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Abstract

In this paper, we propose a new second order numerical scheme for solving backward stochastic
differential equations with jumps with the generator f =r(t,x,,y,)+h(t)z +g(t)T, linearly de-

pending on z,.And we theoretically prove that the convergence rates of them are of second order

for solving y, and of first order for solving z, and T, in L norm.
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1. Introduction

Bismut (1973) studied the existence of the linear backward stochastic differential equation, the results could be
regarded as a promotion of a famous Girsanov theorem. The existence and uniqueness of solutions for nonlinear
backward stochastic differential equations (BSDESs) were first proved by Pardoux and Peng (1990).Since then,
BSDEs have been extensively studied by many researchers. In [1], Peng obtained the relation between the
backward stochastic differntial equation and the parabolic partial differential equation (PDE), and in Peng
(1990), the stochastic maximum principle for optimal control problems were based on BSDEs. The applications
of BSDEs now cover many scientific fields, such as stochastic control, stock markets, risk measure, turbulence
fluid flow, biology, chemical reactions, partial differential equations, and so on. Thus it is very important and
useful to obtain solutions of BSDEs for real applications. However, it is often quite difficult to obtain analytic
solutions of BSDESs, so computing approximate solutions of BSDES become highly desired, by using the relation
between the BSDE and PDE. As far as we know, there have been very few schemes obtained with second-order
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convergence rate, such as [2] [3].
In this paper, we propose a new second order numerical scheme for the solution of forward-backward sto-
chastic differential gquations (FBSDE in short) with jumps with the following form

X, =xO+J.;b(s,xS)ds+J';a( )dw, +ILﬁ %) Ny (ds,de)

1)
Y=g (% )+ [ fds—['z,aw, - ["[U,N, (ds,dz)
From [4], we know that the solution (x,,Y,,z,I";) can be represented as
Ye=u(tx), z=Vu(tx)o(tx).
@)

I, J'{ t,% +B(t%.€))- (t,xt)}p(e)/l(de), te[0,T),

where the vector function u (t, x) is the classical solution of the following parabolic differential equation (PDE)
of the form

{L‘u (t.x)+ f (txu(t,x), V,u(t,x)e(t,x),Z[u](t,x))=0 )
u(T,x)=g(x)
where V. u denotes the gradient of u with respect to the space variable x,
0 13 . o
Lu (t,x):=6—l:(t,x)qu(t,x)b(x)+§iél(o-o- (x))axi;(j (t,x)
J'L (t.x+B(x.e))—u(t,x)=V,u(t,x) B(x,e) A(de), )

L{ t,x+B(xe))- (t,x)}p(e)l(de).

2. Preliminaries and Notation

Let T be a fixed positive number and {Q,]—', P, {]—;}Ogtg} be a complete,filtered probability space on which is

defined a standard Brownian motion W,, such that {]—}}Ogg is the natural filtration of the Brownian motion

W, and all the P-null sets are augmented to each o-field . Denote by L* the set of all  -adapted and
mean-square-integrable processes.

A process (X, ¥,,z,T):[0,T]xQ—>R"xR™ is called an L*-adapted solution of the FBSDE(1) if it’s
{]—}}-adapted and L*-integrable, and satisfies (1). Under some standard conditions on the functions f and h,
there is a unique adapted random process.

Now we introduce a new probability space: for {A t> O} is an exponential martingale and satisfies

Ey (A)=1, we define E[X] :INE[XAEEHJ The random processes A, , it is easy to verify that A; is an

exponential martingale.

Ay =exp {J.;h (s)dw, —%.[;hz (s) ds} I [1+ Lg (s)p(e)N, ({s} ,de)} o Tolsals)oe)r(ce)ss 5)

Let us first introduce the following lemma.
_Lemma 1. Given the time partition 0<t <t , <T, Xisa J -measurable random variable,and satisfies
E[X] <o,
. E X tha N
DN [x]:%:@; [ XAp+], as. (6)
0
We use the following Itd-Taylor approximation to solve the forward SDEs with jumps

XM= X" 4 Zla[fa (tn,xn)lw, 7

aeTy
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where
g(z),1=0,a=v

L:|a_ [9()],, dri=1j =0

'“[g(')lm - t:Ia_[g()]tn’r dw i 1>1,j €1,2,--,m ®
JoJde-[9()], N (dedr) 121, j =-1
and the coefficient function
f(t,x),l(a)=0
f,(t,xe)= Lhf L(txe)l(a)=1j,€0,1,-,m, 9)
L', (txe)l(a)21j =-
with
0 6 d i 1 d m i L 6
L'f (t,x,e) = P f(t,x e)+|§a (t, ) f(t.xe)+= ”Z”Z;b Tt x)b"I(t, x) f(t x.e),
LF (t,x.e) = idzlbi* (t0) 5 (txe), (10)

L'f(tx.e)=f(t.x+c(t,xv).e)-f(txe)te[0,T],xeR’ ece’.
Now we introduce some basic notations.
o {7}, :the o-field generated by the Brownian motion.
e Throughout this paper, we denote by C a generic constant depending only on T, the upper bounds of the de-
rivatives of the functions f.
3. Numerical Schemes for Solving BSDE

From the time interval [O T] we introduce the following time partition: 0=t, <---<t, =T, let
At,=t,,—t, and max At, =h. According to (1), it’s easy to obtain that for 0<n< N 1,

0<n<N-1
Y, =Y, + J':n"”( (s,%,¥s)+h(s)z,+g(s)T,)ds —.[:n””zdeS _.[;M UN, (ds,dz). (11)
From (5) and (11),we have
dAy = A} [ [o(e) g ()dN, +h(t)aw, ], (12)
dy, =—[r(t.x, ) +h(t)z +g(t)T, Jdt+2,dW, + [UdN,, (13)
dAL Y, = A dy, + y,dA; +dA; dy,. (14)

From (12), (13) and (14), by applying 1t6 formula to A{ Y, , we obtain the equation
dA} Y, ==A}r(tx, Y )dt+ A} [z +h(t)y, [dW, + A} _[ c+Yip(e)g(t)]dN,. (15)
From (15), it is easy to obtain that for 0<n<N -1,
= APy f +J't”“/\tS r(s, x;"'xn , y;"’xn )ds —'[:"”Afn [z;"’xn +h(s) y;“'xn des
tn+1J‘ A |:Utn + y;n,x“p(e)g (S):|C|N~S,

Taking the conditional mathematical expectation Efn [] on both side of the obtained equation, and by the

ty.X
Ytn

n

(16)

nature of the conditional mathematical expectation,we deduce
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ytt:,xn _ Etxn |:Aln+1 yt i :|+ L:nﬂEt);” I:Atsn r(S’ Xgnvx” , y;nxxn ):| ds.
Based on (17), we have
i = [ Jegan (o o [ (et b))« 3R

where

n bty X ns x" n+lptns 1 ns "
Ry, = ["B AL }dt—ZAt B | Apr |- an

and
R” — Exn Atn+1 ytnvxn _ ytlwlvxm-1 _;’_lAt ]EX Atn+l _ rtn+lv>(n+1
Y2 th th tha1 tha1 2 "ty tn+1 tha '

According to Lemma 1, the equality ]Etxn [Aﬁ:”y}gf} EX [y" } we have

x" X" x" 1 n X" 1 =x" n+ XN
ytl: = Etn |:ytl:+1 :| + EAtnr (tnv X, ytl: )+ EAtnEtn |:r (tn+1’ X 1' ytl::ll )j| ZRVJ !

(17

(18)

(19)

(20)

(21)

Let AW, =W, =W, for t <t<t, . Then AW, is a standard Brownian motion with mean zero and vari-
ance t-t . Now multlply (11) by AW,, taking the conditional mathematical expectation EX [] on both sides

of the obtalned equation, and using the 1td isometric formula, we deduce

O:.[;M t>(nn|:fstnvanth+ :|dS+EX |: tn+1:| J'"+1 X" |: j| s

From (22) we have,
0-E/ [y{;j x AWIMJ — Atz 4 ZRZJ,
where
o, Jos o -2 J
RE =B | (v -y aw, |
Let AN, =AN, —JAt,similarly multiplying (11) by AN,  yields
0= ["EY [fs‘"’X"ANtMst vEY [yfn";f IM} (N [rtn }d .
From (25) we have,
0=E [y{:ﬁ’XMANth —AL TP+ ZRF, :
where
R, = [ B | 10N, [ds - ! [E [r‘;*”}—r{:”]ds,
Re =B | (v -y e, |

Based on (21), (23) and (26), for solving the BSDE (1) we propose the following scheme.
Scheme 1. Given (XO, VAR AN B ) , solve ( X"y, 2" F”) backwardly by

(22)

(23)

(24)

(25)

(26)

(27)
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X" =x" + a;z l, [ f, (tn XN y" )]tnm, (28)
n X" n+1 1 no\,n 1 X" n+l N+l

y' =B [y ]+5Atnf (tn,x VY )+5AtnEtn [f (tml,x Y )} (29)

ALz =B [y””AWtM] (30)

AL =B [y™aN, ] (31)

4. Error Estimates

In this section, we will give the error estimates of Scheme 1 proposed in Section 3. Now we introduce the error
e =y —y", el =z —2" and & =Ty -T" in L° norm, where (xitx f“'xn,zt‘"’xn,l“{"'x") is the
solution of the FBSDEs (1), and (x”*l, y",z",I'") is the solution of Scheme 1. For the sake of simplicity, we
only consider one-dimensional BSDEs (i.e.,m=d =1) . However, all error estimate that we obtain in the sequel
also hold for general multidimensional BSDEs. In our error analysis, we will use a constraint on the time
partition step At :

max At,

Osng.N—l < CO. (32)

min At

0<n<N-1

Let us introduce the following Lemma, its proof can be found in the reference [2].

~Lemma 2. Let Ry, Rj and R (]j=12) be the truncation errors defined in (21), (23) and (26), respec-
tively. It holds that

Jmax RG] [Ra [REf < ¢ (a0)°, (33)
om3$1{|R32 JRL[L R, } <c(at). (34)

Here C is a positive constant depending on T. We first give the error estimate for yfn”'xn —y" in the following
theorem.

Theorem 1. Let (xttX VAN AL sl (0<n< N -1) be the solution of the FBSDE (1) and

)OSIST
(x”*l, y", z”,F”) be the solution of Scheme 1. Assume y" = (p(X N ) Then for sufficiently small time step At ,
we have

maxE[

0<n<N

n p
vt -y } <Ch*” (35)

for 1< p <o, where C is a constant depending on T.
Proof. Let e = yt‘n"'x —y". Subtracting (29) from (21) to get

n_ " n n+ 1 n o, X" [ an+ z n
ey = [yt‘n";f —y 1}+5Atn(ef + B [ef l])+ZRyj. (36)
j=1

Under the conditions of the theorem and by Lemma 2,we deduce that,

ey < B [ J+ St L]+ 2at LB [Jeg ]+ (at, ] -
<(1+Cat, ) B [[e)| |+ Cat,[ef] + C(at, ),

where L is the Lipschitz constant of f (t, X, y) with respect to y. Applying the inequality

(a+b)" <a” (1+<—:(2p‘1))+bp (1+ 2" -1

n+l
ey

p-1

] for 0<e<1 with a:(1+CAtn)EtXnn[

Ik

€
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b=CAt, |e]|+C(At, )3, and €= At,, we deduce,

])p (L+at, (27 -1))+ (ca,

n
ey

n+l

€

n
e)’

"<((@roan) B[

n
ey

+C(Atn)3)p[1+ 2,,1_1}

+(Atn)z]p[1+

(38)

n+l

€y

<(1+cat) B [

p}+(CAtn)p[

which by the inequality (a+b)® < 2"‘1(::1p +bp) gives

p]+CAtn[

Taking the mathematical expectation on both sides of (35), for sufficiently small At, we have

n
ey

_C
(a)" )

n n+l n
ey ey ey

"< (14 CAtn)fEfnn[

"} +C (A", (39)

n+l

&

o @renE [ ] e
y| = +
(2-Ch) (2-Ch) (40)

N-n 2p+l N-n-1 i
< 1+Ch o [eN|p}_Ch Z 1+Ch ,
1-Ch n

y 1-Ch i \1-Ch
for n=N -1,---,0. The terminal condition Eﬂey H = EﬂyT —yN H <C(At, )2p , the time step constraint (28)

and the inequality

i S h_;p(echCT _1)' (41)

Ch?P N1 4 Ch
1-Ch = \1-Ch

n
ey

lead to ]E;[ p}sCh“’ for n=N-1,--,0. The proof is completed.

Then we turn to estimating the error e} = z:n"’xn -2".
Theorem 2. Let (xt‘"‘xn,yf"‘xn,zf“'xn,l":"’xn) be the solution of the FBSDE(1) and (x”*l,y”,z”,rn) be the

solution of Scheme 1. Assume Eﬂey“ H = EU y; —y" H <C(aAt, )zp . Then for sufficiently small time step At, ,

we have

max ]E[ "

0<n<N

tn,x"
AR
n

p}sc(mﬂ)”

for 1< p <o ,where C is a constant depending on T.
Proof. Let e] = zttn“'X —z". From (19) and (25), we get

n 2
Atel = [e) AW, |+ DR},
=
By Lemma 2, the inequality (a+ b)p <2t (ap + b”) and Holder’s inequality, we deduce

)p <2p? P

(at,

n
eZ

n
R

p 2

X" [ n+l p-1
B[] Awtm]‘ +27y
=1
en+1

P P
gcp[Efn"[ ' Z}Z(Atn)f +(Atn)2pJ (42)
en+1

2y P
<C, | B |Jeyf [*nz +re |

where C_ is a positive number which depends on p and the constant C in Lemma 2. Taking the mathematical
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expectation on both sides of the Equation (38) gives

(Atn)pE[ p}scp[E[

by using Theorem 1 and constraint (28), leads to E[

n+l
y

e

e

275 2
:l hz +h?" |, (43)

e

p}sChp for n=N-1,---,1,0. The proof is completed.

At last, we estimate the error e = FI:'XH -,

Theorem 3. Let (Xf“'xn, fn”'xn,an"'xn,F::’X") be the solution of the FBSDE(1) and (X"”,y",zn,l“”) be the

solution of Scheme 1. Assume EUeyN H = EU v, —y" H <C (Atn )zp. Then for sufficiently small time step At,,

we have

tn X" n
ro’ T

0<n<N

maxE[ p}sC(Atn)” (44)

for 1< p <o, where C is a constant depending on T.
Proof. Let e =T ™. From (26) and (31),we get

n ~ 2
Atel =B [e]"AN, ]+ >Rr. (45)
j=1

By Lemma 2, the inequality (a+b)” <2°* (ap + b”) and Holder’s inequality, we deduce

n ~ p
(at, Jer])” <2 [E2 [e;”ANtMJ‘ 22 Ref”
2 2 P
<Cy B e (a7 (a0 (46)
25 B
<C, | B Jey [P hz e,

where C is a positive number which depends on p and the constant C in Lemma 2. Taking the mathematical
expectation on both sides of the Equation (42) gives

(Atn)pE[ p}scp{E[

by using Theorem 1 and constraint (28), leads to E[

n n+l
er ey

2Ty P
:| hz +h?° |, 47

e

p}ﬁChp for n=N-1,---,1,0. The proof is completed.
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