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Abstract 
In this paper a new method for solving Goursat problem is introduced using Reduced Differential 
Transform Method (RDTM). The approximate analytical solution of the problem is calculated in 
the form of series with easily computable components. The comparison of the methodology pre-
sented in this paper with some other well known techniques demonstrates the effectiveness and 
power of the newly proposed methodology. 
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1. Introduction 
In this paper, we consider the standard form of the Goursat problem [1] [2] as provided below 

( ), , , , , 0 ,0xt x tu f x t u u u x a t b= ≤ ≤ ≤ ≤                                  (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 0, , 0 0 0,0u x g x u t h t g h u= = = =                         (2) 

This equation has been examined by several numerical methods such as Runge-Kutta method, finite differ-
ence method, finite elements method and Adomian Decomposition Method (ADM). 

We will prove the applicability and effectiveness of RDTM on solving linear and non-linear Goursat prob-
lems. The main advantage of RDTM is that it can be applied directly to the problems without requiring lineari-
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zation, discretization or perturbation. 

2. One Dimensional Differential Transform Method 
The differential transform of the function ( )w x  is defined as follows 

( ) ( )
0

d1
! d

k

k
x

w x
W k

k x
=

 
 
  

=                                        (3) 

where ( )w x  is the original function and ( )W k  is the transformed function. Here 
d  
d

k

kx  
means the kth deriv- 

ative with respect to x. 
The differential inverse transform of ( )W k  is defined as 

( ) ( )
0

  k

k
w x W k x

∞

=

= ∑                                          (4) 

Combining (3) and (4) yields 

( ) ( )
0

d1
! d

k
k

k
k

w x
w x x

k x

∞

=

 
=  

  
∑                                    (5) 

From (3) and (4) it is easy to see that the concept of the differential transform is derived from Taylor series 
expansion [see Table 1].  

3. Analysis of the Reduced Differential Transform Method 
The basic definitions of reduced differential transform method are introduced below. 

Definition 
Assume that the function ( ),u x t  is analytic and continuously differentiable with respect to time t and space 

x in the domain of interest, then let 

( ) ( )
0

d ,1
! d

k

k k
t

u x t
U x

k t
=

 
=  

  
                                   (6) 

Where the t-dimensional spectrum function ( ) kU x  is the transformed function. The differential inverse of
( ) kU x  is defined as follows 

( ) ( )
0

, k
k

k
u x t U x t

∞

=

= ∑                                        (7) 

Then combining Equation (6) and (7) we can write 

( ) ( )
0 0

d ,1,
! d

k
k

k
k t

u x t
u x t t

k t

∞

=
=

 
=  

  
∑                                (8) 

 
Table 1. One-dimensional differential transformation [3].                       

Function form Transformed form 

( ) ( )u x v x±  ( ) ( )U k V k±  

( )cu x  ( )cU K  

( )d
d

m

m

u x
x

 
( ) ( )

!
!

k m
U k m

k
+

+  

( ) ( ) ( )w x u x v x= +  ( ) ( ) ( )
0

k

r
W k U r V k r

=

= −∑  
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Now, we express the Goursat problem in the standard operator form. 

( )( ) ( )( ), ,R u x t L u x t=                                   (9) 

With the initial conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 0, ,and 0 0 0,0u x g x u t h t g h u= = = =                   (10) 

where 

( )( ) ( ) ( )( ) ( ), , and , , , , ,xt x tR u x t u x t L u x t f x t u u u= =  

We applying RDTM of Equations (1) and (2) giving 

( )( ) ( )( ), , , , ,xt x tRDT u x t RDT f x t u u u=                               (11) 

( ) ( )( ),0RDT u x g x=                                              (12) 

( ) ( ) ( )11 k Kk U x F x++ =                                            (13) 

( ) ( ) ( )0   U x g x kδ=                                               (14) 

where ( )KF x  is transformed value of ( ), , , ,x tf x t u u u  and ( ) ( )g x kδ  is transformed value of ( ),0u x . 
By iterative calculations we obtain the following values of ( )kU x  as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3, , , , n nU x x U x x U x x U x xρ ρ ρ ρ= = = =                  (15) 

From (7) we have. 

( ) ( ) ( ) ( ) ( )0 1 2
0 1 2  , n

nu x t U x t U x t U x t U x t= + + + +                        (16) 

One can get the exact solution of (1) by substituting (14) and (15) in (16). 
With reference to the articles [4] [5]. We easy prove the transformation in the following Table 2. 

 
Table 2. Reduced differential transformation.                                  

Functional form Transformed form 

( ),u x t  ( ) ( )
0

d ,1
! d

k

K k

t

u x t
U x

k t
=

 
 
  

=  

( ) ( ), ,u x t v x t±  ( ) ( )k kU x V x±  

( ),u x t∝  ( ) ( )     is a constantkU x∝ ∝  

m nx t  ( )mx k nδ −  

( ),m nx t u x t  ( )mx U k n−  

( ) ( ), ,u x t v x t  ( ) ( )
0

k

r k r
r

U x V x−
=
∑  

( )d ,
d

r

r

u x t
t

 
( ) ( )

!
! k r

k r
U x

k +

+
 

( )d ,
d

u x t
x

 
( )d

d
kU x
x

 

( )d ,
d d

r s

r s

u x t
x t

+

 ( ) ( )d
d
k s

r

U x
k s

x
++  
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4. Application and Results 
In this section, we apply the method to some linear and non linear Goursat problem in order to demonstrate its 
efficiency. 

A. The linear homogeneous Goursat problem 
We first consider the linear homogeneous Goursat problem defined below 

( ) ( )( ), ,xtu x t L u x t=                                        (17) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 0, and 0 0 0,0u x g x u t h t g h u= = = =                      (18) 

Where ( )( ),L u x t  is a linear function of u. 
Example 1: Consider the homogeneous Goursat problem 

xtu u=                                                (19) 

( ) ( ) ( ),0 e , 0, e , 0,0 1x tu x u t u= = =                                      (20) 

Taking RDTM of (19) and (20), we obtain 

( ) 1
d1
d k kk U U

x ++ =                                         (21) 

0 exU =                                                   (22) 

Substituting (22) into (21) and using the recurrence relation, we will reach to the results listed below. 

1 2 3 4
e e ee , , , ,
2 3! 4!

x x x
xU U U U= = = =   

And so on. In general, we have 
e  

!

x

KU
k

=
 

for 1, 2,k =   substituting all   kU  into (7) yields the solution  

( ), ex tu x t += . This result is in full agreement with the one obtained in [6] by VIM. 
Example 2: Now consider the homogeneous Goursat problem 

2xtu u= −                                            (23) 

( ) ( ) ( ),0 e , 0, e , 0,0 1x tu x u t u= = =                             (24) 

Applying RDT to (23) and (24) we obtain 

( ) 1
d1 2
d k kk U U
x ++ = −                                   (25) 

0 exU =                                               (26) 

Substituting (26) into (25) and using the recurrence relation we have  

1 2 3 4
4 2  2e , 2e , e , e

3
,

3
x x x xU U U U−

= − = = = 
 

And so on. By substituting all   kU  into (7), the solution becomes ( ) 2, ex tu x t −= . This results perfectly 
matches the results obtained in [6] by VIM. 

B. The linear inhomogeneous Goursat problem: 
We now consider inhomogeneous Goursat problem  

( ) ( ),xtu L u w x t= +  

( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 0, , 0,0 0 0u x g x u t h t u g h= = = =  

where ( )L u  is linear function of u. 
Example 3: We first consider the linear in homogeneous Goursat problem. 
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xtu u t= −                                           (27) 

( ) ( ) ( ),0 e , 0, e , 0,0 1x tu x u t t u= = + =                              (28) 

Taking RDM of (27) and (28) will lead to 

( ) ( )1
d1
d k kk U U t k

t
δ++ = −                                      (29) 

0 etU t= +                                           (30) 

Substituting (30) into (29) and using the recurrence relation we have 

1 2 3 4
e e ee , , , ,
2 3! 4!

t t t
tU U U U= = = =   

And so on. In general, we have 
e

!

x

kU
k

=  for 1, 2,k =   substituting all kU  in (7) yields the solution  

( ), ex tu x t t += + , this result is again identical to the one obtained in [6] by VIM . 
Example 4: Consider the linear in homogeneous Goursat problem  

2 24xtu u xt x t= + −                                         (31) 

( ) ( ) ( ),0 e , 0, e , 0,0 1x tu x u t u= = =                            (32) 

Taking RDM of (31) and (32) gives rise to 

( ) ( ) ( )2
1

d1 4 1 2
d k kk U U x k x k

x
δ δ++ = + − − −                   (33) 

0 exU =                                                 (34) 

Substituting (34) into (33) and using the recurrence relation we have  

2
1 2 3 4

e e ee , , , ,
2 3! 4!

t t t
xU U x U U= = + = =   

And so on. In general, we have 
e

!

x

kU
k

=  except 2
2

e
2

x

U x= +  substituting all kU  in (7) yields the solu- 

tion ( ) 2 2, ex tu x t x t += + , This result is again in full agreement with one obtained in [6] by VIM . 
C. The non-linear Goursat problem: 

( ) ( ), ,n
xtu f x t u x t= +                                   (35) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 0, , 0,0 0 0u x g x u t h t u g h= = = =                 (36) 
where  

( ),nu x t  is non-linear term. 
Here, we apply RDTM to non-linear Goursat problem. 
Example 5: We first consider the non-linear Goursat problem . 

3 2 2 33 3xtu u x x t xt t= − + + + +                              (37) 

( ) ( ) ( ),0 , 0, , 0,0 0u x x u t t u= = =                           (38) 

Taking RDM of (37), (38) yields 

( ) ( ) ( ) ( ) ( )2 3 2
1

0

d1 3 1 3 2 3
d

k

k r k r
r

k U u u x k x k x k k
x

δ δ δ δ+ −
=

+ = − + + − + − + −∑           (39) 

And 

0

r

r s r s
s

U U U −
=

= ∑                                         (40) 
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0U x=                                             (41) 

Substituting (41) into (40) and (39) and using the recurrence relation we have 
1 2 3 4 51, and 0nU U U U U U= = = = = = =  yields the solution ( ),u x t x t= +  which is in full agreement with 

one obtained in [6] by VIM. 
Example 6: We finally consider the non-linear Goursat problem 

2e u
xtu −=                                           (42) 

( ) ( ) ( ),0 0, 0, 0, 0,0 0u x u t u= = =                        (43) 

Taking RDM of (42) and (43) we obtain 

( ) ( )1
d1
d k k kk U N U

x ++ =                              (44) 

where ( )KN U  is the reduced transform of 2e u−
 such that 0 02 2

0 1 1e , 2eU UN N U− −= = −  
And so on, 

0 0U =                                            (45) 

Substituting (45) into (44) and using the recurrence relation we have 
2 3

1 2 3, and , ,
2 3
x xU x U U−

= = = 

 
and 

so on. 
Therefore, the solution is ( ) ( ), ln 1u x t xt= +  which is the exact solution. 

5. Comparison 
In this section, we use the Adomian decomposition method to obtain the solution of (1) and (2). and discuss the 
comparison between the reduced differential transform method and the Adomian decomposition method. 

With reference to the article [7]-[9], (1) can be rewritten In an operator form as: 

( ), , , ,x t x tl l u f x t u u u=                                        (46) 

where 

d d,
d dx tl l
x t

= =                                              (47) 

The inverse operators 1
xl
−  and 1

tl
−  can defined as: 

( ) ( ) ( ) ( )1 1

0 0

. . d , . . d
x t

x tl x l t− −= =∫ ∫                                   (48) 

By applying 1
xl
−  and 1

tl
−  respectively to both sides of (46) and substituting ( ) ( )0, ,nnu x t u x t∞

=
= ∑  gives  

( ) ( ) ( ) ( ) ( )1 1

0
, 0 , , , ,n x t x t

n
u x t g x h t g l l f x t u u u

∞
− −

=

= + − +∑                          (49) 

Adomian method admits the use of recursive relation  

( ) ( )0 , ,u x t x tρ=                                            (50) 

( ) ( )1 1
1 , , , 0

x tk x t k k ku x t l l u u u kσ− −
+ = ≥                             (51) 

where 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1

0 , , ,
,

0 ,, ,,
x t

x t x t

g x h t g f u u u
x t

g x h t g x tl f u u ux tl

σ
ρ

τ τ σ− −

 + − == 
+ − + = +

             (52) 

We applying adomian decomposition method to examples (3) and (6) to illustrate the comparison between the 
two method. 
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Following the pervious discussion and using (49) Equations (27) and (28) gives 

( ) ( )2 1 1

0 0

1, e e 1 ,
2

x t
n x t n

n n
u x t x x t l l u x t

∞ ∞
− −

= =

 
= + + − − +  

 
∑ ∑                     (53) 

This gives 

( ), ex tu x t x += +                                        (54) 

This result is again identical to the one obtained by the RDTM example (3). 
Again applying pervious discussion and using (49) Equations (42) and (43) gives 

( ) 1 1

0 0
,n x t n

n n
u x t l l A

∞ ∞
− −

= =

 
=  

 
∑ ∑                                      (55) 

where nA  are adomian polynomials for the nonlinear term 2e u−  giving by  

( )0 0 02 2 22
0 1 1 2 1 2e , 2 e , ,4 2 eu u uA A u A u u− − −= = − = −   

Then the closed form solution is giving by  

( ) ( ), ln 1u x t xt= +                                           (56) 

This result is again identical to the one obtained by RDTM in example (6). 
We have carried out the comparative study between the reduced differential transform method and the Ado-

mian decomposition method by handling the Goursat problem, Two numerical examples have shown that the 
reduced differential transform method is a very simple technique to handle linear and nonlinear Goursat problem 
than the Adomian decomposition method, and also, it is demonstrated that the reduced differential transform 
method solves linear and nonlinear Goursat problem without using any complicated polynomials like as the 
Adomian polynomials. 

In addition, the obtained series solution by the reduced differential transform method converges faster than 
those obtained by the Adomian decomposition method. It is concluded that this simple reduced differential 
transform method is a powerful technique to handle linear and nonlinear initial value problems. 

6. Conclusion 
The Goursat problem has been analyzed using reduced differential transform method. All the illustrative exam-
ples have shown that the reduced differential transform method is powerful mathematical tool to solving Goursat 
problem. It is also a promising method to solve other nonlinear equations, the presented method reduces the 
computational difficulties existing in the other traditional methods and all the calculations can be done by simple 
manipulations. 
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