
Applied Mathematics, 2016, 7, 1140-1147 
Published Online June 2016 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2016.710102   

How to cite this paper: Abo Essa, Y.M. (2016) Multigrid Method for the Numerical Solution of the Modified Equal Width 
Wave Equation. Applied Mathematics, 7, 1140-1147. http://dx.doi.org/10.4236/am.2016.710102  

 
 

Multigrid Method for the Numerical Solution 
of the Modified Equal Width Wave Equation 
Yasser M. Abo Essa 
Mathematics Department, Faculty of Education and Science (AL-Khurmah Branch), Taif University, Taif, 
Kingdom of Saudi Arabia 

 
 
Received 3 April 2016; accepted 21 June 2016; published 24 June 2016 

 
Copyright © 2016 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Numerical solutions of the modified equal width wave equation are obtained by using the multi-
grid method and finite difference method. The motion of a single solitary wave, interaction of two 
solitary waves and development of the Maxwellian initial condition into solitary waves are studied 
using the proposed method. The numerical solutions are compared with the known analytical so-
lutions. Using L L2 , ∞  error norms and conservative properties of mass, momentum and energy, 
accuracy and efficiency of the mentioned method will be established through comparison with 
other methods. 
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1. Introduction 
A large system of equations comes out from discretization of the domain of partial differential equations into a 
collection of points and the optimal method for solving these problems is multigrid method, see [1]-[4]. 

The modified equal width wave (MEW) equation introduced by Morrison et al. [5] is used as a model equa-
tion to describe the nonlinear dispersive waves. Gardner and Gardner [6] [7] solved the EW equation with the 
Galerkin’s method using cubic B-splines as a trial and test function. The MEW equation was similar with the 
modified regularized long wave (MRLW) equation [8] and modified Korteweg-de Vries (MKdV) equation [9]. 
All the modified equations are nonlinear wave equations with cubic nonlinearities and all of them have solitary 
wave solutions, which are wave packets or pulses. These waves propagate in non-linear media by keeping wave 
forms and velocity even after interaction occurs. 

Several solutions for MEW had been proposed in [10]-[22]. In Geyikli and Battal Gazi Karakoc [10] [11], the 
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solutions are based on septic B-spline finite elements and Petrov-Galerkin finite element method with weight 
functions quadratic and element shape functions which are cubic B-splines. Esen [12] [13] solved the MEW eq-
uation by applying a lumped Galerkin method based on quadratic B-spline finite elements. Saka [14] proposed 
algorithms for the numerical solution of the MEW equation using quintic B-spline collocation method. Zaki [15] 
considered the solitary wave interactions for the MEW equation by collocation method using quintic B-spline 
finite elements and obtained the numerical solution of the EW equation by using least-squares method [16]. 
Wazwaz [17] investigated the MEW equation and two of its variants by the tanh and the sine-cosine methods. A 
solution based on a collocation method incorporated cubic B-splines is investigated by Saka and Dağ [18]. Lu 
[19] presented a variational iteration method to solve the MEW equation. Evans and Raslan [20] studied the ge-
neralized EW equation by using collocation method based on quadratic B-splines to obtain the numerical solu-
tions of a single solitary waves and the birth of solitons. Esen and Kutluay [21] studied a linearized implicit fi-
nite difference method in solving the MEW equation. Battal Gazi Karakoc and Geyikli [22] solved the MEW 
equation by a lumped Galerkin method using cubic B-spline finite elements. 

An outline of this paper is as follows: We begin in Section 2 by reviewing the analytical solution of the MEW 
equation. In Section 3, we derive a new numerical method based on the multigrid technique and finite difference 
method for obtaining the numerical solution of MEW equation. Finally, in Section 4, we introduce the numerical 
results for solving the MEW equation through some well known standard problems. 

2. The Analytical Solution 
The modified equal width wave equation which is as a model for non-linear dispersive waves, considered here 
has the normalized form [5] 

23 0,t x xxtu u u uµ+ − =                                    (1) 

with the physical boundary conditions 0u →  as x → ±∞ , where t is time and x is the space coordinate, µ  is 
a positive parameter. For this study boundary conditions are chosen 

( ) ( )
( ) ( )
( ) ( )

, 0, , 0,

, 0, , 0,

, 0, , 0,
x x

xxt xxt

u a t u b t

u a t u b t

u a t u b t

= =

= =

= =

                                (2) 

and the initial condition as 

( ) ( ), 0 , ,u x f x a x b= ≤ ≤  

where f is a localized disturbance inside the considered interval. 
The exact solution of equation (1) can be written in the form [15] 

( ) ( )( )0, sech ,u x t A P x x tν= − −                              (3) 

which represents the motion of a single solitary wave with amplitude A, where the wave velocity 2 2Aν =  
and 1P µ= . The initial condition is given by 

( ) ( )( )0, 0 sechu x A P x x= −                                 (4) 

For the MEW equation, it is important to discuss the following three invariant conditions given in [15], which, 
respectively, correspond to conversation of mass, momentum, and energy. The analytical values of the inva-
riants are 

2 2 4

1 2 3
π 2 2 4, , .

3 3
A A PA AC C C
P P P

µ
= = + =                       (5) 

3. Numerical Method 
The basic idea of multigrid techniques is illustrated by Brandt [1]. In this section we apply this method for initial 
boundary value problem, except that, the upper boundary conditions change with time, in which the initial con-
dition is ( ) ( ), 0u x f x=  for 0 t T< < . Dividing the interval of time to K parts, we obtain the solutions of the 
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partial differential equation at time t1 and use these solutions as initial values for the next level ( ) ( )1, 0 ,u x u x t= , 
and for the other, we obtain the solutions at time T. The numbers of points in a coarse grid for this domain are 
two points. 

We apply the full multigrid algorithm for the MRLW equation. Assuming the initial condition  
( ) ( ), 0u x f x=  and the solution ( ),u x t , , 0a x b t T≤ ≤ ≤ ≤  has the usual partition with a space step size 
x∆  and a time step size t∆  ( 1 , 0,1, 2,K Kt t t K+ = + ∆ =  ). 

We start handling the non-linear term 23 xu u  by expressing in the form 
3u

x
∂
∂

. The back-time and centre-  

space difference for Equation (1) is 

( ) ( ) ( ) ( ) ( )
( ) ( )

3 3

1, 1, 1, 1, 1 , , 1 1, 1, 1, , 1
2

2
0,

2

k k k k k k k kk k
i n i n i n i n i n i n i n i ni n i n u u u u u u u uu u

t x x t
µ+ − + + − − − − −−

− − − − + −−
+ − =

∆ ∆ ∆ ∆
            (6) 

where 1, , 2 1, 1, , 2k ki n= − =  , 1, ,k M=   for a set grids 1 2, , , .MG G G  
Step 1: ( ) ( )0, ,0 .K u x f x= =  
Step 2: Starting from 1k =  in the coarse grid, we can calculate the approximate value ,i nu  at two points 

using Equation (5) leading to: 

( )( ) ( )

( ) ( ) ( ) ( )( )

1 1 1 1 1 1
, , 1 1, 1, 1, 1 1, 12

3 31 1
1, 1,

1 2
2 4

; 1, 1, 2.

i n i n i n i n i n i n

i n i n

u u u u u u
x

x t u u i n

µ
µ

− + − + − − −

+ −

= + + − −∆ +

− ∆ ∆ − = =

                 (7) 

The right hand side for equation (7) can be computed using the initial and boundary conditions. 
Step 3: Interpolating the grid functions from the coarse grid to fine grid using linear interpolation 1k

kI + , in 
which 

1 1 ,k k k
ku I u+ +=                                          (8) 

that can be written explicitly as: 

( )
( )
( )
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           (9) 

Step 4: Doing relaxation sweep on 1kG +  using the point relaxation 

( )( ) ( )

( ) ( ) ( ) ( )( )

1
, , 1 1, 1, 1, 1 1, 12

3 3 1 1
1, 1,

1 2
2 4

; 1, , 2 1, 1, , 2 .

k k k k k k
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k k k k
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x t u u i n

µ
µ

+
− + − + − − −

+ +
+ −

= + + − −∆ +

− ∆ ∆ − = − =
 

           (10) 

Step 5: Computing the residuals 1kr +  on 1kG +  and inject them into kG  using full weighting restriction 
1

k
kI +  to get kr  as: 

1
1 ,k k k

kr I r +
+=                                          (11) 

( )

1 1 1 1
, 2 1,2 1 2 1,2 1 2 1,2 1 2 1,2 1

1 1 1 1 1
2 ,2 1 2 ,2 1 2 1,2 2 1,2 2 ,2

1
16

2 4 ; , 1, , 2 1.

k k k k k
i n i n i n i n i n

k k k k k k
i n i n i n i n i n

r r r r r

r r r r r i n

+ + + +
− − − + + − + +

+ + + + +
− + − +

= + + +

+ + + + + = − 

                (12) 

Step 6: Computing an approximate solution of error ke . 
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Step 7: Interpolating the solution of error ke  onto 1kG + , 1 1 ,k k k
ke I e+ +=  and adding it to 1ku +  which is the 

approximate value of u on the fine grid with 2k = . 
By taking this solution on coarse grid and repeating steps 3-7, we obtain the approximate values of u on the 

grid with 3k =  and so 4,5, ,k M=   the final value is the solution at the time level 1K + . 
Step 8: 1K K= + , go to step 2 (lead to the solution at higher time level as needed). 

4. Numerical Results 
In this section, numerical solutions of MRLW equation are obtained for standard problems as: the motion of 
single solitary wave, interaction of two solitary waves and development of Maxwellian initial condition into so-
litary waves. For the MEW equation, it is important to discuss the following three invariant conditions given in 
[15], which respectively correspond to conversation of mass, momentum and energy: 

( )( ) ( ) ( )( )
( )

1 ,
1

2222
2 , ,

1

44
3 ,

1

d ,

d ,

d .

Nb
i na

i
Nb

x i n x i na
i

Nb
i na

i

C u x x u

C u u x x u u

C u x x u

µ µ

=

=

=

= = ∆

 = + = ∆ + 
 

= = ∆

∑∫

∑∫

∑∫

                        (13) 

The accuracy of the method is measured by both the 2L  error norm 

( )
2

2 2 0
,

N
exact exact

N i N i
i

L u u x u u
=

= − = ∆ −∑                                   (14) 

and the L∞  error norm 

( )max ,exact exact
N i N ii

L u u u u∞ ∞
= − = −                                     (15) 

to show how good the numerical results in comparison with the exact results. 

4.1. The Motion of Single Solitary Wave 
Consider Equation (1) with boundary conditions (2) and the initial condition (4). For a comparison with earlier 
studies [13] [19] [21] [22] we take the parameters 00.1, 0.05, 1, 30x t xµ∆ = ∆ = = =  and 0.25A =  over the 
interval [0, 80]. To find the error norms 2L , L∞  and the numerical invariants 1 2,C C  and 3C  at various 
times we use the numerical solutions by applying the multigrid method up to 20t = . As reported in Table 1, 
the error norms 2L , L∞  are found to be small enough, and the computed values of invariants are in good 
agreement with their analytical values 1 2 30.7853982, 0.1666667, 0.0052083.C C C= = =  Table 2 shows a 
comparison of the values of the invariants and error norms obtained by the present method with those obtained 
by other methods [13] [19] [21] [22]. It is clearly seen from Table 2 that the error norms obtained by the present 
method are smaller than the other methods. 

4.2. Interaction of Two Solitary Waves 
Consider the interaction of two positive solitary waves as a second problem. For this problem, the initial condi-
tion is given by: 

( ) ( )( )
2

1
, 0 sech .j j

j
u x A P x x

=

= −∑                                  (16) 

For the computational discussion, firstly we use parameters 10.1, 0.025, 1, 1,x t Aµ∆ = ∆ = = = 2 10.5, 15A x= =  
and 2 30x =  over the range [ ]0,80  to coincide with those used in [22]. 

In [20] the analytic invariants are ( )1 1 2π 4.7123889C A A= + = , ( ) ( )2 2
2 1 28 3 3.3333333C A A= + = , 

( ) ( )4 4
3 1 24 3 1.4166667C A A= + = . The experiment is run from 0t =  to 55t =  and values of the invariant 

quantities 1 2,C C  and 3C  are listed in Table 3. 
Table 3 shows a comparison of the values of the invariants obtained by present method with those obtained in  
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Table 1. Invariants and error norms for single solitary wave when 0.25, 0.1, 0.05,0 80A x t x= ∆ = ∆ = ≤ ≤ .                    

t  1C  2C  3C  5
2 10L ×  510L∞ ×  

0 0.7853966199 0.1666662968 0.005208333331 0.000000000 0.000000 

2 0.7853966246 0.1666660511 0.005208317956 0.0518705479 0.05440 

4 0.7853966176 0.1666658044 0.005208302547 0.1038794545 0.10890 

6 0.7853966097 0.1666655554 0.005208286962 0.1560469898 0.16359 

8 0.7853966066 0.1666653078 0.005208271505 0.2080329043 0.21810 

10 0.7853966012 0.1666650571 0.005208255823 0.2601313073 0.27283 

12 0.7853965918 0.1666648091 0.005208240334 0.3122731279 0.32747 

14 0.7853965793 0.1666645594 0.005208224692 0.3643751855 0.38216 

16 0.7853965769 0.1666643124 0.005208209260 0.4164201991 0.43656 

18 0.7853965785 0.1666640667 0.005208193877 0.4684782742 0.49095 

20 0.7853965668 0.1666638167 0.005208178255 0.5208044265 0.54566 

 
Table 2. Comparison of errors and invariants for single solitary wave at 20t = .                                     

Method 1C  2C  3C  5
2 10L ×  510L∞ ×  

Analytical 0.7853982 0.1666667 0.0052083 0 0 

Present 0.7853966 0.1666638 0.0052082 0.520804 0.54566 

[13] 0.7853898 0.1667614 0.0052082 7.969400 4.65523 

[19] 0.7849545 0.1664765 0.0051995 29.05166 24.98925 

[21] 0.7853977 0.1664735 0.0052083 26.92812 25.69972 

[22] 0.7853967 0.1666663 0.0052083 8.009800 4.606180 

 
Table 3. Comparison of invariants for the interaction of two solitary waves with results from [22] ( 0.1, 0.025,x t∆ = ∆ =

1 21, 0.5,0 80A A x= = ≤ ≤ ).                                                                                

 Present method [22] 

t  1C  2C  3C  1C  2C  3C  

0 4.712379141 3.333328364 1.416669724 4.7123732 3.3333253 1.4166643 

5 4.712378542 3.333075164 1.416419304 4.7123861 3.3333482 1.4166852 

10 4.712378533 3.332822094 1.416169046 4.7123959 3.3333621 1.4166982 

15 4.712378539 3.332569179 1.415918945 4.7124065 3.3333785 1.4167141 

20 4.712378504 3.332316280 1.415668885 4.7124249 3.3334164 1.4167521 

25 4.712378509 3.332063538 1.415418955 4.7124899 3.3335832 1.4169238 

30 4.712378541 3.331810944 1.415169189 4.7127643 3.3333557 1.4177617 

35 4.712378593 3.331558498 1.414919571 4.7130474 3.3352500 1.4188849 

40 4.712378583 3.331306069 1.414669976 4.7124881 3.3336316 1.4171690 

45 4.712378540 3.331053726 1.414420484 4.7123002 3.3331878 1.4167580 

50 4.712378546 3.330801521 1.414171139 4.7122479 3.3330923 1.4167142 

55 4.712378563 3.330632678 1.413975397 4.7122576 3.3331149 1.4167237 
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[22]. It is seen that the numerical values of the invariants remain almost constant during the computer run. 
Finally, we have studied the interaction of two solitary waves with the following parameters 0.1,x∆ =  

1 2 10.025, 1, 2, 1, 15t A A xµ∆ = = = − = =  and 2 30x =  in the range [0,150]. 
The analytical invariants can be found as in [22] 1 3.1415927C = − , 2 13.3333333C = , 3 22.6666667C = . 

The experiment is run from t = 0 to t = 55 and values of the invariant quantities 21,CC  and 3C  are listed in 
Table 4. 

4.3. The Maxwellian Initial Condition 
Last study, we consider the numerical solution of the equation (1) with the Maxwellian initial condition 

( ) 2
, 0 e ,xu x −=                                       (17) 

and the boundary conditions ( ) ( ) ( ) ( )20, 20, 20, 20, 0.x xu t u t u t u t− = − = = =  
 
Table 4. Invariants for the interaction of two solitary waves ( 1 20.1, 0.025, 2, 1, 0 150x t A A x∆ = ∆ = = − = ≤ ≤ ).                  

t  1C  2C  3C  

0 −3.141588324 13.33240988 22.66661773 

5 −3.141587221 13.31632255 22.60298870 

10 −3.141587293 13.30034113 22.53980538 

15 −3.141587369 13.28446423 22.47706277 

20 −3.141587465 13.26869077 22.41475674 

25 −3.141587571 13.25301907 22.35288150 

30 −3.141587642 13.23744806 22.29143237 

35 −3.141587711 13.22197615 22.23040435 

40 −3.141587744 13.20660137 22.16979117 

45 −3.141587842 13.19132246 22.10958842 

50 −3.141587954 13.17613770 22.04979002 

55 −3.141587989 13.15897649 22.01765488 

 
Table 5. Invariants of MEW equation using the Maxwelliancondition 1,0.5,0.1,0.05,0.02,0.005µ = .                         

t µ  
1C  2C  

3C  µ  
1C  2C  

3C  

0  1.772450389 2.507031350 0.8862269258  1.772450389 2.507031350 0.8862269258 

3  1.772450324 2.506562241 0.8859617965  1.772450391 2.503301389 0.8812594008 

6 1 1.772450355 2.506093335 0.8856969273 0.05 1.772450389 2.508930167 0.8763574457 

9  1.772450370 2.505624532 0.8854322207  1.772450398 2.523558486 0.874805062 

12  1.772450368 2.505155693 0.8851675910  1.772450397 2.546856704 0.8665905426 

0  1.772450389 2.507031350 0.8862269258  1.772450389 2.507031350 0.8862269258 

3  1.772450359 2.505856717 0.8855663594  1.772450391 2.505380411 0.8790965969 

6 0.5 1.772450306 2.504698981 0.8849067496 0.02 1.772450395 2.523617080 0.8721185562 

9  1.772450294 2.503557663 0.882481160  1.772450301 2.561417967 0.8651660441 

12  1.772450275 2.502431939 0.8835903023  1.772450306 2.587705888 0.8581212805 

0  1.772450389 2.507031350 0.8862269258  1.772450389 2.507031350 0.8862269258 

3  1.772450382 2.503247004 0.8830002438  1.772450388 2.509358370 0.8771798047 

6 0.1 1.772450373 2.503178816 0.8797994434 0.005 1.772450389 2.545688708 0.8684172340 

9  1.772450375 2.506705762 0.8766134367  1.772450390 2. 619139180 0.8596519203 

12  1.772450380 2.513694005 0.8734315977  1.772450390 2. 671737369 0.8551833457 
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It is known that the behavior of the solution with the Maxwellian condition (17) depends on the values of µ . 
So we have considered various values for µ . The computations are carried out for the cases 1,0.5,0.1,µ =  
0.05,0.02  and 0.005 which are used in the earlier papers [15] [19]. The numerical conserved quantities with 

1,0.5,0.1,0.05,0.02µ =  and 0.005 are given in Table 5. It is observed that the obtained values of the invariants 
remain almost constant during the computer run. 

5. Conclusion 
In this paper we study the MEW problem by extending the use of multigrid technique. We checked our scheme 
through single solitary wave in which the analytic solution is known. Our scheme was extended to study the in-
teraction of two solitary waves and Maxwellian initial condition where the analytic solutions are unknown dur-
ing the interaction. The performance and accuracy of the method were explained by calculating the error norms 

2 ,L L∞  and conservative properties of mass, momentum and energy. The computed results showed that our 
scheme is a successful numerical technique for solving the MEW problem and can be also efficiently applied for 
solving a large number of physically important non-linear problems. 
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