0

e ,      0 πimx
P m

m
m

f x f x A x
∞

∞
=−∞
≠

= = ≤ ≤∑F             (5.21) 

where 

( ) 2        1 2
2                      otherwise 

m m
m

m

a ib i m P
A

a i
 + ≤ ≤= 


                (5.22) 

and *
m mA A− = . 

And (5.9) in Corollary 3 as 

( ) [ ]( ),2 ,2 e ,    π πimx
P Q m

m
f x f x A x

∞

∞
=−∞

= = − ≤ ≤∑F            (5.24) 

where 

( )( ) ( )( )sgn sgn 2m m m m mA a a x i b b x = + − +              (5.25) 

and *
m mA A− = . 

6. Conclusion 

Alternative Fourier series expansions have been presented in an effort of better 
representing a sufficiently smooth function in a compact interval. The series expansions 
can take various forms, resulting in different rates of convergence. When one of the se-
ries expansions, for example, is used to solve a boundary value problem, its conver-
gence rate needs to be compatible with the smoothness of the solution “physically” dic-
tated by the problem. Thus, there may exist the best form for any given problem. 
Among other important applications, the new Fourier series will potentially lead to a 
new path for solving differential equations and boundary value problems. 
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