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Abstract

In this article, we give a new proof of the Ité6 formula for some integral processes related to the
space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise per-
turbing an SPDE. We discuss two applications of this result, which are useful in the study of SPDEs
driven by a space-time Lévy noise with finite variance: a maximal inequality for the p-th moment
of the stochastic integral, and the It0 representation theorem leading to a chaos expansion similar
to the Gaussian case.
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1. Introduction

Random processes indexed by sets in the space-time domain are useful objects in stochastic analysis, since they
can be viewed as mathematical models for the noise perturbing a stochastic partial differential equation (SPDE).
In the recent years, a lot of effort has been dedicated to studying the behaviour of the solution of basic equations
(like the heat or wave equations), driven by a Gaussian white noise, This type of noise was introduced by Walsh
in [3] and is defined as a zero-mean Gaussian process W = {W (B);BeB, (R+ x R* )} , with covariance

E[W (A)W (B)]=|ANB|, where || denotes the Lebesgue measure and A, (]& xR*) is the class of bounded
Borel setsin R, xR?.

In the recent articles [1] [2], a new process has been introduced as an alternative for the Gaussian white noise
perturbing an SPDE, which has a structure similar to a Lévy process. We introduce briefly the definition of this
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process below.
Let N be a Poisson random measure (PRM) on E=R, xR’xR, of intensity = dtdxv (dz) where
R, =R\{0} and v isalLévy measureon R:

I (1/\||) dz)<eo and v({0})=0.

We denote by N the compensated PRM defined by N(A): N(A)-pu(A) for any Borel set A in [
with z1(A) <oo. The Lévy-type noise process mentioned above is defined as Z = {Z (B); Beh, (R+ xR )} ,
where

Z(B) a|B|+j " (ds,dx,dz)+.[BX{‘z‘ﬂ}zl\Al (ds, dx, dz),

by

for some aeR. It was shown in [2] that Z is an “independently scattered random measure” (in the sense of [4])
with characteristic function:

E(e)) —exp {|B|(a +[ (e“‘z _1- iuzl{‘z‘ﬁ})v(dz))}, ueR.

(In particular, Z can be an a-stable random measure with « <(0,2),, as in Definition 3.3.1 of [5].) One can de-
fine the stochastic integral of a process X = {X (t, x);t >0,xeR } with respect to Z and for a certain inte-
grands,

jOTdex (t,x)Z(dt,dx)=a'[;deX(t,x)dtdx+fOTJ' IH (t,x)zN (dt,dx, dz)

+ J.;—.[Rd J.{‘z‘gl}x (t’ X) Z’\] (dt, dX, dZ)

The stochastic integral with respect to N (or N) can be defined using classical methods (see e.g. [6]). We
review briefly this definition here.
Assume that N is defined on a probability space (Q,]-‘, P). On this space, we consider the filtration

]—"t:o-({N([O,S]xBXF);OSSSt,BeBb(Rd),FeBh(RO)}),

where B, (R") is the class of bounded Borel sets in R and B, (R,) is the class of Borel sets in R, which
are bounded away from 0.
An elementary process on QxR" xR is a process of the form

H (@:t,%,2) = X (@)L, ()10 (%) (2),

where 0<a<b, X is an F, -measurable bounded random variable, AeBb(Rd) and T eB (R,). A pro-
cess H= {H (t,x, z);t >0,xeR,ze R, is called predictable if it is measurable with respect to the o-field

AR generated by all linear combinations of elementary processes.
X +>< X. 0

As in the classical theory, for any predictable process H such that
E”Rdj H sxz| (dz)dxds <o forall t>0, (1)
we can define the stochastic integral of H with respect to N and the process

{J.»[]Rd.[ (s,x,2) dsdxdz)tzo}

is a zero-mean square-integrable martingale which satisfies

ds dx, dz) (s,x,2)| v(dz)dxds. )
‘ IJRdIRO| )|2 ( )
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On the other hand, for any predictable process K such that

t
EIO.[Rd.[R0|K (s.%,2)|v(dz)dxds <o forall t>0,
we can define the integral of K with respect to N and this integral satisfies

.”Rd.[ (s,%,z)N (ds,dx,dz) = Ej'f _[ (s,x,2)v (dz)dxds. ©)

In this article, we work with processes whose trajectories are right-continuous with left limits. If x is a right
continuous function with left limits, we denote by x(t—)=lim_, x(s) the left limit at time t and

AX(t)=x(t)—x(t—) the jump size at time t. We will prove the following result.
Theorem 1 (Ito Formula l). Let Y ={Y (t)}  bea process defined by

t t t ~
=_[OG(s)ds+'[0_[Rd.[{‘z‘>l}K(s,x,z)N (ds,dx,dz)+_[OIR[,_[{‘Z‘Q}H (s,x,z)N(ds,dx,dz), t>0, 4)
where G, K and H are predictable processes which satisfy
EI;|G(S)|ds<w forall t >0, (5)
Ej dej z\>1 (s, 2)|v(dz)dxds <o forall t >0, (6)
EI J.RdJ‘ Z\J (s,x2) | v(dz)dxds <o forall t > 0. (7)

Then there exists a modification of Y (denoted also by Y) whose sample paths are right-continuous with left
limits, such that for any function f e C?(R) and forany t>0, with probability 1,

F(Y(1)-1(Y(0))

=[F(r()e S)d“HRdf gl F(Y(5)+ K (s,%,2)) = £ (¥ (s-)) [N (ds, dx,dz)
HRJ e [f (Y(s=)+H(s.x, 2))— f (Y(s—))]N(ds,dx,dz)
sl [T (V(8)+ H (5:x,2)) = (Y (5)) = H (s,x,2) £(Y (s)) ] (dz) dxds.

Note that since the first two terms on the right-hand side of (4) are processes of finite variation and the last
term is a square-integrable martingale, Y is a semimartingale. Therefore, the 1t6 formula given by Theorem 1 can
be derived from the corresponding result for a general semimartingale, assuming that Y has sample paths which
are right-continuous with left limits (see e.g. Theorem 2.5 of [7]).

The goal of the present article is to give an alternative proof of this result which contains the explicit con-
struction of the modification of Y for which the 1td formula holds.

We will also give the proof of the following variant of the 1t6 formula, which will be useful for the applica-
tions related to the (finite-variance) Lévy white noise, discussed in Section 4.

Theorem 2 (Ito Formula I1). Let Y ={Y (t)}  be a process defined by

(®)

jG ds+ijdf H (s,x,z)N (ds,dx,dz), t>0, 9)

where G and H are predictable processes which satisfy (5), respectively (1). Then there exists a cadlag modifica-
tion of Y (denoted also by Y) such that for any t >0, with probability 1,

(Y ()1 (v <o>)
:th' Y (s)) d5+j IRUIRO[ H (s,%,2))— f (Y (s—)) N (ds,dx,dz)
HRJRO[ (Y (s)+H (s:x2))- f (Y(s))—H (5,%,2) F'(¥ (s))]v(dz) deds.

()
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The method that we use for proving Theorems 1 and 2 is similar to the one described in Section 4.4.2 of [6] in
the case of classical Lévy processes, the difference being that in our case, NisaPRMon R, xR xR, instead
of R, xRR,. This method relies on a double “interlacing” technique, which consists in first approximating the
set {|z|<1f of small jumps by sets of the form {z, <|z|<1} with & {0 (in the case when H and K vanish
outside a bounded Borel set B = R?), and then approximating the spatial domain R by regions of the form
[-a,.a, ]d with a, T oo . This approximation method is described in Section 2. Section 3 is dedicated to the
proofs of Theorems 1 and 2. Finally, in Section 4 we discuss two applications of Theorem 2 in the case of the
(finite-variance) Lévy white noise introduced in [1].

2. Approximation by Right-Continuous Processes with Left Limits

In this section, we show that the Lévy-type integral processes given by (4) and (9) have right-continuous mod-

ifications with left limits, which are constructed by approximation. These modifications will play an important

role in the proof of 1t6’s formula. Since the process Y, (t) = ;G (s)ds is continuous, we assume that G =0.
We consider first processes of the form (4). We start by examining the case when both integrands H and K

vanish outside a set B e B, (]Rd ) Since the process {.[;IB.[{\z\>1}K (s,x,z)N (ds,dx,dz);t >0} is clearly cadlag

(the integral being a sum with finitely many terms), we need to consider only the integral process which depends
onH.
Note that if H vanishes a.e. on Qx[0,T]x Bx {z eRy;lz| < g} forsome T>0 and £e(0,1), then

J‘;-[BJ‘{MQ}H (Sv X, Z) N (dS,dX,dz)
B IJBJ{K\z\ﬁ}H (s:x2)N (ds'dx'dz)‘JJBI{KMQ}H (s, x,2)v(dz)dxds

is a process whose sample paths are right-continuous with left limits (the first term is a sum with finitely many
terms and the second term in continuous). Therefore, we will suppose that H satisfies the following assumption:
Assumption A. It is not possible to find T >0 and &e(0,1) such that

H(w,sx12)=0 aeon Qx[0,T]xBx{zeRyz<e}

with respect to the measure Px .
Lemma 1. Let Y ={Y(t)|  be a process defined by

t ~
Y (t) - JOIBJ{\z\g}H (S’ X, Z) N (dS, dx, dZ),
where BelB3 (]Rd ) and H is a predictable process which satisfies Assumption A and

E.[;IBJ{\z\g}

(
Then, there exists a cadlag modification Y = {Y(t)} of Y such that forall T >0,

>0

H(s,x,z)|2v dz)dxds <oo forall t > 0. (10)

sup
t<T

Y, (1)-Y (1) >0 as,
where

Y,()=1]]] M (52) N (dt dx, dz)

for some sequence (&,), (depending on T) such that &, 4 0.
Proof: We use the same argument as in the proof of Theorem 4.3.4 of [6]. Fix T >0. Let

g, =sup{e>0;1(s)<87"}

where
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H (s, X, z)|2 v (dz) dxds.

1(¢)= E.[OTIBJ{\Z\SS}

Note that (s,) is non-increasing and &, 4 0. (If &, 1 & >0 then 1(&)<I(g,)<8" for all n. Hence
I (&.)=0, which contradicts Assumption A.)
Note that Y, isa cadlag martingale. By Doob’s submartingale inequality and relation (2),

£ supls (01, 0 < 48 (1), 1)

= 4EIJIBI{gn+1<‘Z‘SS”}

By Chebyshev’s inequality, P(suptgr Yo (t)—Yn (t) > 2’”)£ 2°™? By Borel-Cantelli lemma, with proba-
bility 1, the sequence _ (Yn)n is Cauchy in the space D O,T] of cadlag functions on [O,T] equipped with the
sup-norm. Its limit Y is a modification of Y since for any te[0,T], {Yn (t)}n also converges to Y (t) in
L2 (Q) . Finally, we note that the process Y does not depend on T (although the approximation sequence (Yn)
does). If Y™ is the modification of Y on [0,T] and Y™ is the modification of Y on [0,T'] with T<T’
then Y (t)=y™ (t) as.forany te[0,T].Hence, Y can beextendedto [0,o0). O]

We consider now the case when the at least one of the integrands H and K do not vanish outside a set
Bep, (Rd ) More precisely, we introduce the following assumptions:

Assumption B. It is not possible to find T >0 and Be B (Rd) such that

2

H (s X, z)|2 v(dz)dxds <41 (&,) <4

8n

n
’

H(w,t,x,2)=0 ae.onQx[0,T]x B°x{ZeRO; z|§1}

with respect to the measure Px u.
Assumption B'. Itis not possible to find T >0 and Be B (]Rd) such that

K(@,t,x,z)=0 ae.onQx[0,T]x B°x{ZeRO; z|>1}

with respect to the measure Px u.

We consider bounded Borel setsin R of the form K, =[-a,a]’ ,a>0.

Theorem 3 (Interlacing I). Let Y = {Y (t)}l> be a process defined by (4) with G =0, where H and K are
predictable processes which satisfy conditions (70), respectively (6), such that either H satisfies Assumption B, or
K satisfies Assumption B'. Then, there exists a cadlag modification Y = {Y (t)}m of Y such that for all T > 0,

Y, ()-Y (1)) -0 as, (11)

sup
t<T
where Y, is a cadlag modification of the process Y, defined by
t ~ t
Y, (t)= J'OJEHJ'{‘Z‘S”H (s,%,2)N(ds, dx,dz)+_|'0J‘En_|'{‘z‘>l}K (s,x,2)N (ds,dx,dz)

with E, =K, for some sequence (an )n (depending on T) such that a, T .
Proof: Fix T >0.Let a,= inf{a>0; | (a)sS’”} where

(@)= BJ, el s x 2 v (@) s E

Note that (a,), is non-decreasing and a, Too. (If a, Ta <o then I(a*)g I(a,)<8™" for all n, and
hence 1(a")=0, which contradicts Assumptions B or B’.) Let Y, be the process given in the statement of
the theorem with E, = K, . We denote by Y@ (t) and Y7 (t) the two integrals which compose Y, (t), de-
pending on H, respectively K.

We denote by Vn(l) the cadlag modification of Yn(l) given by Lemma 1. By Doob’s submartingale inequality
and relation (2),

K (s,x,2)|v (dz) dxds.

E(sup H(s,x,z)|2v(dz)dxdss4l(an)SSin.

t<T

Y~n(i)l (t) _Y”(l) (t)‘zj : 4EJ‘JJ‘En+12En '[{‘Z‘Sl}
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By Chebyshev’s inequality, P(supt<T

n+)1( ) 7(1) (t)‘ > 2—n—1) < 2—n+4 i
Note that Yn(2 is a cadlag process. Forany te [O,T] ,

Y% (t

"*1 ‘ J‘IE,M\EHJ“ \>1

(s, x,z)|N(ds,dx,dz),

and hence, using relation (3),

(Sup n+l ( Yn(Z) (t)‘] < EI;IEn+1\EnI{‘Z‘>1}

By Markov’s inequality, P(Supm @ (t)-v? (t)‘ > 2’”’1) <2t

n+l n
Let Y, (t)=Y" (1)+Y” (t). Then P(supIST Y. (1)-Y, (t)| >2" ) <27 4+27%" and the conclusion fol-
lows by the Borel-Cantelli Lemma, as in the proof of Lemma 1. (J

We consider next processes of the form (9) with G = 0. Note that if H vanishes a.e. outside a set B € 5, (Rd)

then

n

K (s,%2)|v(dz)dxds < 1 (a,) < —

t)=ﬁf5j{‘z‘ﬂ}H (s,x,2) N (ds,dx,dz) + ” IH (s.% 2)N (ds,dx, dz)
_.[;IB.[{‘z‘>1}H (s,%,2)v(dz)dxds,

where the first term has a cadlag modification given by Lemma 1, the second term is cadlag, and the third term
is continuous. Therefore, we will suppose that H satisfies the following assumption:
Assumption C. It is not possible to find T >0 and B e B, (Rd) such that

H(ws,x2)=0 ae Qx[0,T]xB xR,

with respect to the measure Px u.

Theorem 4 (Interlacing I1). Let Y be a process given by (9) with G =0, where H is a predictable process
which satisfies (1) and Assumption C. Then, there exists a cadlag modification Y= {Y (t)}N of Y such that (11)
holds, where Y, is a cadlag modification of the process Y, defined by: B

”j (s,x 2) N (ds,dx,dz),

with E, =K, for some sequence (an )n (depending on T) such that a, T .
Proof: We proceed as in the proof of Theorem 3. Fix T >0. Let a, =inf {a >0;1 (a) < 8’”} where

H fR0|H 5,X,2) | (dz)dxds.

By Assumption C, a, T co. We write Y,(t) as the sum of two mtegrals corresponding to the regions {| | }
and {|z| >1} . We denote these integrals by Y." ( ), respectively v ( ). Note that Yn is cadlag. Let (1

be the cadlag modification of Yn(l) given by Lemma 1.
Let Y, (t)=Y" (t)+Y? (t). By Doob’s submartingale inequality,

(sup Y. (t)-Y, (t)|2j < 4EJ'0T'[EH+12EH'[RO|H (s,x, z)|2 v(dz)dxds

and the conclusion follows as in the proof of Lemma 1. [

3. Proof of It0 Formula

In this section, we give the proofs of Theorem 1 and Theorem 2.
We start with the simpler case when there are no small jumps (the analogue of Lemma 4.4.6 of [6]).

Lemma 2. Let
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_[G ds+_”jz‘>g (s, )N (ds,dx,dz) =Y, (t)+Y, (1),

where G is a predictable process which satisfies (5), B e 5, (IR“ ) £>0 and K is a predictable process. Then,
for any function f e C*(R) and forany t>0,

i\ (t))— f(v(0)
_jf 5))G(s) ds+_|‘_HH>£[ )+K(s,x,z))—f(Y(s—))]N(ds,dx,dz).

Proof: We denote T'= {|z| > g} By Proposition 5.3 of [8] we may assume that the restriction of N to the set
R, xBxI has points (T, X;,Z;),i>1, where T, <T, <--- are the points of a Poisson process on R, of in-
tensity A4 =|B|v(T') and {(X Z )}, are iid. on BxI with distribution A7'dxv(dz), independent of
(T, ) . We con3|der two cases.

Case 1: G = 0. By the representation of N, Y (t)=>__K(T,
has a jump of size K(T;, X; Z) at each point T, and \(( )

(v (v)- [f Y(T)]

[f -)+K( T,,x,,z,)) (Y (T-)].

Ti<t

XI Z;).So t—Y(t) isastep function which
=Y (T_,). Hence

and the conclusion follows since N has points (T, X;,Z;) in R, xBxT.

Case 2: G is arbitrary. The map t+ Y, (t) is a step function which has a jump of size K(T;,X;,Z;) at
time T,. Since Y, is continuous, the jump times and the jump sizes of Y coincide with those of Y, i.e.
AY (T;) =AY, (T;) = K(T;, X;,Z;) . We use the decomposition

(Y (1))=f(Y(0)=At)+B(1).

where A and B are defined as follows: if T, <t<T,, we let

n-1—

n-1

A =X [F(Y(T)- (Y (T-)]

i1

B(1)=X[ (Y (T )~ T (Y (L) J+[f (Y (1)~ (¥ (T.)]

i=1

3

Note that

n

A(t):IZ[f(Y(T =)+ K (T, X.Z,)) = (Y (T, —))]

= OjBfr[f —)+K(s,x,2))-f (Y (s—))JN(ds,dx,dz).

It remains to prove that
= [:£'(Y(s))G(s)ds. (12)

For this, we assume that T, , <t <T, and we write

[1£(Y(s))G(s)ds = g]:ii_lf’(Y(s))G(s)ds+jTtn_lf’(Y(s))G(s)ds.
So it suffices to prove that
[ £(Y($))G(s)ds = f (¥ (T, =)= £ (¥(T,.,)) (13)

forall i=1---,n-1, and
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[ 1Y (s))&(s)ds =T (¥ (1) - F(¥(T,)) (14)
We first prove (13). Fix i=1---,n-1. Forany
se(TiuT), Y(s)=Y,(s)+Yy(Tiy)=0;(s) and g/(s)=Y,(s)=G(s).
We extend g; by continuity to [T, ,,T;]. Hence
jTTiilf’(Y(s))G(s)ds=J'TTiilf’ ((s)) g/ (s)ds = f (g,
:f( (T)+ d(T,l)) f(Yc(Tnl) 5 (T ))
= F(Y(T )= (Y (T),
-)

T

where for the last equality we used the fact that Y, (T,,) =, ( and hence
Y (T)+Yy (Tiy) =Y (T =)+ Yy (T —) =Y (T; ).

This proves (13).
Next, we prove (14). Note that if t=T,_,, both terms are zero. So, we assume that t>T, . For any

se(T, ), Y(s)=Y.(5)+Yy(T,.1)=9(s) and g'(s)=Y/(s)=G(s).

Arguing as above, we see that

Ji

Jt f'(g(s))g’(s)ds = f (g (t))- f(9(T,.))
( (t)+ d( )= (Y (M) +Ye (To)
(Y(©)= F(¥(To)).

where for the last equality we used the fact that Y, (T, ;) =Y, (t) and hence

Y, (1) +Y (Toy) =Y, (1) +Y, (1) =Y (1).

This concludes the proof of (14). O

Proof of Theorem 1: We fix t>0. We assume that f’ and f” are bounded. (Otherwise, we use

=inf {s >0;[Y (s)) > kL for k>1.)

Case 1: H and K vanish outside a fixed set B € 3 (Rdr)

If H vanishes a.e. on Qx[0,T]|xB x{z eR,; z| < g} orsome T >0 and ¢e(0,1), the conclusion follows
from Lemma 2. Therefore, we suppose that H satisfies Assumption A. By Lemma 1, there exists a cadlag mod-
ification of Y (denoted also by Y) such that

f
f

Y, (s)-Y(s) >0, (15)

s<t

where the process {Y, (s)} is defined by

=[G(r)dr+ Iojsf{gn<\z\51}H (r,x,z)N (dr,dx,dz)
+.|';J'BJ'{‘Z‘>1}K (r,x,z)N(dr,dx,dz), se[0,t],
(gn )I1 being the sequence given by Lemma 1 with T =t . Consequently,

Y, (s=)-Y(s-)|>0. (16)

Se[O,t]

Note that

fG dr+J'.”H>£ r,x z)N (dr,dx,dz),
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where é(s)zG(s)—fBj{gn<‘z‘ﬂ}H (s,x,z)v(dz)dx and K(s,x,z):H(s,x,z)l{ }+K(s,x,z)1{‘z‘>1}. By the

|z]<1

Cauchy-Schwarz inequality, G satisfies (5) (since B is a bounded set and H satisfies (10)). We apply Lemma 2
to Y, :

F (Y ()= (¥, (0))
=j;f'(Yn( ds+” J'Z‘Mn [ (Y, (s-)+K(s,x,2))- f (Yn(s—))JN(ds,dx,dz).

After using the definitions of G and K,aswellas adding and subtracting

Jofef a1 (Y ()4 H (s::2)) = (¥, () ] (d2) s,
we obtain that:
F (v (1) f( n( )
=jtf' (Y. (s))G ds+jj Im[ -)+K(s,x,2))- f (Yn(s—))]N(ds,dx,dz)
[T (a(s-)+H (5% Z))—f( (s-)) N (ds,dx,dz) (17)
# Jofefjaca[ 1 () H (s02)) = £ (Y, (5)) = H (s:x2) (Y, (5)) ] (d2) s
=T, +T, +T,, +T4,n-

We denote by T,,T,,T,, respectively T, the four terms on the right-hand side of (8). The conclusion will
follow by taking the limitas n —oco in (17). The left-hand side convergesto f (Y (t))— f (Y (0)), by (15).
We treat separately the four terms in the right-hand side. By the dominated convergence theorem,

E

1T £ (4 0)- (Y ()N 0

Since T,, is asum with a finite number of terms, using (15) and the continuity of f, we see that T, —T,
a.s. For the third term, note that E|T3 —T| <2(A, +B,), where

J.J. L {en<lz \<1|V $,X,2) V(S,X,Z)|2v(dz)dxds,
B, = E.” J.\ \<gn

and V, (s,x,2)=f(Y,(s)+H(s,%2))-f(Y,(s)) >V (s, x.2)=f(Y(s)+H(s,x2))- f(Y(s)) as. by (15)
and the continuity of f. By the dominated convergence theorem, A, —0 and B, — 0. To justify the applica-
tion of this theorem, we use Taylor’s formula of the first order:

(s,%,2) | v (dz)dxds,

f(b)-f(a)=(b-a)[f'(a+6(b-a))ds, (18)

and the factthat f’ is bounded. This proves that T,, —» T, in L*(Q).
Finally, E|T4)n—T4|£C + D, , where

o =ELLufl ey
=L,

(s,x,z)-U (s,x,z)|v(dz)dxds,

(s.%,2)|v(dz)dxds,

and
U, (s,%2)=f(Y,(s)+H(s,x2))=f(Y,(s))-H(s,x2) f'(Y,(s))
—>U(s,x2)=f(Y(s)+H(s,x,2))= F(Y(s))-H (s, x.2) F'(Y,(s))
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a.s., by (16) and the continuity of f. By the dominated convergence theorem, C, -0 and D, — 0. To justify
the application of this theorem, we use Taylor’s formula of second order:

f(b)-f(a)=(b-a)f'(a)+(b-a) [ f"(a+0(b-a))(1-0)de, (19)

and the fact that f" is bounded. This proves that T, —T, in L'(Q).
Case 2. H satisfies Assumption B or K satisfies Assumption B’.

By Theorem 3, there exists a cadlag approximation of Y (denoted also by Y) such that (15) holds, where
{v, (s)}se[0 , s acadlag modification of

Yn(s):J'SG(r)dHﬁ J“qH(r,x,z)l\](dr,dx,dz)
+I J'Enj" ) N (dr,dx,dz), se[0,t],

(En )n c B, (Rd) being the sequence given by Theorem 3 with T =t . Using the result of Case 1 for the pro-
cess Y, , we obtain

F (%, (1)~ f (Yn (0))
=[if (% (s ds+J Jo T [ (Y (52) K (5,2)) = (¥ (s-) N (s, x.c2)
+[Je IHq[ +H(S,X:Z))—f(Yn(s—))]N(ds,dx,dz)
# [ Jag [ (0 (8)+ H (5:0.2)) = £ (Y, (8)) = H (5,,2) £(¥, (5)) v (dz)dcs.
The conclusion follows letting n — « asin Case 1. (]

Proof of Theorem 2: We assume that f' and f” are bounded. We fix t.
Case 1. H vanishes outside a set B € B, (Rd ) . We write

=J';G(s)ds+.[;J'B.[{‘z‘ﬂ}H (s,x )N (ds,dx,dz)+ ” J" " (s,x,z) N (ds,dx,dz),

where G(s):G(s)—.fB.[“Z‘ﬂ}H (s,x,z)v(dz)dx . By the Cauchy-Schwarz inequality, G satisfies (5) (since B

is a bounded set). By Theorem 1, there exists a cadlag modification of Y (denoted also by Y) such that
Fv(t )) f(Y(0))

= [1(Y(s))G( s)ds+_|'.[.|'z‘>l[ s—)+H (s,x2))- (Y (s=))]N(ds,dx,dz)

+Lf] z\q[ (¥ (s-)+H (s.x2))- f(v@_))wds,dx,dz)

# L[ ()4 H (5.x,2) = 1(Y (5)=H (s,%,2) £(¥ () v (dz)dcs.

We add and subtract .[;J.BJ'{‘Z‘>1}[f (Y(s)+H(s,x2))-f(Y (s))]v(dz)dxds . The conclusion follows by rear-

ranging the terms.
Case 2. H satisfies Assumption C.
By Theorem 4, there exists a cadlag modification of Y (denoted also by Y) such that (15) holds, where

{v, (s)}se[o’t] is a cadlag modification of
:EG dr+J'j j (r,x,z)N(dr,dx,dz), se[0,t],

(En )n being the sequence given by Theorem 4 with T =t. We write the It formula for the process Y,

(using Case 1) and we let n— o0 . [



R. M. Balan, C. B. Ndongo

4. Applications
In this section, we assume that the Lévy measure v satisfies the condition:
= J.Rozzv(dz) < o0,
As in [1], we consider the process L = {L(B);t >0,BeB, (IR{+ xR )} defined by:
L(B)= J-BXROZN (ds, dx,dz).
For any predictable process X = {X (t,x);t=0,xeR* } such that
EJ';J'Rd |X (t, x)|2 dxdt <o forany T >0, (20)

we can define the stochastic integral of X with respect to L and this integral satisfies:

Jo [ X (tx)L(dtax) =[], f, X (t.x) 2N (dt dx, dz).
By (2), this integral has the following isometry property:
Uj (t,x)L( dtdx‘ _ijJ' |X (t,x)| dxct.

When used as a noise process perturbing an SPDE, L behaves very similarly to the Gaussian white noise. For
this reason, L was called a Lévy white noise in [1].

4.1. Kunita Inequality

The following maximal inequality is due to Kunita (see Theorem 2.11 of [7]). In problems related to SPDEs
with noise L, this result plays the same role as the Burkholder-Davis-Gundy inequality for SPDEs with Gaussian
white noise.

Theorem 5 (Kunita Inequality). Let Y = {Y (s)}t>0 be a process given by

)= oX L(ds,dx), t>0,

where X is a predictable process which satisfies (20).
If m, =jR |z|”v(dz) <o forsome p>2,thenforany t>0,
0

E[sup|v<s)|'°)scp{e( o (5.0 s < J';de|X(s,x)|pdxds},

s<t

where C, =K max v"/z,mp and K, isthe constant in Theorem 2.11 of [7].

Proof: We apply Theorem 2 with f (x) :|x|p and H(s,x,z)=X(s,x)z. The proof is identical to that of
Theorem 2.11 of [7]. We omit the details. O

Remark 1. Kunita’s constant K cannot be computed explicitly. Theorem 5 is proved in [9] using a differ-
ent method which shows that K is directly related to the constant B, in Rosenthal’s inequality, which is

O(p/Inp).
4.2.1t6 Representation Theorem and Chaos Expansion

In this section, we give an application to Theorem 2 to exponential martingales, which leads to I1td representation
theorem and a chaos expansion (similarly to Sections 5.3 and 5.4 of [6]).

Forany hel? (}R+ de) we let L (t)= E Rdh(s,x)L(ds,dx) for t>0. We work with the cadlag modi-
fication of the process L, given by Theorem 4. By Lemma 2.4 of [1],

('L“ ) exp{” dxds}
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where
\I’(u):.[]R (ei”Z —1—iuz)v(dz), ueR.
0
Hence E(M,(t))=1 forall t>0, where

M, (t) exp{lL H dxds} t>0.

The following result is the analogue of Lemma 5.3.3 of [6].
Lemma 3. Forany hel? (]R+ xR* ) and t >0, with probability 1,

M () =1+ i, (" ~2) M, (s -) N (s, dx, dz).

ix

Proof: We apply Theorem 2 to the function f( ) e” and the process

j [ )) dxds.

Hence, H (s,x,z)= h(s x)z and G(s |I (h(s,x))dx . We obtain:

-1= HRJRO( e “““—e” *)N(ds,dx,dz)
N (e ) —igh (s, x)e" ) (dz) dxds
o[ (i (v <s,x>)dx)ds-
Since the sum of the last two integrals is 0, the conclusion follows. (]

We fix T >0. We let ]—'L—a({ .(B);0<s<t, BeBb(Rd)}).Wedenote by LfC(Q,}}L,P) be the space

of C-valued square-integrable random variables which are measurable with respectto 7.

Lemma 4. The linear span of the set A ={M, (T);he L*(R, xR 2‘ is dense in L2 (Q, 7", P).

Proof: The proof is similar to that of Lemma 5.3.4 of [6]. We omit the details. (]

Theorem 6 (Ito Representation Theorem). For any F e L. (Q,]—‘TL, P) , there exists a unique predictable
C-valued process y = {z//(t, x,2);te[0,T],xeR’,zeR } satisfying

Ej J‘Rdj' |(// (t.x,2) | (dz)dxdt < 0 (21)
such that

HRdj (t,x z) N (dt, dx,dz). (22)

Proof: By Lemma 3, relation (22) holds for F =M, (T) with l//(t,X,Z)=(eih(t'X)Z —l)Mh (t—). The con-
clusion follows by an approximation argument using Lemma 4. [J

The multiple (and iterated) integral with respect N can be defined similarly to the Gaussian white-noise
case (see e.g. Section 5.4 of [6]).

More precisely, we consider the Hilbert space H = L* (U,L{,y), where
U =[0,T]xR*xR,, U=B([0,T])xB(R)xB(R,) and u=dtdxv(dz).

For any integer n>1, we consider the n-th tensor product space H*" =L*(U", 1", u"). The n-th multiple
integral In(f) with respect to N can be constructed for any function f e H®", and this integral has the
isometry property:

Efn, (6 =t

H®" .

Moreover, if n=m,then E[1 (f)l,(g)]=0 forall feX® and geH"".
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We have the following result.
Theorem 7 (Chaos Expansion). For any F e L2 (Q,]-‘TL, P), there exist some symmetric functions f, e H®",
n>1 such that

F=E(F)+XI,(f,) inL*(Q).

n>1

In particular,
ElFf = E(F ) + Znl e
Proof: We use the same argument as in the classical case, when N isaPRMon R, xR, and
L(t)= I;IROZN (ds,dz),t>0

is a square-integrable Lévy process (see Theorem 5.4.6 of [6] or Theorem 10.2 of [10]). By Theorem 6, there
exists a predictable process y, satisfying (1) such that

F= E(F)+j§jmdjkoy/1 (t,%,2 )N (dt, dx,, dz,). (23)

By (21), E|¢//1 (tl,xl,zl)|2 <oo for almost all (t,x,z). For such (t,x,z) fixed, we apply Theorem 6
again to the variable y, (t,,x,,z,). Hence, there exists a predictable process

v, :{n,//z('[z,xz,zz);t2 e[0t].x, Rz, e]RO}

Satisfying

EJ.(?J']R" IRO |l//1 (tl’ X, 7 )|2 V(dzl)Cledt1 <o

such that

1. ~
vy (%0 2) = E (v (X, zl))+J'O1J‘RdJROy/2 (t,, %, 2, )N (dt,, dx,,dz, ).
We substitute this into (23) and iterate the procedure. We omit the details. (I
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