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Abstract 
In this paper, we give sufficient conditions for the existence and uniqueness of asymp-
totically ω-antiperiodic solutions for a nonlinear differential equation with piecewise 
constant argument in a Banach space when ω is an integer. This is done using the 
Banach fixed point theorem. An example involving the heat operator is discussed as 
an illustration of the theory. 
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1. Introduction 

We are concerned with the differential Cauchy problem with piecewise constant argu-
ment:  

( ) ( ) [ ]( ) [ ]( )( )
( )

0

0

,

0

x t Ax t A x t g t x t

x c

 ′ = + +


=
                 (1) 

where 0A  is a bounded linear operator, [ ].  is the largest integer function, g is a con-
tinuous function on + ×   and A is the infinitesimal generator of an exponentially 
semigroup ( ) , 0T t t ≥  acting on the Banach space  . The main purpose of this work 
is to study, for the first time, the existence and the uniqueness of asymptotically ω-anti- 
periodic solutions to (1) when ω is an integer. 

Differential equations with piecewise constant argument (EPCA) have the structure 
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of continuous dynamical systems in intervals of constant length. Therefore they com-
bine the properties of both differential and difference equations. They are used to mod-
el problems in biology, economy and in many other fields (see [1]-[7]). 

The study of the existence and uniqueness of periodic solutions of differential equa-
tions is a well-established fact. The concept of asymptotical periodicity has been intro-
duced to handle phenomena which behave periodically as time grows (see for instance 
[8]-[10]). However, antiperiodicity has a great importance in the qualitative study of 
differential equations. For instance, many phenomena in biology, ecology, quantum 
physics and engineering are antiperiodic (see [10]-[17] and references therein). 

Recently, the authors of [18] introduced the concept of asymptotically antiperiodic 
functions and studied semilinear integrodifferential equations in this framework. In 
[19], a new composition theorem for asymptotically antiperiodic functions is proved. 
This result is used to show the existence and the uniqueness of asymptotically antiperi-
odic mild solution to some fractional functional integro-differential equations in a Ba-
nach space. Motivated by [18] and [19], we will show the existence and uniqueness of 
asymptotically antiperiodic mild solution for (1). 

This work is organized as follows. In Section 2, we recall some fundamental proper-
ties of asymptotically antiperiodic functions. Section 3 is devoted to our main results. 
We illustrate our main result in Section 4, dealing with the existence and the unique-
ness of asymptotically antiperiodic solution for a partial differential equation.  

2 Preliminaries 

Let   be a Banach space. The space ( ),BC +   of the continuous bounded func-
tions from +  into  , endowed with the norm ( )0: suptf f t≥∞

= , is a Banach 
space. The Banach subspace of functions f such that ( )lim 0

t
f t

→∞
=  is denoted by 

( )0 ,C +  . A positive number ω being given, ( )Pω   will be the subset of 

( ),BC +   constituted of all ω-periodic functions; it is also a Banach space. We recall 
the following properties of antiperiodic and asymptotically antiperiodic functions. We 
refer to [18] where they are proved.  

Definition 2.1. A function ( ),f BC∈    is said to be ω-antiperiodic (or simply 
antiperiodic) if there exists 0ω >  such that ( ) ( )f t f tω+ = −  for all t∈ . The least 
such ω will be called the antiperiod of f.  

We will denote by ( )apPω  , the space of all ω-antiperiodic functions →  .  
Theorem 2.1. Let ( )1 2, , apf f f Pω∈  . Then the following are also in ( )apPω  . 
i) 1 2f f+ , cf , c is an arbitrary real number.  

ii) ( ) ( )1:g t t
f

= , provided 0f ≠  on  . Here =  .  

iii) ( ) ( ):af t f t a= + , a is an arbitrary real number.  
Theorem 2.2. ( )apPω   is a Banach space equipped with the supnorm.  
Now we consider asymptotically ω-antiperiodic function.  
Definition 2.2. A function ( ),f BC∈    is said to be asymptotically ω-antiperiodic 

if there exist ( )apu Pω∈   and ( )0 ,h C +∈   , such that  
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, .f u h t += + ∀ ∈  
g and h are called respectively the principal and corrective terms of f.  

We will denote by ( )apAPω  , the space of all asymptotically ω-antiperiodic  - 
valued functions.  

Remark 2.1. ( )apAPω   is a Banach space equipped with the supnorm and the de-
composition of an asymptotically antiperiodic is unique.  

3. Main Results 

We begin with the definition of a solution to (1).  
Definition 3.1. A solution of Equation (1) on +  is a function x(t) that satisfies the 

conditions:  
1-x(t) is continuous on + .  
2-The derivative ( )x t′  exists at each point t +∈ , with possible exception of the 

points [ ]t +∈  where one-sided derivatives exists.  
3-Equation (1) is satisfied on each interval [ ), 1n n +  with n∈ .  
Let ( )T t  be the 0C  semigroup generated by A and x a solution of (1). Then the 

function m defined by ( ) ( ) ( )m s T t s x s= −  is differentiable for s t<  and we can write:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( )( )0

d
d

,

m s
AT t s x s T t s x s

s
AT t s x s T t s Ax s

T t s A x s T t s g s x s

′= − − + −

= − − + −

+ − + −
 

which leads to  

( ) ( ) [ ]( ) ( ) [ ]( )( )0

d
, .

d
m s

T t s A x s T t s g s x s
s

= − + −              (2) 

The function [ ]( )x s  is a step function and [ ]( )( ),g s x s  is a continuous function 
in the intervals [ ), 1n n + , where n∈ . Therefore, the functions [ ]( )x s  and 

[ ]( )( ),g s x s  are integrable over [ ]0, t  with t +∈ . Integrating both sides of (2) over 
[ ]0, t , yields  

( ) ( ) ( ) ( ) [ ]( ) ( ) [ ]( )( )00 0
0 d , d .

t t
x t T t x T t s A x s s T t s g s x s s− = − + −∫ ∫  

Therefore, we give the following  
Definition 3.2. Let ( )T t  be the 0C  semigroup generated by A. The function 

( ),x +∈    given by  

( ) ( ) ( ) [ ]( ) ( ) [ ]( )( )0 00 0
d , d

t t
x t T t c T t s A x s s T t s g s x s s= + − + −∫ ∫  

is the mild solution of the Equation (1).  
Now we assume that:  
(H.1) The operator A is the infinitesimal generator of an exponentially stable semi-

group ( )( ) 0t
T t

≥
 such that there exist constants 0M >  and 0δ >  with  

( ) ( )
e , 0.t

B
T t M tδ−≤ ∀ ≥
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The proof of the main result of this paper is based on the following two lemmas.  
Lemma 3.1. Assume that (H.1) is satisfied and that 0A  is a linear bounded opera-

tor. Let ω∈ , we define the nonlinear operator 1Γ  by: for each ( )apAPωφ ∈    

( ) ( ) ( ) [ ]( )1 00
d .

t
t T t s A s sφ φΓ = −∫  

Then the operator 1Γ  maps ( )apAPω   into itself.  
Proof. Define the function F by  

( ) ( ) [ ]( )00
d .

t
F t T t s A s sφ= −∫  

Since ( )apAPωφ ∈  , it may be decomposed as u hφ = +  holds, where ( )apu Pω∈   
and ( )0 ,h C +∈   . We note that  

( ) ( ) ( ) ,F t G t H t t= + ∈  
where  

( ) ( ) [ ]( )0 d
t

G t T t s A u s s
−∞

= −∫  
and  

( ) ( ) [ ]( ) ( ) [ ]( )0
0 00

d d .
t

H t T t s A h s s T t s A u s s
−∞

= − − −∫ ∫  
We claim that ( )0 ,H C +∈   . Since ( )0 ,h C +∈   , then [ ]( )lim 0

t
h t

→+∞
= . There-

fore: 0∀ > , there exists a constant 0T >  such that [ ]( )h s ≤   for all s T≥ . For 
all 2t T≥ , we have that  

( ) ( ) [ ]( ) ( ) [ ]( )

( ) [ ]( )

2
0 00

2
0

0

d d

d ,

t t
tH t T t s A h s s T t s A h s s

T t s A u s s
−∞

= − + −

− −

∫ ∫

∫  
from which it follows that  

( ) ( ) ( )

( )

2
0 00

2
0

0

2
0 0 0

2
0 0

e d e d

e d

e e

e e .

t tt s t s
t

t s

t
t

t
t

H t M A h s M A s

M A u s

M M MA h A h A

M MA A u

δ δ

δ

δ δ

δ δ

δ δ δ

δ δ

− − − −

− −

−∞

− −

− −

≤ +

+

≤ − +

− +

∫ ∫

∫






 

Hence, ( )lim 0
t

H t
→+∞

= . Since H is clearly continuous, the claim is then proved. Now, 
we show that ( )apG Pω∈  :  

( ) ( ) [ ]( ) ( ) [ ]( )
( ) [ ]( ) ( ) [ ]( )

0 0

0 0

d d

d d .

t t

t t

G t T t s A u s s T t s A u s s

T t s A u s s T t s A u s s

ω
ω ω ω

ω

+

−∞ −∞

−∞ −∞

+ = + − = − +

= − + = − −

∫ ∫

∫ ∫  
Therefore ( ) ( )G t G tω+ = − . It follows that ( )apG Pω∈   and ( )0 ,H C +∈    

which proves that ( )apF APω∈  .                                           
Lemma 3.2. Assume that (H.1) is satisfied and also that ω∈ . Let ( ),g BC∈    
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be such that:  
i) ( ) ( ) ( ), , , ,t x g t x g t xω∀ ∈ × + − = −  ;  
ii) ( ) ( ) ( )> 0, , , , , ,K t x y g t x g t y K x y∃ ∀ ∈ × × − ≤ −   .  
Define the nonlinear operator 2Γ  by: for each ( )apAPωφ ∈    

( ) ( ) ( ) [ ]( )( )2 0
, d .

t
t T t s g s s sφ φΓ = −∫  

Then the operator 2Γ  maps ( )apAPω   into itself.  
Proof. Let ( )apAPωφ ∈  . Then 1 2φ φ φ= +  with ( )1 apPωφ ∈   and ( )2 0 ,Cφ +∈   . 

We have  

[ ]( )( ) [ ]( )( ) ( )1, ,g t t g t t l tφ φ= +
 

with ( ) [ ]( )( ) [ ]( )( )1, ,l t g t t g t tφ φ= − . We have  

( ) [ ]( )2 .l t K tφ≤
 

Since [ ]( )2lim 0
t

tφ
→∞

= , we deduce that ( )lim 0
t

l t
→∞

= .  
We note also that [ ]( )( ) [ ]( )( )1 1, ,g t t g t tω φ ω φ+ + = − . In fact  

[ ]( )( ) [ ]( )( )
[ ]( )( )

[ ]( )( )

1 1

1

1

, ,

,

, .

g t t g t t

g t t

g t t

ω φ ω ω φ ω

ω φ

φ

+ + = + +

= + −

= −
 

We put  

( ) ( ) [ ]( )( )0
, d .

t
F t T t s g s s sφ= −∫  

Since the function g is lipschitzian, then the function [ ]( )( ),t g t tφ→  is piecewise 
continuous. Therefore the function F is well defined. Since 1 2φ φ φ= +  with ( )1 apPωφ ∈   
and ( )2 0 ,Cφ +∈   , we observe that  

( ) ( ) ( )F t G t H t= +  
where  

( ) ( ) [ ]( )( )1, d ,
t

G t T t s g s s s tφ
−∞

= − ∈∫ 
 

and  

( ) ( ) ( ) ( ) [ ]( )( )0
10

d , d , .
t

H t T t s l s s T t s g s s s tφ +

−∞
= − − − ∈∫ ∫ 

 
The functions ( )G t  and ( )l t  are well defined because the function ( )l t  and 

[ ]( )( )1,g t tφ  are continuous on [ ), 1n n +  where n is an integer. Since ( )lim 0
t

l t
→∞

=  and 
[ ]( )( ) [ ]( )( )1 1, ,g t t g t tω φ ω φ+ + = − , it follows that ( )apG Pω∈   and  

( )0 ,H C +∈   .                                                         
Now we can state and prove the main result of this work.  
Theorem 3.3. We assume that the hypothesis (H.1) is satisfied. We assume also that 

ω∈ . Let ( ),g BC∈    such that:  
i) ( ) ( )( , ) , , , .t x g t x g t xω∀ ∈ × + − = −    
ii) ( ) ( ) ( )> 0, , , , , ,K t x y g t x g t y K x y∃ ∀ ∈ × × − ≤ −   .  
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Then the Equation (1) has a unique asymptotically ω  antiperiodic solution if  

( )0: 1.M A Kρ
δ

= + <
 

Proof. Define the nonlinear operator ( ) ( ): ap apAP APω ωΓ   ,  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2:u t L t u t tφΓ = + Γ + Γ  
for every ( )apu APω∈  , where  

( ) ( ) 0L t T t c=  

( ) ( ) ( ) [ ]( )1 00
d

t
t T t s A s sφ φΓ = −∫  

and  

( ) ( ) ( ) [ ]( )( )2 0
, d .

t
t T t s g s s sφ φΓ = −∫  

Since ( ) ( )0 ,L t C +∈    we have ( ) 0e , 0tL t M c tδ−≤ ∀ ≥ . Then, using Lemma 3.1 
and Lemma 3.2, it follows that the operator Γ  maps ( )apAPω   into itself.  

For every ( ), apAPωφ ψ ∈  ,  

( ) ( ) ( ) ( ) ( ) [ ]( ) [ ]( )( )
( ) ( )( ) ( )( )( )

( ) [ ]( ) [ ]( )
( ) ( )( ) ( )( )( )

( ) ( )
( ) ( )

( )

00

0

00

0

00 0

00 0

0

0

d

, , d

d

, , d

d d

e d e d

.

t

t

t

t

t t

t tt s t s

t t T t s A s s s

T t s g s s g s s s

T t s A s s s

T t s g s s g s s s

T t s A s T t s K s

M s A MK s

M MA K

M A K

δ δ

φ ψ φ ψ

φ ψ

φ ψ

φ ψ

φ ψ φ ψ

φ ψ φ ψ

φ ψ φ ψ
δ δ

φ ψ
δ

∞ ∞

− − − −
∞ ∞

∞ ∞

∞

Γ − Γ ≤ − −

+ − −

≤ − −

+ − −

≤ − − + − −

≤ − + −

≤ − + −

≤ + −

∫

∫

∫

∫

∫ ∫

∫ ∫

 

Therefore, since 1ρ < , using the Banach fixed point Theoren we conclude that Eq-
uation (1) has a unique asymptotically ω-antiperiodic solution.                   

4. Application 

As an application, consider for [ ], 0,πt x+∈ ∈  and α ∈ , the Cauchy problem:  

( ) ( ) [ ]( ) [ ]( )( )
( ) ( )

2

2, , , , , ;

,0 ,π 0.

u ut x t x u t x g t u t x
t x

u t u t

α
∂ ∂

= + +
∂ ∂

 = =

             (3) 

We take ( ) [ ]( )( )2
2, 0,π ,L⋅ = ⋅  and we define the linear operator A by  

( ) [ ]( ) [ ]( ) ( ) ( ){ }2 20, π , 0, π , 0 π 0D A v L v L v v′′= ∈ ∈ = =
 

.Av v′′=  
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where the derivatives are taken in the distributional sense. Then, A is the infinitesimal 
generator of a semigroup ( )T t  on [ ]( )2 0,πL  satisfying ( ) e tT t −≤  for 0t ≥  (see 
[20]). The operator [ ]( ) [ ]( )2 2

0 : 0,π 0,πA L L→  defined by ( )0A v vα=  is linear and 
bounded with 0A α= . Therefore (3) takes the abstract form (1). Assume that the 
function ( ),g BC∈    satisfies the following:  

i) ( ) ( ) ( ), , , ,t x g t x g t xω∀ ∈ × + − = −  ,  
ii) ( ) ( ) ( )0, , , , , ,K t x y g t x g t y K x y∃ > ∀ ∈ × × − ≤ −   .  
Note that such a function exists. Take for instance ( ) ( ),g t x f t x=  where f is a 

ω-periodic function from   into  . Then we have  

( ) ( ) ( ) ( ), ,g t x f t x g t xω+ − = − = −  
and  

( ) ( ) ( ) ( ), , .g t x g t y f t x y f x y
∞

− = − ≤ −
 

Theorem 4.1. We assume that ω∈ . Then System (3) has a unique asymptotically 
ω-antiperiodic if 1.Kα + <   

Proof. We have 1M = , 1δ = , 0A α=  and we apply Theorem 3.3.          
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