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Abstract 
Design of control strategies for gene regulatory networks is a challenging and important topic in 
systems biology. In this paper, the problem of finding both a minimum set of control nodes (con-
trol inputs) and a controller is studied. A control node corresponds to a gene that expression can 
be controlled. Here, a Boolean network is used as a model of gene regulatory networks, and con-
trol specifications on attractors, which represent cell types or states of cells, are imposed. It is im-
portant to design a gene regulatory network that has desired attractors and has no undesired at-
tractors. Using a matrix-based representation of BNs, this problem can be rewritten as an integer 
linear programming problem. Finally, the proposed method is demonstrated by a numerical ex-
ample on a WNT5A network, which is related to melanoma. 
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1. Introduction 
Modeling, analysis, and control of gene regulatory networks are one of the fundamental problems in the field of 
systems biology. Control of gene regulatory networks is closely related to therapeutic interventions, which are 
realized by radiation, chemotherapy, and so on. Hence, developing control theory of gene regulatory networks is 
important for gene therapy technologies (see, e.g., [1]) in the future. When we discuss the control problem of 
gene regulatory networks, we frequently assume that some of genes can be arbitrarily controlled. In this paper, 
such genes are called a control node. Since in mathematical models of gene regulatory networks, control nodes 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.714131
http://dx.doi.org/10.4236/am.2016.714131
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


K. Kobayashi 
 

 
1511 

are not necessarily specified, the problem of finding a set of control nodes based on control specifications is 
important as a kind of inverse problems. Needless to say, it is desirable that the number of control nodes is 
small. 

In this paper, we study simultaneous design of a minimum set of control nodes and controllers in a Boolean 
networks (BN). A BN [2] is one of the simplified models such as Bayesian networks and piecewise affine sys-
tems [3], and is widely used in theoretical analysis of gene regulatory networks (see, e.g., [4]-[19]). In the BN, 
dynamics such as interactions between genes are expressed by Boolean functions, that is, gene expression is ex-
pressed by a binary value (0 or 1). As a generalized version of BNs, a probabilistic BN has been proposed in 
[20]. In the simultaneous design problem studied in this paper, control specifications on attractors are imposed. 
Attractors represent cell types or states of cells [21]. In particular, we focus on a singleton attractor, which is al-
so called a fixed point. By solving this problem, we can obtain a gene regulatory network that has desired at-
tractors and has no undesired attractors. Furthermore, we can obtain time evolution (i.e., a Boolean function) of 
a control node, i.e., a controller by solving this problem. Thus, a solution of the simultaneous design problem 
provides a helpful suggestion to e.g., design of therapeutic interventions. 

As a related problem, the conventional controllability problem of BNs has been widely studied (see, e.g., [7] 
[12] [13] [17] [18] [22] [23]). However, the problem of finding a minimum set of control nodes has not been 
considered. In [24], using piecewise affine systems, the problem of choosing a control node has been studied. 
However, the minimization problem of the number of control nodes has not been considered. 

In order to solve the simultaneous design problem, a matrix-based representation of BNs [10] is utilized. Us-
ing this representation, this problem can be rewritten as an integer linear programming problem. We may use a 
matrix-based representation using the semi-tensor product (STP) method [7] [25]. Since manipulation of ma-
trices using the STP is not needed in this paper, we utilize a simple matrix-based representation using truth 
tables. The effectiveness of the proposed method is presented by an example on a WNT5A network, which is 
related to melanoma. 

Notation: For the finite set  , let   denote the number of elements in  . For the n-dimensional vector 
[ ]1 2       nx x x x Τ=   and the index set { } { }1 2, , , 1, 2, ,mi i i n= ⊆  , define [ ]

1 2
:       

mi i i ii
x x x x

Τ

∈
 =  


. For 

two matrices A and B, let A B⊗  denote the Kronecker product of A and B. In addition, for q vectors 
1 2, , , qy y y  and the index set { } { }1 2, , , 1, 2, ,pj j j q= ⊆  , define 

1 2
:

pj j j jj y y y y∈ = ⊗ ⊗ ⊗⊗  . For 
example, for q two-dimensional vectors 1 2, , , qz z z  and { }1,5= , we can obtain 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1
1 5
1 2

1 1 5
2 1

5 1 5
2 2

1 5

= ,j
j

z z

z z z
z

z z z

z z

∈

 
 
  

=   
   

 
 

⊗


 

where ( )i
jz  is the i-th element of jz . Finally, let 1m n×  denote the m n×  matrix whose elements are all one. 

2. Boolean Networks 
Consider the following Boolean network (BN): 

( ) ( )( )
( ) ( )( )

( ) ( )( )

1

2

1 1

2 2

1 ,

1 ,

1 ,
n

j j

j j

n n j j

x k f x k

x k f x k

x k f x k

∈

∈

∈

  + =  


  + =  


  + =  









                               (1) 

where [ ] { }1 2      0,1 n
nx x x x Τ= ∈  is the state (e.g., the expression of genes), and { }0,1, 2,k ∈ 

 is the dis-  
crete time. The set { }1, 2, ,i n⊆   is a given index set, and expresses the adjacency relation of nodes corre-  
sponding to genes. The function { } { }1: 0,1 0,1i

if →  is a given Boolean function consisting of logical opera-
tors such as AND ( ∧ ), OR (∨ ), and NOT (¬ ). If i = ∅  holds, then ( )1ix k +  is uniquely determined as 0 
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or 1. 
Next, the notion of attractors is defined as follows. 
Definition 1 The state ( )x k  is called a singleton attractor if ( ) ( )1x k x k+ =  holds. 
Definition 2 The set of states ( ) ( ) ( ){ }, 1 , , 1x k x k x k p+ + −  is called a periodic attractor if ( ) ( )x k i x k+ ≠ , 
1, 2, , 1i p= −  and ( ) ( )x k p x k+ =  hold. 

We present a simple example. 
Example 1 Consider the following BN: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 3

2 1 3

3 1 2

1 ,
1 ,
1 .

x k x k
x k x k x k
x k x k x k

+ =
 + = ∧ ¬
 + = ∨ ¬

                               (2) 

In this BN, { }1 3= , { }2 1,3= , and { }3 1, 2=  hold. Figure 1 shows the state transition diagram. 
From Figure 1, we see that there exist two singleton attractors and one periodic attractor with 2p = .       

In this paper, we focus on only a set of singleton attractors. Hereafter, let   denote a set of singleton at-
tractors for the BN (1). 

3. Problem Formulation 
The states 1 2, , , nx x x  are decomposed to two groups ix , i∈  and ix , i∈ , where   and   are in-
dex sets satisfying { }1, 2, , n∪ =    and ∩ =∅  . Then, defining ( ) ( ):i iu k x k= , i∈ , the BN (1) 
can be rewritten as 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 , ,  ,

1 , ,  ,

i i

i i

i i j jj j

i i j jj j

x k f u k u k i

u k f u k u k i

∈ ∈

∈ ∈

    + = ∈   

    + = ∈   

 

 




                       (3) 

where i , i , i , and i  are an index set. For each i∈ ∪  , the relations i i i∪ =    and 
i i∩ =∅   hold. The Boolean function if , i∈  is given in advance. The Boolean function if , i∈  is 

not given, and must be found. In other words, we consider that some of Boolean functions in the BN (1) are re-
placed with new Boolean functions. In the case of = ∅ , (3) is the same as (1). Furthermore, in the BN (3), 
( )iu k  corresponds to the control node (i.e., the control input). The Boolean function if , i∈  can be re-

garded as the controller. 
Then, consider the following problem. 
Problem 1 For the BN (3), suppose that Boolean functions 1 2, , , nf f f  are given. Suppose also that the set 

of desired singleton attractors and the set of undesired singleton attractors are given by 

{ } { }1 2, , , ,  0,1
d

n
d m iα α α α= ∈                              (4) 

and 

{ } { }1 2, , , ,  0,1 ,
u

n
u m iβ β β β= ∈                              (5) 

 

 
Figure 1. State transition diagram, where the number assigned to 
each node implies 1 2 3, ,x x x . 
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respectively. Then, find a minimum set of control nodes and a controller if , i∈  satisfying the following two 
conditions: 

,d ⊆                                          (6) 

and 
.u ∩ =∅                                        (7) 

If this problem is infeasible, then there exists no controller that realizes specifications on singleton attractors. 
This fact implies that the BN (3) is uncontrollable from the viewpoint of singleton attractors, and the change of 
the graph structure i  is required. On the other hand, as a solution, = ∅  may be obtained. This solution 
implies that a given BN has desired singleton attractors and has no undesired singleton attractors. That is, con-
trol nodes are not necessary. Thus, Problem 1 can be regarded as a kind of the controllability problems. 

If the set   (i.e.,  ) is given, Problem 1 has been already solved in [10]. Problem 1 is more general than 
the problem studied in [10]. By solving Problem 1, we can obtain both the minimum set of control nodes and the 
controller. To the best of our knowledge, such problem has not been studied so far. 

4. Matrix-Based Representation of Boolean Networks 
In order to solve Problem 1, we use a matrix-based representation of BNs [10]. 

In this representation, one state ( )ix k  in the BN (1) is expressed by two binary variables ( )0
ix k  and 

( )1
ix k . The binary variable ( )0

ix k  is defined by ( ) ( )0 : 1i ix k x k= − . The binary variable ( )1
ix k  is defined by 

( ) ( )0 :i ix k x k= . Using ( )0
ix k  and ( )1

ix k , define 

( ) ( )
( )

( )
( )

0

1

1
: .ii

i
ii

x kx k
x k

x kx k
    − 

= =           
 

Then, the matrix-based representation for ( )1ix k +  is given by 

( ) ( )1 = ,
i

i i j
j

x k A x k
∈

+ ⊗


                                 (8) 

where { }2 20,1
i

iA ×∈


 and ( ) { }20,1
i

i jj x k∈ ∈⊗


 . The matrix iA  can be derived from truth tables. We 

present a simple example. 
Example 2 Consider the BN (2) again. Then, we can obtain the truth table for each ( )1ix k + . See Table 1. 

From these truth tables, we can obtain the following matrix-based representation: 

( )
( )

( )
( )

1

0 0
1 3
1 1
1 3

1 01
,

0 11
A

x k x k
x k x k
   +  

=    +       


 

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )2

0 0
1 3

0 0 1
2 1 3
1 1 0
2 1 3

1 1
1 3

1 1 0 11
,

0 0 1 01
A

x k x k
x k x k x k
x k x k x k

x k x k

 
  +    =     +      
  



 

 
Table 1. Truth tables for ( )1 1x k + , ( )2 1x k + , and ( )3 1x k + . 

x3(k) x1(k + 1)  x1(k) x3(k) x2(k + 1)  x1(k) x2(k) x3(k + 1) 

0 0  0 0 0  0 0 1 

1 1  0 1 0  0 1 0 

   1 0 1  1 0 1 

   1 1 0  1 1 1 
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( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )3

0 0
1 2

0 0 1
3 1 2
1 1 0
3 1 2

1 1
1 2

0 1 0 01
,

1 0 1 11
A

x k x k
x k x k x k
x k x k x k

x k x k

 
  +    =     +      
  



 

where each element of iA , 1, 2,3i =  is given by a binary value (0 or 1), and a sum of all elements in each 
column of iA  is equal to 1. The second row in iA , 1, 2,3i =  corresponds to the column in ( )1ix k +  in truth 
tables.  

See [10] for further details of deriving the matrix iA . 
The matrix-based representation is useful for considering Problem 1. Using the matrix-based representation, 

the problem of finding a Boolean function is reduced to the problem of finding iA . The latter problem is rela-
tively easier than the former problem, and can be solved by using some computational tools. 

Remark 1 Recently, there have been many results about a matrix-based representation of Boolean functions 
using the semi-tensor product (STP) of matrices (see, e.g., [7] [25]). Of course, the matrix-based representation 
using the STP method may be utilized. In this paper, we focus on singleton attractors (i.e., the steady state), and 
time sequences of the state are not computed. Hence, manipulation of matrices using the STP is not needed, and 
the simple matrix-based representation using truth tables is utilized. 

5. Solution Method for Problem 1 
Based on the matrix-based representation of BNs explained in the previous section, we consider a solution me-
thod for Problem 1. 

As preparations, the notation is defined. If iA  in (8) includes decision variables, then iA  is denoted by iA . 
Let ( )j

iα  and ( )j
iβ  denote the j-th element of iα  and iβ  in d  of (4) and u  of (5), respectively. De- 

fine 

( )
( )

( )
( )

( )

( )

1 1
: ,  : .

j j
j ji i

i ij j
i i

α β
α β

α β

   − −
= =   
      

 

Since only singleton attractors are focused in Problem 1, Problem 1 is equivalently transformed into the fol-
lowing problem. 

Problem 2 Find matrices 1 2, , , nA A A  

  and binary variables 1 2, , , nδ δ δ  minimizing the cost function 
1

n
ii δ=∑  subject to the following two conditions. (i) For each { }1, 2, , di m∈ 

, the following constraints corres-
ponding to (6) are satisfied: 

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

1

2

1
1 1 1 1

2
2 2 2 2

1 ,

1 ,

1 .
n

j
i i

j

j
i i

j

n j
i n n n n i

j

A A

A A

A A

α δ δ α

α δ δ α

α δ δ α

∈

∈

∈

= − +

= − +

= − +

⊗

⊗

⊗















 

(ii) For each { }1, 2, , ui m∈ 
, at least one of the following constraints is satisfied: 

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

1

2

1
1 1 1 1

2
2 2 2 2

1 ,

1 ,

1 .
n

j
i i

j

j
i i

j

n j
i n n n n i

j

A A

A A

A A

β δ δ β

β δ δ β

β δ δ β

∈

∈

∈

≠ − +

≠ − +

≠ − +

⊗

⊗

⊗















 

In addition, each element of 1 2, , , nA A A  

  takes a binary value, and a sum of each column of these matrices 
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is equal to 1.  
In this problem, the condition (i) guarantees that ( ) ( )1 ix k x k α+ = = , 1, 2, , di m=  , that is, iα , 
1, 2, , di m=   are included in the set of singleton attractors. The condition (ii) guarantees that iβ , 1, 2, , di m=   

are not a singleton attractor. If 0iδ = , 1, 2, ,i n=   are obtained as a solution, then this solution implies 
= ∅ , that is, the controller is not needed. If 1iδ = , 1, 2, ,i n=   are obtained as a solution, then this solution 

implies = ∅ , that is, all Boolean functions are changed. 
Problem 2 can be rewritten as an integer linear programming (ILP) problem, and can be solved by a suitable 

solver. An SMT (Satisfiability Modulo Theories) solver such as the Yices SMT Solver [26] can also be applied 
to Problem 2. 

Here, using a simple example, we explain a method to rewrite Problem 2 as an ILP problem. Consider the BN 
in Example 2 of Section 4. Then, the constraints appeared in Problem 2 are given by 

( )

( ) ( )
( )

( )

1 2
1 11 12 1

1 11 2
11 121 1

1 1 1 10 1
1 ,

1 0
a a

a a
α α

δ δ
α α

   −  − −  −   = − +      
           

                                 (9) 

( )

( ) ( )
( )

( )

2 1
1 21 22 1

2 22 1
21 221 1

1 1 1 11 0
1 ,

0 1
a a

a a
α α

δ δ
α α

   −  − −  −   = − +      
           

                               (10) 

( )

( ) ( )

( )( ) ( )( )
( )( ) ( )

( ) ( )( )
( ) ( )

( ) ( )1 2
1 1

1 2
1 1

1 23
1 131 32 33 341

3 33 1 231 32 33 341 1 1

1 2
1 1

1 1

11 1 1 11 1 1 0 1
1

0 0 1 0 1

a a a a
a a a a

α α

α α

α αα
δ δ

α α α

α α

⊗

 − −
 
   − − − − −−      = − +                − 
 
  


    (11) 

and 
( )

( ) ( )
( )

( )

1 2
1 11 12 1

1 11 2
11 121 1

1 1 1 10 1
1 ,

1 0
a a

a a
β β

δ δ
β β

   −  − −  −   ≠ − +      
           

                                (12) 

( )

( ) ( )
( )

( )

2 1
1 21 22 1

2 22 1
21 221 1

1 1 1 11 0
1 ,

0 1
a a

a a
β β

δ δ
β β

   −  − −  −   ≠ − +      
           

                               (13) 

( )

( ) ( )

( )( ) ( )( )
( )( ) ( )

( ) ( )( )
( ) ( )

( ) ( )1 2
1 1

1 2
1 1

1 23
1 131 32 33 341

3 33 1 231 32 33 341 1 1

1 2
1 1

1 1

11 1 1 11 1 1 0 1
1 ,

0 0 1 0 1

a a a a
a a a a

β β

β β

β ββ
δ δ

β β β

β β

⊗

 − −
 
   − − − − −−      ≠ − +                − 
 
  


 

where ija  is a binary decision variable. From (9)-(11), we can obtain 

( )( ) ( ) ( )
1

2 1 2
1 1 11 1 1

1 12

1 1 0
1,

0 0 1
a
a

δ
α δ α α

δ

Τ
 

−    = + −       

                         (14) 

( )( ) ( ) ( )
2

1 2 1
1 2 21 1 1

2 22

0 1 0
,

1 0 1
a
a

δ
α δ α α

δ

Τ
 

    = −   −    

                           (15) 



K. Kobayashi 
 

 
1516 

( ) ( )( ) ( ) ( ) ( )( )

3

3 31
1 2 3 1 2

1 1 3 32 1 1 1

3 33

3 34

0 1 0 0 0
0 0 1 0 0

1 .
1 0 0 1 0
0 0 0 0 1

a
a
a
a

δ
δ

α α δ α α α
δ
δ

Τ

 
   
   
   ⊗ = − −
 −  
   
    

                 (16) 

From (12)-(14), we can obtain 

( )( ) ( ) ( )
1

2 1 2
1 1 11 1 1

1 12

1 1 0
1,

0 0 1
a
a

δ
β δ β β

δ

Τ
 

−    ≠ + −       

                                  (17) 

( )( ) ( ) ( )
2

1 2 1
1 2 21 1 1

2 22

0 1 0
,

1 0 1
a
a

δ
β δ β β

δ

Τ
 

    ≠ −   −    

                                    (18) 

( ) ( )( ) ( ) ( ) ( )( )

3

3 31
1 2 3 1 2

1 1 3 32 1 1 1

3 33

3 34

0 1 0 0 0
0 0 1 0 0

1 .
1 0 0 1 0
0 0 0 0 1

a
a
a
a

δ
δ

β β δ β β β
δ
δ

Τ

 
   
   
   ⊗ ≠ − −
 −  
   
    

                  (19) 

From the condition (ii) in Problem 2, at least one of (17)-(19) must be satisfied. Noting this fact, from 
(17)-(19) we can obtain 

( )( ) ( ) ( )
1

2 1 2
1 1 11 1 1 1,1 1,2

1 12

1 1 0
1 ,

0 0 1
a
a

δ
β δ β β δ δ

δ

Τ
 

−    + − − = −       

                             (20) 

( )( ) ( ) ( )
2

1 2 1
1 2 21 1 1 2,1 2,2

2 22

0 1 0
,

1 0 1
a
a

δ
β δ β β δ δ

δ

Τ
 

    − + = −   −    

                               (21) 

( ) ( )( ) ( ) ( ) ( )( )

3

3 31
1 2 3 1 2

1 1 3 32 1 1 1 3,1 3,2

3 33

3 34

0 1 0 0 0
0 0 1 0 0

1 ,
1 0 0 1 0
0 0 0 0 1

a
a
a
a

δ
δ

β β δ β β β δ δ
δ
δ

Τ

 
   
   
   ⊗ − + − = −
 −  
   
    

             (22) 

where ,1iδ , ,2iδ , 1, 2,3i =  are additional binary variables satisfying the two constraint conditions 
3

,1 ,2 ,1 ,2
1

1,  1.i i i i
i

δ δ δ δ
=

+ ≤ + ≥∑                               (23) 

Under these conditions, at least one of ,1 ,2i iδ δ− , 1, 2,3i =  takes either −1 or 1. Thus, Problem 2 for the BN 
in Example 2 can be rewritten as the following problem. 

11 12 21 22 31 32 33 34 1 2 3 ,1 ,2

1 2 3

find , , , , , , , , , , , , , 1, 2,3,
min ,

i ia a a a a a a a iδ δ δ δ δ

δ δ δ

=

+ +
 

subject to (14)-(16), (20)-(22), and (23). 
Finally, the product of binary variables such as 1 11aδ  can be linearized by using the following lemma [27]. 
Lemma 1 Suppose that binary variables { }0,1jδ ∈ , j∈  are given, where   is a given index set. Then  
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jjz δ
∈

=∏   is equivalent to the following linear inequalities 

1,  0,j j
j j

z zδ δ
∈ ∈

− ≤ − − + ≤∑ ∑
 

   

where   is the cardinality of  . 
Using this lemma, Problem 2 for the BN in Example 2 can be rewritten as an ILP problem. From the above, 

we see that Problem 2 for a general BN (3) can be rewritten as an ILP problem. In general, an ILP problem is 
NP-hard, but several free/commercial solvers were developed. Hence, we can solve the ILP problem obtained. 

6. Example on a WNT5A Network 
In this section, as an example, we consider the gene regulatory network with the gene WNT5A, which is related 
to melanoma. A BN model is given by 

( ) ( )1 61 ,x k x k+ = ¬  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ){ }2 2 4 6 2 4 61 ,x k x k x k x k x k x k x k+ = ¬ ∧ ∧ ∨ ∧ ∨  

( ) ( )3 71 ,x k x k+ = ¬  

( ) ( )4 41 ,x k x k+ =  

( ) ( ) ( )5 2 71 ,x k x k x k+ = ∨ ¬  

( ) ( ) ( )6 3 41 ,x k x k x k+ = ∨  

( ) ( ) ( )7 2 71 ,x k x k x k+ = ¬ ∨  

where the concentration level (high or low) of the gene WNT5A is denoted by 1x , the concentration level of the 
gene pirin by 2x , the concentration level of the gene S100P by 3x , the concentration level of the gene RET1 
by 4x , the concentration level of the gene MART1 by 5x , the concentration level of the gene HADHB by 6x , 
and the concentration level of the gene STC2 by 7x . See [28] for further details. 

For this BN model, consider solving Problem 1. We assume that d , and u  are given by 

[ ]{ }0  0  0  0  0  1  1 ,d
Τ=  

[ ]{ }1  1  0  1  1  1  1 ,u
Τ=  

respectively. This setting is artificially given. 
First, we derive a matrix-based representation. Then, we can obtain the following matrix-based representa-

tion: 

( )
( )

( )
( )

0 0
1 6
1 1
1 6

0 11
,

1 01
x k x k
x k x k
   +  

=    +       
 

( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )2 4 6

0 0 0
2 4 6
0 0 1
2 4 6
0 1 0
2 4 6

0 0 1 1
2 2 4 6
1 1 0 0
2 2 4 6

1 0 1
2 4 6
1 1 0
2 4 6
1 1 1
2 4 6

1 1 1 0 1 0 0 01
,

0 0 0 1 0 1 1 11

x k x k x k

x k x k x k
x k x k x k
x k x k x k

x k x k x k x k
x k x k x k x k

x k x k x k
x k x k x k
x k x k x k

⊗ ⊗

 
 
 
 
 

 +    =     +      
 
 
 
  

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( )
( )

( )
( )

0 0
3 7
1 1
3 7

0 11
,

1 01
x k x k
x k x k
   +  

=    +       
 

( )
( )

( )
( )

0 0
4 4
1 1
4 4

1 01
,

0 11
x k x k
x k x k
   +  

=    +       
 

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )2 7

0 0
2 7

0 0 1
5 2 7
1 1 0
5 2 7

1 1
2 7

0 1 0 01
,

1 0 1 11

x k x k

x k x k
x k x k x k
x k x k x k

x k x k
⊗

 
  +    =     +      
  


 

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )3 4

0 0
3 4

0 0 1
6 3 4
1 1 0
6 3 4

1 1
3 4

1 0 0 01
,

0 1 1 11

x k x k

x k x k
x k x k x k
x k x k x k

x k x k
⊗

 
  +    =     +      
  


 

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )2 7

0 0
2 7

0 0 1
7 2 7
1 1 0
7 2 7

1 1
2 7

0 0 1 01
.

1 1 0 11

x k x k

x k x k
x k x k x k
x k x k x k

x k x k
⊗

 
  +    =     +      
  


 

Next, we explain the solution for Problem 2. By solving this problem, we can obtain 6 1δ =  and 0iδ = , 
1, 2,3, 4,5,7i = . That is, the minimum value of   is obtained by 1, and the sets   and   are obtained by 
{ }1, 2,3, 4,5,7=  and { }6= , respectively. This implies that only the Boolean function 

( ) ( ) ( )6 3 41x k x k x k+ = ∨  must be replaced with other Boolean function. As the solution, we can obtain 

( ) ( ) ( )6 3 41 .x k x k x k+ = ∨ ¬  

Finally, we observe the set of singleton attractors. For the BN model obtained, the set of singleton attractors is 
given by 

[ ] [ ] [ ]{
[ ] [ ] }
0  0  0  0  0  1  1 , 0  1  0  0  1  1  1 , 0  1  1  0  1  1  0 ,

 1  0  0  1  0  0  1 , 1  1  0  1  1  0  1  .

Τ Τ Τ

Τ Τ

=
 

From this set, we see that specifications on singleton attractors ( d ⊆   of (6) and u ∩ =∅   of (7)) are 
satisfied. 

7. Conclusions 
For Boolean networks, we studied the problem of finding both a minimum set of control nodes and a controller, 
where specifications on singleton attractors are imposed. In biological networks, control nodes (control input) 
are not necessarily given. Hence, this problem is important in both systems biology and synthetic biology. Using 
a matrix-based representation of BNs, this problem can be rewritten as an integer linear programming problem. The 
proposed method is effective as one of the fundamental methods for control theory of gene regulatory networks. 

There are several open problems. In this paper, we focused on only the set of singleton attractors. An exten-
sion of the proposed method to the case of the set of periodic attractors is important, but it will be a challenging 
topic. Utilizing a probabilistic BN as a model of gene regulatory networks is also important. Then, a discrete 
probability distribution of attractors must be considered. Finally, in order to clarify the effectiveness of the 
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proposed method, it is important to consider applying the proposed method to several biological systems. 
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