
Applied Mathematics, 2016, 7, 468-472 
Published Online March 2016 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2016.76042   

How to cite this paper: Tooth, S.M. and Dobelman, J.A. (2016) A New Look at Generalized Means. Applied Mathematics, 7, 
468-472. http://dx.doi.org/10.4236/am.2016.76042 

 
 

A New Look at Generalized Means 
Sarah M. Tooth, John A. Dobelman 
Department of Statistics, Rice University, Houston, TX, USA 

 
 
Received 28 December 2015; accepted 21 March 2016; published 24 March 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Since antiquity, the relationships between 2-tuples and their Pythagorean means have been repre- 
sented in geometric forms. In this paper, we extend the practice to generalized power means 
through new representations, and also to 3-tuples. These geometric forms give rise to new alge-
braic expressions for summary statistics of 2- and 3-tuples. 
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1. Introduction 
The study of means dates to antiquity. Pappus of Alexandria, who lived at the end of the third century AD, wrote 
on the relationships between the “three means” and gave reference to the work of previous geometers [1]. These 
three means: the arithmetic, geometric, and harmonic, along with a fourth, called the quadratic or root mean 
squared, represent the most commonly used means even today: the geometric mean finds use in finance and the 
study of populations, and also in conversion of aspect ratios for film processing; the harmonic mean is used in 
physics and economics for the treatment of rates and ratios; the quadratic mean is at the heart of ordinary least 
squares regression, which is used in many diverse fields; and it hardly needs to be said that the arithmetic mean 
has widespread use as the most used measure of central tendency. 

Because of their practical importance, we consider these four means as special named cases of what [2] called 
“ordinary means” but which are more generally known as power means or generalized means. In this paper, we 
will modify the notation used by [2] and [3] and define the power means such that for the N-tuple x with
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We find this definition convenient to work with, although we note that the cases given for 0,p = ±∞  
represent the limits as the general case approaches those values, as shown by [2]. We also note that, for 1p ≥ , 
the power mean is closely related to the p-norm, which differs only by a factor of .pN  The special named cas-
es of the power mean are: arithmetic mean, 1pM = ; geometric mean, 0pM → ; and the harmonic mean, 1pM =− , 
which together make the Pythagorean means; and quadratic mean, 2pM = . 

Power means may be regarded as statistics which give more weight to large values of ix  when p is large and 
positive, and more weight to small values of ix  when p is large and negative. Because of this property, they 
can be used comparably with percentiles, but with two important distinctions: the power mean function is conti-
nuous and differentiable; and unlike percentiles, power means are not robust to outliers. It is this second property 
which we consider the most important for its use in the treatment of datasets where outliers are of high importance. 

In this paper, we explore geometric representations of power means as a method of investigating the proper-
ties of power means. We first describe past geometric representations of the means of 2-tuples, and then intro-
duce our alternative method. Second, we describe how our method can be expanded to represent 3-tuples. 

2. Geometric Representations 
Reference [1] describes how Pappus of Alexandria defines the arithmetic, geometric, and harmonic means ac-
cording to a series of ratios in his Collection, Book III. Pappus then uses a geometric representation to demon-
strate how, if two means are known, the third can always be found. The first geometric representation also 
comes from Pappus. From [1]: 

“Pappus first gives a construction by which another geometer (αλλoςτις) [lit. the other] claimed to have solved 
this problem, but he does not seem to have understood it, and returns to the same problem later”. 

It is not Pappus’s solution, but that of the unnamed geometer, with the addition of the quadratic mean by [4], 
which has become the common form. It is shown in Figure 1. This form is limited to represent the means of a 
2-tuple, herein x. If we set AB = max xi and BC = min xi, then M1 = FO, M0 = BD, M−1 = DE and M2 = BF. 

We firstly propose a simple extension of the traditional representation in Figure 1 which allows the represen-
tation of any p∈ . We do this by removing the lines assigned to particular cases and introducing a single va-
riable length which can equal any value of pM . This modified form is shown in Figure 2. Here again, AB = 
max xi and BC = min xi, but in this new representation ( )( ) ,pBD g p Mθ = =

 
where g(p) is a sigmoid function 

with domain ( ),−∞ ∞  and range [min(x), max(x)]. 
Setting AB = a; BC = b, and solving Figure 2 for Mp gives: 

( ) ( ) ( )2 2cos 4 cos
.

2p

b a ab b a
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θ θ
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− + + −
= =                      (2) 

While it may be debated whether Equation (2) is simpler to work with for general purposes than Equation (1), 
it has the clear advantage of being invertible. While we must solve Equation (1) for p numerically, solving Equ-
ation (2) for θ  gives the closed form: 
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Figure 1. Traditional geometric representation of means. 



S. M. Tooth, J. A. Dobelman 
 

 
470 

A sampling of values of p, Mp and θ when a = 3 and b = 1 are shown in Table 1. For all a and b, there are three  

fixed points in the mapping between Mp and BD(θ) which are ( ) 0
π0 ,
2

M BD M BD−∞
 = =  
 

 and ( )πM BD∞ = . 

To construct a geometric representation of the power means of a 3-tuple x as a natural extension of our N = 2 
representation, we establish a number of desirable criteria. An N = 3 representation should have: a) an arrange-
ment of line segments with lengths equal to each element x in the series; b) a curved path, on which any position 
can be described using only an angle θ ; c) a line segment M with a length that is a function of θ, that is, 

( )M f θ=  where f is monotone increasing; and d) a geometry such that ( ) ( )0 π, 0 minf xθ≤ ≤ =  and
( ) ( )π maxf x= . The resulting representation is shown in Figure 3. 
In Figure 3, the dimensions are assigned as follows: AB = max x, BC = min x, BD = M. While it will be intui-

tive to assign AC = med x and thus form a triangle of the elements of n, the simple example x = 1, 2, 5 illustrates 
why this is not possible. Because max x > min x + med x, we cannot form a triangle with these three lengths. 

 

 
Figure 2. Modified geometric representation of power means. 

 

 
Figure 3. Representation for power means of 3-tuples. 

 
Table 1. Sample values for a = 3; b = 1. 

Example Values 

p Mp θ 

−∞ 1.000 0.000 

−1 1.500 1.318 

0 1.732 π/2 

1 2.000 1.823 

2 2.236 2.034 

∞ 3.000 π 
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However, solving the system in Figure 3 gives Equation (4), which shows that our power mean, as repre- 
sented by BD, is independent of AC (i.e. independent of med x). 

( ) ( ) ( )2 2 2 2cos 2 sin 2pM BD a cθ θ θ= = +                        (4) 

A sampling of values of p, Mp and θ when a = 1 and c = 3 is shown in Table 2. As with the 2-tuple case, there 
are three fixed points in the mapping between pM  and ( )BD θ  for all a and c. ( )0M BD−∞ =  and

( )πM BD∞ =  are consistent with the 2-tuple case, but rather than a fixed point at 0M , the 3-tuple has a fixed  

point at 2
π
2

M BD  =  
 

. 

One consequence of this relationship is that, if we set AC AB BC= − , then our N = 3 system in Figure 3 
becomes Figure 4, which has a greater resemblance to the N = 2 representation from [4], shown in Figure 5, 
than our own N = 2 representation in Figure 2. Note that unlike previous N = 2 representations where the semi- 
circle has a diameter of max x + minx, these figures have semi-circles with diameter max x − minx. 
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Like the traditional form in Equation (1), Equation (4) is differentiable (Equation (5a)). It is also invertible, 
(Equation (5b)) a property which the traditional form lacks. 

Finally, a comparison of Figure 2 and Figure 3 suggests characteristics of a similar representation of means 
for N-tuples for 4.N ≥  In both figures, N segments are arranged in 1N −  dimensions, and the mean pM  
can be represented as the distance between one vertex and a semi-circle which lies in an orthogonal plane and 
connects two other vertices. As a result, the entire system can be represented as a semi-circle and a triangle 
which lie in two orthogonal planes, where the triangle is a projection from 1N −  to 2 dimensions. It follows,  
 

Table 2. Sample values for a = 1; c = 3. 

Example Values 

p Mp θ 

−∞ 1.000 0.000 

−1 1.500 0.813 

0 1.732 1.047 

1 2.000 1.318 

2 2.236 π/2 

∞ 3.000 π 

 

 
Figure 4. Projection of modified representation for 3-tuples. 
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Figure 5. Modified representation for 2-tuples by Ercolano (1972). 

 
then, that provided both max ix  and min ix  are unchanged, each additional ix  will have progressively less 
influence on the overall shape of the function. This same behavior is seen in the algebraic form given in Equa-
tion (1), implying that the geometric representation has similar limiting properties to the algebraic. 
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