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Abstract 
In this paper, we propose a new second order numerical scheme for solving backward stochastic 
differential equations with jumps with the generator ( ) ( ) ( )t t t tf r t x y h t z g t, ,= + + Γ  linearly de-
pending on tz . And we theoretically prove that the convergence rates of them are of second order 

for solving ty  and of first order for solving tz  and tΓ  in pL  norm. 
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1. Introduction 
Bismut (1973) studied the existence of the linear backward stochastic differential equation, the results could be 
regarded as a promotion of a famous Girsanov theorem. The existence and uniqueness of solutions for nonlinear 
backward stochastic differential equations (BSDEs) were first proved by Pardoux and Peng (1990).Since then, 
BSDEs have been extensively studied by many researchers. In [1], Peng obtained the relation between the 
backward stochastic differntial equation and the parabolic partial differential equation (PDE), and in Peng 
(1990), the stochastic maximum principle for optimal control problems were based on BSDEs. The applications 
of BSDEs now cover many scientific fields, such as stochastic control, stock markets, risk measure, turbulence 
fluid flow, biology, chemical reactions, partial differential equations, and so on. Thus it is very important and 
useful to obtain solutions of BSDEs for real applications. However, it is often quite difficult to obtain analytic 
solutions of BSDEs, so computing approximate solutions of BSDEs become highly desired, by using the relation 
between the BSDE and PDE. As far as we know, there have been very few schemes obtained with second-order 
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convergence rate, such as [2] [3]. 
In this paper, we propose a new second order numerical scheme for the solution of forward-backward sto- 

chastic differential qquations (FBSDE in short) with jumps with the following form  

( ) ( ) ( ) ( )

( ) ( )
0 0 0 0

, d , d , , d ,d

d d d ,d

t t t
t s s s s k

T T T
t T s s s s kt t t

x x b s x s s x W s x e N s e

y g x f s z W U N s z

σ β −
 = + + +

 = + − −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫









              (1) 

From [4], we know that the solution ( ), , ,t t t tx y z Γ  can be represented as 

( ) ( ) ( )
( )( ) ( ){ } ( ) ( ) [ )

, , , , ,

, , , , d , 0, ,
t t t x t t

t t t t

y u t x z u t x t x

u t x t x e u t x e e t T
ε

σ

β ρ λ

= = ∇

Γ = + − ∈∫
                   (2) 

where the vector function ( ),u t x  is the classical solution of the following parabolic differential equation (PDE) 
of the form 

( ) ( ) ( ) ( ) [ ]( )( )
( ) ( )

, , , , , , , , , 0

,
xu t x f t x u t x u t x t x u t x

u T x g x

σ + ∇ =


=

 
                     (3) 

where xu∇  denotes the gradient of u with respect to the space variable x, 

( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( )

[ ]( ) ( )( ) ( ){ } ( ) ( )

2

, 1

1, : , , ,
2

, , , , , d ,

, : , , , d .

d

x i j
i j

x

u uu t x t x u t x b x x t x
t x x

u t x x e u t x u t x x e e

u t x u t x x e u t x e e
ε

ε

σσ

β β λ

β ρ λ

∗

=

∂ ∂
= ∇ +
∂ ∂ ∂

+ + − −∇

= + −

∑

∫
∫





                (4) 

2. Preliminaries and Notation 

Let T be a fixed positive number and { }{ }0
, , , t t T

P
≤ ≤

Ω    be a complete,filtered probability space on which is  

defined a standard Brownian motion tW , such that { }0t t T≤ ≤
  is the natural filtration of the Brownian motion  

tW  and all the P-null sets are augmented to each σ-field t . Denote by 2L  the set of all t -adapted and 
mean-square-integrable processes. 

A process ( ) [ ], , , : 0, m m d
t t t tx y z T R R ×Γ ×Ω→ ×  is called an 2L -adapted solution of the FBSDE(1) if it’s 

{ }t -adapted and 2L -integrable, and satisfies (1). Under some standard conditions on the functions f and h, 
there is a unique adapted random process. 

Now we introduce a new probability space: for { }: 0t tΛ ≥  is an exponential martingale and satisfies  
( ) 1x

t tn
Λ = , we define [ ] 1n

n

t
tX X + = Λ 

   . The random processes 
n

t
tΛ , it is easy to verify that 

n

t
tΛ  is an 

exponential martingale. 

( ) ( ) ( ) ( ) { }( ) ( ) ( ) ( )0 d d2
0 0 0

0

1exp d d 1 ,d e .
2

tt t g s e e st
s k

s t
h s W h s s g s e N s e ρ πρ −

≤ ≤

∫ ∫   Λ = − +    
∏∫ ∫ ∫ 


      (5) 

Let us first introduce the following lemma. 
Lemma 1. Given the time partition 10 n nt t T+≤ ≤ ≤ , X is a t -measurable random variable,and satisfies 
[ ]X < ∞ . 

[ ]
1

10

0

, . .
n

n
n nn n

n n nn

tx
t tx x

t t tt

X
X X a s

+

+
 Λ   = = Λ Λ




                              (6) 

We use the following Itô-Taylor approximation to solve the forward SDEs with jumps 

( )
12

1

,
, ,

n n

n n n
n t tT

X X I f t Xα α
α +

+

∈

 = +  ∑                                  (7) 
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where 

( )

( )
( )

( )

( ) ( )

,

,
,

,

, 0,

d , 1, = 0

,
d , 1, 1, 2, ,

d ,d , 1, 1

nn

ln
nn

nn

lt rt

jt
r lt rt

lt rt

g l v

I g r l j
I g

I g W l j m

I g N e r l j

τ
α

τα τ
α

τ
α

τ α

−

−

− −

= =


⋅ ≥   


⋅ =    ⋅ ≥ ∈  

 ⋅ ≥ = −  

∫

∫

∫ ∫






                       (8) 

and the coefficient function 

( )
( ) ( )

( ) ( )
( ) ( )

1
1

1

, , 0

, , , , , 1, 0,1, , ,
, , , 1, 1

j

e l

f t x l

f t x e L f t x e l j m
L f t x e l j

α α

α

α

α
α

−
−

−

=


= ≥ ∈
 ≥ = −

                             (9) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) [ ]

2
0 , ,

1 , 1 1

,

1
1

1, , , , , , , , , , , ,
2

, , , , , ,

, , , , , , , , , 0, , , .

d d m
i i j l j

i i l
i i l j

d
k i k

i
i

d s
e

L f t x e f t x e a t x f t x e b t x b t x f t x e
t x x x

L f t x e b t x f t x e
x

L f t x e f t x c t x v e f t x e t T x R e ε

= = =

=

−

∂ ∂ ∂
= + +
∂ ∂ ∂ ∂

∂
=

∂

= + − ∈ ∈ ∈

∑ ∑∑

∑      (10) 

Now we introduce some basic notations. 
• { }t t s T≤ ≤

 : the σ-field generated by the Brownian motion. 

• Throughout this paper, we denote by C a generic constant depending only on T, the upper bounds of the de-
rivatives of the functions f. 

3. Numerical Schemes for Solving BSDE 
From the time interval [ ]0,T , we introduce the following time partition: 00 Nt t T= < ⋅ ⋅ ⋅ < = , let  

1n n nt t t+∆ = −  and 
0 1
max nn N

t h
≤ ≤ −

∆ = . According to (1), it’s easy to obtain that for 0 1n N≤ ≤ − , 

( ) ( ) ( )( ) ( )1 1 1

1
, , d d d ,d .n n n

n n n n n

t t t
t t s s s s s s s kt t t

y y r s x y h s z g s s z W U N s z+ + +

+
= + + + Γ − −∫ ∫ ∫ ∫ 


      (11) 

From (5) and (11),we have 

( ) ( ) ( )d d d ,
n n

t t
t t t te g t N h t Wρ Λ = Λ + ∫ 


                            (12) 

( ) ( ) ( )d , , d d d ,t t t t t t t t ty r t x y h t z g t t z W U N = − + + Γ + +  ∫ 


             (13) 

d d d d d .
n n n n

t t t t
t t t t t t t ty y y yΛ = Λ + Λ + Λ                                  (14) 

From (12), (13) and (14), by applying Itô formula to 
n

t
t tyΛ , we obtain the equation 

( ) ( ) ( ) ( )d , , d d d .
n n n n

t t t t
t t t t t t t t t t t t ty r t x y t z h t y W U y e g t NρΛ = −Λ + Λ + + Λ +      ∫ 


       (15) 

From (15), it is easy to obtain that for 0 1n N≤ ≤ − , 

( ) ( )

( ) ( )

1 11
1

1

, , , , , ,

, ,

, , d d

d ,

n n n n n nn nn n n n n n n
n n n n nn n

n nn n n
nn

t tt x t t x t x t x t x t xs s
t t t t s s t s s st t

t t x t xs
t s s st

y y r s x y s z h s y W

U y e g s Nρ

+ ++
+

+

 = Λ + Λ − Λ +
 

 − Λ +
 

∫ ∫

∫ ∫ 


          (16) 

Taking the conditional mathematical expectation [ ]
n

x
t ⋅  on both side of the obtained equation, and by the 

nature of the conditional mathematical expectation,we deduce 
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( )11
1

, , , ,, , d .
n n n nn nnn n n n n

n n n n n nn

tt x t t x t x t xx x s
t t t t t t s st

y y r s x y s++
+

  = Λ + Λ    ∫                                 (17) 

Based on (17), we have 

( ) ( )( )1 1
1 1 1 1

1 1

2
, , , ,1

1
1

1 , , , , ,
2

n n n nn n
n n n n n n
n n n n n n n n

t x t t x t x t t xx n x n n
t t t t n n t t t n t yj

j
y y t r t x y r t x y R

+ +
+ + + +

+ +

+
+

=

  = Λ + ∆ + Λ +     ∑       (18) 

where 

1 1
1 1

, , ,1 1d ,
2 2

n n nn nn n n n n
n n n n n nn

t t x t t x t xn x t x
y t t t n t t t n tt

R r t t r t r+ +
+

   = Λ − ∆ Λ − ∆
   ∫                               (19) 

and 

( ) ( )1 1
1 1 1 1

2 1 1 1 1

, , , ,1 .
2

n n n nn n
n n n n n n

n n n n n n n n

t t x t x t t x t xn x x
y t t t t n t t t tR y y t r r

+ +
+ + + +

+ + + +
   = Λ − + ∆ Λ −      

                        (20) 

According to Lemma 1, the equality 1
1 1

, ,n nn n
n n n

n n n n n

t t x t xx x
t t t t ty y+

+ +
   Λ =
   

  , we have 

( ) ( )1
1

1 1

2
, , , ,1

1
1

1 1, , , , ,
2 2

n n n nn n
n n n n
n n n n n n

t x t x t x t xx n x n n
t t t n n t n t n t yj

j
y y t r t x y t r t x y R

+
+

+ +

+
+

=

  = + ∆ + ∆ +     ∑              (21) 

Let 
nt t tW W W∆ = −  for 1n nt t t +≤ ≤ . Then tW∆  is a standard Brownian motion with mean zero and vari- 

ance nt t− . Now multiply (11) by tW∆ , taking the conditional mathematical expectation [ ]n

n

x
t ⋅  on both sides 

of the obtained equation, and using the Itô isometric formula, we deduce 
1 1

1 1 1

, , ,0 d d .
n n nn n nn nn n n

n n n n n nn n

t tt x t x t xx x x
t s t t t t t st t

f W s y W z s+ +

+ + +
     = ∆ + ∆ −     ∫ ∫                    (22) 

From (22) we have, 

1
1
1 1

2
, ,

1
0 ,

n nn
n n

n n n n

t x t xx n
t t t n t zj

j
y W t z R

+
+
+ +

=

 = ∆ − ∆ +  ∑                               (23) 

where 

( )

1 1

1

1
1

1 1 1

, , ,
1

, ,
2

d d ,

.

n n nn nn nn n n
n n n nn n

n nn
n n

n n n n

t tt x t x t xn x x
z t s t t s tt t

t x t xn x
z t t t t

R f W s z z s

R y y W

+ +

+

+
+

+ + +

    = ∆ − −     
 = − ∆  

∫ ∫ 


                (24) 

Let 
1 1n nt t nN N tλ
+ +

∆ = ∆ − ∆ , similarly multiplying (11) by 
1nt

N
+

∆   yields 

1 1

1 1 1

, , ,0 d d .
n n nn n nn nn n n

n n n n n nn n

t tt x t x t xx x x
t s t t t t t st t

f N s y N s+ +

+ + +
     = ∆ + ∆ − Γ
     ∫ ∫              (25) 

From (25) we have, 

1
1
1 1

2
, ,

1
0 ,

n nn
n n

n n n n

t x t xx n
t t t n t j

j
y N t R

+
+
+ + Γ

=

 = ∆ − ∆ Γ +
  ∑                              (26) 

where 

( )

1 1

1

1
1

1 1 1

, , ,
1

, ,
2

d d ,

.

n n nn nn nn n n
n n n nn n

n nn
n n

n n n n

t tt x t x t xn x x
t s t t s tt t

t x t xn x
t t t t

R f N s s

R y y N

+ +

+

+
+

+ + +

Γ

Γ

    = ∆ − Γ − Γ     
 = − ∆  

∫ ∫



 


               (27) 

Based on (21), (23) and (26), for solving the BSDE (1) we propose the following scheme. 
Scheme 1. Given ( )0 , , ,N N Nx y z Γ , solve ( )1, , ,n n n nx y z+ Γ  backwardly by 
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( )

( ) ( )
12

1

1

1

,

1 1 1
1

1

1

, , , (28)

1 1, , , , , (29)
2 2

, (30)

. (31)

n n

n n

n n

n

n n

n

n n

n n n n
n t tT

n x n n n x n n
t n n n t n

n x n
n t t

n x n
n t t

x x I f t x y

y y t f t x y t f t x y

t z y W

t y N

α α
α +

+

+

+

∈

+ + +
+

+

+

  = +  

   = + ∆ + ∆    
  ∆ = ∆  


 ∆ Γ = ∆  

∑

 



 





 

4. Error Estimates 
In this section, we will give the error estimates of Scheme 1 proposed in Section 3. Now we introduce the error  

, n
n
n

t xn n
y te y y= − , , n

n
n

t xn n
z te z z= −  and , n

n
n

t xn n
teΓ = Γ − Γ  in pL  norm, where ( ), , , ,, , ,

n n n n
n n n nt x t x t x t x

t t t tx y z Γ  is the  

solution of the FBSDEs (1), and ( )1, , ,n n n nx y z+ Γ  is the solution of Scheme 1. For the sake of simplicity, we 
only consider one-dimensional BSDEs ( ). ., 1i e m d= = . However, all error estimate that we obtain in the sequel 
also hold for general multidimensional BSDEs. In our error analysis, we will use a constraint on the time 
partition step nt∆ : 

0 1
0

0 1

max
.

min
nn N

nn N

t
c

t
≤ ≤ −

≤ ≤ −

∆
≤

∆
                                      (32) 

Let us introduce the following Lemma, its proof can be found in the reference [2]. 
Lemma 2. Let n

yjR , n
zjR  and n

jRΓ  ( 1, 2j = ) be the truncation errors defined in (21), (23) and (26), respec- 
tively. It holds that 

{ } ( )3
1 1 10 1

max , , ,n n n
y zn N

R R R C tΓ≤ ≤ −
≤ ∆                               (33) 

{ } ( )3
2 2 20 1

max , , .n n n
y zn N

R R R C tΓ≤ ≤ −
≤ ∆                              (34) 

Here C is a positive constant depending on T. We first give the error estimate for , n
n
n

t x n
ty y−  in the following 

theorem. 
Theorem 1. Let ( ), , , ,

0
, , ,

n n n n
n n n nt x t x t x t x

t t t t
t T

x y z
≤ ≤

Γ  ( 0 1n N≤ ≤ − ) be the solution of the FBSDE (1) and  

( )1, , ,n n n nx y z+ Γ  be the solution of Scheme 1. Assume ( )N Ny Xϕ= . Then for sufficiently small time step nt∆ , 
we have 

, 2

0
max

n
n
n

p
t x n p
tn N

y y Ch
≤ ≤

 − ≤  
                                 (35) 

for 1 p≤ ≤ ∞ , where C is a constant depending on T. 
Proof. Let , n

n
n

t xn n
y te y y= − . Subtracting (29) from (21) to get 

( )1

2
, 1 1

=1

1 .
2

nn n
n

n n n

t xn x n n x n n
y t t n f t f yj

j
e y y t e e R

+

+ +   = − + ∆ + +   ∑                        (36) 

Under the conditions of the theorem and by Lemma 2,we deduce that, 

( )

( ) ( )

31 1

31

1 1
2 2

1 ,

n n

n n

n

n

n x n n x n
y t y n y n t y n

x n n
n t y n y n

e e t L e t L e C t

C t e C t e C t

+ +

+

  ≤ + ∆ + ∆ + ∆   

 ≤ + ∆ + ∆ + ∆ 

 



 


                    (37) 

where L is the Lipschitz constant of ( ), ,f t x y  with respect to y. Applying the inequality  

( ) ( )( )
1

1
1

2 11 2 1
p

p p p p
pa b a b
−

−
−

 −
+ ≤ + + + 

 



 for 0 1≤ ≤  with ( ) 11

n

n

x n
n t ya C t e + = + ∆  
 , 
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( )3n
n y nb C t e C t= ∆ + ∆ , and nt= ∆ , we deduce, 

( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( )
( )

1
31 1

1

1 21
1

2 11 1 2 1 1

1 1 ,

n

n

n

n

pp ppn x n p n
y n t y n n y n p

n

ppp px n n
n t y n y n p

n

e C t e t C t e C t
t

CC t e C t e t
t

−
+ −

−

+ +
−

 −   ≤ + ∆ + ∆ − + ∆ + ∆ +   ∆ 
      ≤ + ∆ + ∆ + ∆ +       ∆ 









       (38) 

which by the inequality ( ) ( )12p p p pa b a b−+ ≤ +  gives 

( ) ( )2 111 .
n

n

p p p pn x n n
y n t y n y ne C t e C t e C t ++   ≤ + ∆ + ∆ + ∆      

                           (39) 

Taking the mathematical expectation on both sides of (35), for sufficiently small nt∆  we have 

( )
( ) ( )

1
2 1

2 1 1

0

1

1 1

1 1 ,
1 1 1

pnx n
pt yp nn

y

N n ip N npnx N
t yn

i

Ch e Che
Ch Ch

Ch Ch Che
Ch Ch Ch

+
+

− + − −

=

 +   ≤ +
− −

+ +    ≤ +     − − −   
∑









                        (40) 

for 1, , 0n N= − ⋅ ⋅ ⋅ . The terminal condition ( )2p p pN N
y T ne y y C t   = − ≤ ∆      

  , the time step constraint (28) 

and the inequality 

( )0
2 1 21

2

0

1 1 ,
1 1 2

ip pN n
c CT

i

Ch Ch h e
Ch Ch

+ − −

=

+  ≤ − − − 
∑                                (41) 

lead to 2pn p
ye Ch  ≤  

  for 1, , 0n N= − ⋅ ⋅ ⋅ . The proof is completed. 

Then we turn to estimating the error , n
n
n

t xn n
z te z z= − . 

Theorem 2. Let ( ), , , ,, , ,
n n n n

n n n nt x t x t x t x
t t t tx y z Γ  be the solution of the FBSDE(1) and ( )1, , ,n n n nx y z+ Γ  be the 

solution of Scheme 1. Assume ( )2p p pN N
y T ne y y C t   = − ≤ ∆      

  . Then for sufficiently small time step nt∆ , 

we have 

( ),

0
max

n
n
n

p pt x n
t nn N

z z C t
≤ ≤

 − ≤ ∆  
  

for 1 p≤ ≤ ∞ ,where C is a constant depending on T. 
Proof. Let , n

n
n

t xn n
z te z z= − . From (19) and (25), we get 

1

2
1

1
.

n

n n

n x n n
n z t y t zj

j
t e e W R

+

+

=

 ∆ = ∆ +  ∑  

By Lemma 2, the inequality ( ) ( )12p p p pa b a b−+ ≤ +  and Hölder’s inequality, we deduce 

( )

( ) ( )

1

2
1 1 1

1

2 221 2

2 21 22

2 2

,

n

n n

n

n

n

n

pp pn p x n p n
n z t y t zj

j

p
p px n

p t y n n

p p
x n p

p t y

t e e W R

C e t t

C e h h

+

− + −

=

+

+

 ∆ ≤ ∆ + 

 
  ≤ ∆ + ∆   

 
 

  ≤ +   
 

∑





                     (42) 

where pC  is a positive number which depends on p and the constant C in Lemma 2. Taking the mathematical 
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expectation on both sides of the Equation (38) gives 

( )
2 21 22 ,

p p
pp n n p

n z p yt e C e h h+
 

    ∆ ≤ +       
 

                              (43) 

by using Theorem 1 and constraint (28), leads to 
pn p

ze Ch  ≤  
  for 1, ,1,0n N= − ⋅ ⋅ ⋅ . The proof is completed. 

At last, we estimate the error , n
n
n

t xn n
teΓ = Γ − Γ . 

Theorem 3. Let ( ), , , ,, , ,
n n n n

n n n n
n n n

t x t x t x t x
t t t tx y z Γ  be the solution of the FBSDE(1) and ( )1, , ,n n n nx y z+ Γ  be the 

solution of Scheme 1. Assume ( )2p p pN N
y T ne y y C t   = − ≤ ∆      

  . Then for sufficiently small time step nt∆ , 

we have 

( ),

0
max

n
n
n

p pt x n
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C t
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 Γ − Γ ≤ ∆  
                                (44) 

for 1 p≤ ≤ ∞ , where C is a constant depending on T. 
Proof. Let , n

n
n

t xn n
teΓ = Γ − Γ . From (26) and (31),we get 
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By Lemma 2, the inequality ( ) ( )12p p p pa b a b−+ ≤ +  and Hölder’s inequality, we deduce 
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                         (46) 

where pC  is a positive number which depends on p and the constant C in Lemma 2. Taking the mathematical 
expectation on both sides of the Equation (42) gives 

( )
2 21 22 ,

p p
pp n n p

n p yt e C e h h+
Γ

 
    ∆ ≤ +       

 
                               (47) 

by using Theorem 1 and constraint (28), leads to 
pn pe ChΓ

  ≤  
  for 1, ,1,0n N= − ⋅ ⋅ ⋅ . The proof is completed. 
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