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Abstract

The paper deals with the estimation of parameters of multidimensional diffusion processes that
are discretely observed. We construct estimator of the parameters based on the minimum Hellin-
ger distance method. This method is based on the minimization of the Hellinger distance between
the density of the invariant distribution of the diffusion process and a nonparametric estimator of
this density. We give conditions which ensure the existence of an invariant measure that admits
density with respect to the Lebesgue measure and the strong mixing property with exponential
rate for the Markov process. Under this condition, we define an estimator of the density based on
kernel function and study his properties (almost sure convergence and asymptotic normality).
After, using the estimator of the density, we construct the minimum Hellinger distance estimator
of the parameters of the diffusion process and establish the almost sure convergence and the
asymptotic normality of this estimator. To illustrate the properties of the estimator of the para-
meters, we apply the method to two examples of multidimensional diffusion processes.
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1. Introduction

Diffusion processes are widely used for modeling purposes in various fields, especially in finance. Many papers
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are devoted to the parameter estimation of the drift and diffusion coefficients of diffusion processes by discrete
observation. As a diffusion process is Markovian, the maximum likelihood estimation is the natural choice for
parameter estimation to get consistent and asymptotical normally estimator when the transition probability den-
sity is known [1]. However, in the discrete case, for most diffusion processes, the transition probability density
is difficult to calculate explicitly which prevents the use of this method. To solve this problem, several methods
have been developed such as the approximation of the likelihood function [2] [3], the approximation of the tran-
sition density [4], schemes of approximation of the diffusion [5] or methods based on martingale estimating
functions [6].
In this paper, we study the multidimensional diffusion model

dX, =a(X,,0)dt+b(X,,60)dW,, t>0

under the condition that X, is positive recurrent and exponentially strong mixing. We assume that the diffu-
sion process is observed at regular spaced times t, =kA where A is a positive constant. Using the density of
the invariant distribution of the diffusion, we construct an estimator of & based on minimum Hellinger distance
method.

Let f, denote the density of the invariant distribution of the diffusion. The estimator of @ is that value (or
values) 6, in the parameter space ® which minimizes the Hellinger distance between f, and f_, where

f, isanonparametric density estimator of f,.

The interest for this method of parametric estimation is that the minimum Hellinger distance estimation me-
thod gives efficient and robust estimators [7]. The minimum Hellinger distance estimators have been used in
parameter estimation for independent observations [7], for nonlinear time series models [8] and recently for un-
ivariate diffusion processes [9].

The paper is organized as follows. In Section 2, we present the statistical model and some conditions which
imply that X, is positive recurrent and exponentially strong mixing. Consistence and asymptotic normality of
the kernel estimator of the density of the invariant distribution are studied in the same section. Section 3 defines
the minimum Hellinger distance estimator of @ and studies its properties (consistence and asymptotic normal-
ity). Section 4 is devoted to some examples and simulations. Proofs of some results are presented in Appendix.

2. Nonparametric Density Estimation

We consider the d-dimensional diffusion process solution of the multivariate stochastic differential equation:
dX, =a(X,,0)dt+b(X,,0)dW,, t>0, (1)

where {Wt}t>0 is a standard I-dimensional Wiener process, 6 is an unknown parameter which varies in a
compact subset ® of R°, a:R®x® — R? is the drift coefficient and b:R*x® —» R*xR' is the diffu-
sion coefficient.

We assume that the functions a and b are known up to the parameter 6 and b is bounded.

We denote by 6, the unknown true value of the parameter.

For a matrix A, the notation A' denote the transpose of the matrix A. We will use the notation || to de-
note a vectorial norm or a matricial norm.

The process X, is observed at discrete time t, =kA where A is a positive constant.

We make the following assumptions on the model:

(A,): there exists a constant C such that

la(x,0)-a(y,0)|+|b(x.0)-b(y.0) <C|x-Vy|
(Ay): there exist constants M, >0 and r>0 such that
(a(x,0),x)<-r|x, [x|= M, where (..) denotes the scalar product in R
(As): the matrix function b(x,8) is non degenerate, that is

L ¢ t d
'Qf\'ﬂ:fl’l b(x,0)b(x,0) 1>0, 1eR".
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Assumptions (A1)-(As) ensure the existence of a unique strong solution for the Equation (1) and an invariant
measure for the process {Xt} that admits a density with respect to the Lebesgue measure and the strong mix-
ing property for {Xt} with exponential rate [10]-[12]. We denote by « the strong mixing coefficient.

In the sequel, we assume that the initial value X, follows the invariant law; which implies that the process
{X,} isstrictly stationary. R

We consider the kernel estimator  f, (x) of f,(x) thatis,

; 1 & (x=X
fn(X):WéK£ b kj, XERd

n

where (b,) is a sequence of bandwidths such that b, —0 and nb{ —+w as n—+w and K:R’ >R’
is a hon negative kernel function which satisfies the following assumptions:

(As)

(1) Thereexists N, >0 suchthat K(.)< N, <+,

2) IK(x)dx:l and |x|d K(x)—>0 as |[x| >,

(As) JuK(u)du=0 and [u’K(u)du<oco for i=1.-.d.

We finish with assumptions concerning the density of the invariant distribution:

(A¢) fg(.) is twice continuously differentiable with respectto x.

(A7) 6,+06, impliesthat f, (x)= f, (x) forall xeR".

Properties (consistence and asymptotic normality) of the kernel density estimator are examined in the follow-
ing theorems. The proof of the two theorems can be found in the Appendix.

Theorem 1. Under assumptions (A;)-(Ay), if the function f, (x) is continuous with respect to x forall € © ,
then for any positive sequence (b,) such that b, -0 and nb »+» as n—>+wo, f (x)> f,(X)
almost surely.

Theorem 2. Under assumptions (A)-(Ag), if (
distribution of {/nb{ (f (x)- 1, (x)% is N(0,7°(x

(%)=

b ) is such that nb’** -0 as n— +w then the limiting
(x)) where
f

0 (%) oaK* (u)du.

3. Estimation of the Parameter

The minimum Hellinger distance estimator of & is defined by:
6, = Arg min Hz(fn, fg)

where

12

Hz(fn,fe):{jkd (x)—f;ﬂ(x)rdx}

Let G denote the set of squared integrable functions with respect to the Lebesgue measure on R .
Define the functional T:G — ® asfollows: let g e G and denote:

A(g):{eee):Hz(fg,g)erEiQHz(fy,g)}

where H, isthe Hellinger distance.

If A(g) isreduced to an unique element, then T(g) is defined as the value of this element. Elsewhere, we
choose an arbitrary but unique element of A(g) andcallit T(g).

Theorem 3. (almost sure consistency)

Assume that assumptions (A)-(As) and (A;) hold. If for all xeR®, f,(x) is continuous at 6, , then for
any positive sequence (b,) such that b, —0 and nb? —+w, 6, converges almost surely to 6, as
n— +0. .

Proof. By Theorem 1, f, (x)— f, (x) almostsurely.
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Using the inequality (a]/2 —b¥? )2 <la-b| for a,b>0,we get

sz(fnv fﬁ):IRd

200~ 647 () ax< [ [, (x

)-f, (x)‘dx.
Since

oo (X)dx = [, f, (x)dx =1,

H? ( f o, ) — 0 almost surely [13] [14].

By theorem 1 [7], ( ) 6, uniquely on O then the functional T is continuous at f, in the Hellin-
ger topology. Therefore 6, T(f )—>T(f0) g, almost surely.

This achieves the proof of the theorem.

Denote

My g O
00" 7% 0600

gezfgl/zv 9 =

when these quantities exist. Furthermore, let

-1
Vo (%)= {68, (X) 85 ()} " g, (x) and h,(x) = fuﬁ())
To prove asymptotic normality of the estimator of the parameter, we begin with two lemmas.
Lemma l. Let E, beasubsetof R’ anddenote E; the complementary setof E,.Assume that
(1) assumptions (A;)-(As) are satisfied,
(2) h, () is twice continuously differentiable with respectto x and

o*hy, ()
oy}

Vb [, 15, (y)dy -0 and nbf [, fo (y)dy >0 for i=1,-d,

3 V[ (Jo g (y+ub, K (u)du) £, (y)dy >0 and V],
4 E|h§0” 1)|<oo for some & > 0,

then for any positive sequence (b,) suchthat b, — 0, the limiting distribution of

6y, (V) 147 (v)dy >0,

defhgo f,(x)dx is N(0,T) where l“_—.[gg0 ) g5, (x)dx.

The proof can be found in the Appendix.
Remark 1. The two dimensional stochastic process (see Section 4) with invariant density

f, (X, y):@exp(—ﬂxz—oyz), p>0, >0

where 6=(p,0), satisfies the conditions of Lemma 1 with for example E, =[w,;+oo[x[w,;+[ a subset of
R?* where w, =n.

Lemma 2. Let G, be a compact set of R and denote by G the complementary set of G, . Suppose that
assumptions (A1)-(Ag) are satisfied and:

L) g, (X)) T* (X)( LK (1) T, (x—tb, )dlt)dx >0

1
W.[Gn

(2 p, q and r aresuch that l+1+£:1 and
r
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h, (%) f;(x)([ LKD), (x_tbn)dtfq*“)dx 50

1
n3/2b:+d/p .[Gn

(3) n’/2b4f |h |f . (X )[ +£a fai‘;z(x)] }dx—m fori=1,---,d
(4) ﬂc

dg, (X) |f”2(x)dx—>0

(x |(J' K (u) f, (x+ub )du)dx—>0
then

R, = [ nh,, (x)( f¥2(x)~ 122 (x)) dx >0 in probability as n — +o.

The proof can be found in the Appendix.
Remark 2. Let G, =[-v,;v,]x[-V,;v,] a compact set of R* where {v
(log(n))"* 1

r ’

n

n>1} is a sequence of positive

n'

numbers diverging to infinity. Let b, = <r <% and v, =(Iog(n))q, %<q <1, then the two

dimensional stochastic process with invariant density fg(x, y)=—“ﬂ0exp(—ﬂx2—ay2), p>0, >0
T

where 6=(p,0), satisfies the conditions of Lemma 2.

Theorem 4. (asymptotic normality)

Under assumption (A;) and conditions of Lemma 1 and Lemma 2, if

(1) forall xeR®, g, istwice continuously differentiable at 6, ,

(2) the components of ¢, and ¢, belongto L, and if the norms of these components are continuous
functions at 6, ,

(3) 6, s in the interior of ® and J'gg (X) @y, (x)dx is a non-singular matrix, then the limiting distribu-
tion of \/_[49 -0 ] is N(0,4%) where

=1t (0, ()0
Proof. From Theorem 2 [7], we have:
In[8, -0, ] = {[L M, (O 22 ()= 122 (%) ]
N AL COLR (0= 137 (00 Jo
= {[106s, (085, ()} M 0, (O 027 (0= 127 () Jx
+ ALV, ()] £27 (%)= 117 (%) ]dx

where A, isa (m x m) matrix which tendsto0Oas n— +oo.

We have
2 2 fL00=f, () (F200- 12 (%) 2
22 (0~ 147 () = (Zf);Z(X)( = 267 (%) :
Denote
D, = [, g, (] 727 ()~ 127 ().
We have
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=[Rdﬁggo(x)de J]Rd«fggo (fnl/z(x)—fglo/Z(X))

214" (x) 21,7 (%)

~ [ 9, (%) ¢ x-—j Jng,, (%) 122 (x)dx—R,

21”/2

= [Lav/nhy (%) ()dx R,

dx

where
R, = [ vty (x)( 2 (x)~ 122 (x)) o

By Lemma 2, R, — 0 in probability as — oo ; then, the limiting distribution of \/ﬁ[én —90] is reduced to
that of

{46, ()8, (x )dx}’l [y, (%), (x)dx

since A, -> 0. But
L3y (x) , (x)dx—E>N(0,) with == j +0g, (X) G, (x)dx from lemma 1.

Therefore the limiting distribution of

{485 ()08 ()] [ Wy, (x) F, (x)dx is N(0,2)

where

{J‘Rdgﬁo geo ( } J-Rdgé’o g5’0 ( {J'Rdggo 950 ( )dx}fll

This completes the proof of the theorem.

4. Examples and Simulations

4.1. Example 1

We consider the two-dimensional Ornstein-Uhlenbeck process solution of the stochastic differential equation
dz, = AZdt+dw,, Z, =z, )

where

Let Z=(X.Y) and z=(xy), we have:
a(z,e):[_oﬁ —U@ b(z,&):b:[(l) ;’J and 0=(p,0)

* a(z,0) and b(z,6) satisfy assumptions (Ay)-(As). Therefore, Z, is exponentially strong mixing and
the invariant distribution 4, admits a density f, with respect to the Lebesgue measure.
Furthermore [15], u, =N(0,I'), the Gaussian distribution on R* with I' the unique symmetric solution
of the equation is

C+AIr'+TA' =0 where C =bb'. 3)
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1
oY 0
The solution of the Equation (3) is T' = Z L
20

Therefore [16], the density of the invariant distribution is

N

f(x,y) =Texp(—ﬁx2 ~oy’)
* The minimum Hellinger distance estimator of & is defined by:
6, =Arg ryelg Hz(fn, fg)

where

,\ 2 y2
fr2(x,y)- /7 (x, y)‘ dxdy}

()=

with

2 1 X—X -Y,
)= B X e [20 | a1, 0) Y enp(p o)

n

where K, is a kernel function which satisfies conditions (A4) and (As) such that K, (x)K,(y)=K(x,y).
Let W= (W @ w® ) , we can write Equation (2) as follows:

X\ _(<F 0 )Xy, dw,
day, 0 oY, th(Z)
which gives the the following system

dX, =X, dt +dw,?
dY, =—oY,dt +dw,?

Thus, (X,),, and (V)
and o respectively.

We now give simulations for different parameter values using the R language. For each process, we generate
sample paths using the package “sde” [17] and to compute a value of the estimator, we use the function “nlm”
[18] of the R language. The kernel function K, is the density of the standard normal distribution. We use the

log(n)

0.24
n

..o are two independent univariate Ornstein-Uhlenbeck processes of parameters 3

bandwidth b, = according to conditions on the bandwidth in the paper.

Simulations are based on 1000 observations of the Ornstein-Uhlenbeck process with 200 replications.
Simulation results are given in the Table 1.

Table 1. Means and standard errors of the minimum Hellinger distance estimator.

0,=(8,0,) 0_(ﬁ‘0-)
Means Standard errors
(0.3,0.7) (0.2985977, 0.6998527) (0.01076013, 0.01032311)
05,2) (0.4954066, 1.998997) (0.0341282, 0.008429909)
1,2.4) (0.9987882, 2.398991) (0.009604874, 0.01262858)
(1,3) (0.998918, 2.999193) (0.008726621, 0.01034987)
(0.223,0.6) (0.2223449, 0.6006928) (0.01048311, 0.01224315)
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In Table 1, &, denotes the true value of the parameter and 6 denotes an estimation of 6, given by the
minimum Hellinger distance estimator. Simulation results illustrate the good properties of the estimator. Indeed,
the means of the estimator are quite close to the true values of the parameter in all cases and the standard errors
are low.

4.2. Example 2
We consider the Homogeneous Gaussian diffusion process [19] solution of the stochastic differential equation
dX, =(A+BX,)dt+odW,, X, =X, (4)

where o >0 is known, W is a two-dimensional Brownian motion, B isa 2x2 matrix with eigenvalues with
strictly negative parts and A is a 2x1 matrix. By condition on the matrix B, X has an invariant probability
pu=N(mT) where m=-B™"A and I isthe unique symetric solution of the equation

10
C+BIr'+I'B'=0 where C=DD' and D=ocl with I:{O J. (5)

Let

A{O‘lj and B:[ﬂ“ ﬂ“j with S, <0 and S, <O0.
o

2 12 22

As in [19], we suppose that o = V2 . Inthe following, we suppose that f3,,/3,, — 85 #0.
Then we have

Bl:;( P _ﬁmj and m= 1 ((ZZﬂlz_alﬁzzj.
Bubo = Bo\~Po  Pu BuPo — Bo\ By — By

a b 2 0
Let T'= ,we have C= .
b d 0 2
ap,+bp, =-1

C+Br+IB'=0< aﬂ12+b(ﬂn+ﬂzz)+dﬂlz =0
b, +dBy =-1

ﬂn ﬂ12 0 a -1
= ﬁ12 ﬂn + ﬁzz ﬂlZ bi=|0
0 ﬁ12 ﬂzz d -1
ﬂll :312 0 -1
Let G= ﬁlz :311 +ﬂ22 1812 and H=| 0|, we have det(G) = (ﬂll +ﬁ22)(ﬂ11ﬂ22 _ﬁlzz)i 0; G is
0 ,Blz ﬁzz -1
invertible and we have
a P
b |=G'H =;2 B, | and F:%[ Pa P )
d PP = Pra -B Bubr = Pra P —Pu
11

_,311 _ﬂlz
_,312 _:822

I' isinvertible and we have T'* :( ) . Hence, the invariant density of u is
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Table 2. Means and standard errors of the estimators.

0 (MHD) 0 (Estimating function)
True values of 6
Means Standard errors Means Standard errors

a,=4 3.996942 0.0005203 4.0349 0.2904
a,=1 1.00776 0.001311968 1.0035 0.2891
Bi=-2 —-2.007696 0.001315799 —2.0155 0.1248

B, =-3 —2.982749 0.002923666 —3.0247 0.1978

B, =1 1.009081 0.001513984 1.0078 0.1177

f(x)= p —%(x—m)t l"l(x—m)j

1 [
(Var )" J[det(r)

_ |ﬁ11ﬂ22 _ﬁ12| exp lﬁn [Xl _%p, _alﬂzzzj +1ﬁ22 (Xz _apfp _azﬂsz
2n 2 BB — P 2 BB = B

% exp(ﬂ (X _ P —uf ](X _ P — Py D
L ﬁnﬁzz _ﬁlzz ’ ﬁnﬂzz _:8122

For simulation, we must write the stochastic differential Equation (4) in matrix form as follows:
dxt(l) @ + Bu P Xt(l) dt + o 0 th(l)
dXI(Z) a, Bo B Xt(z) 0 o dW[(Z)

_| % + ﬂllxt(l) + :312)(1(2) dt + (O' Oj th(l)
a, + By xt(l) + By Xt(Z) 0 o th(Z)

As in [19], the true values of the parameter 6 =(c,@,, By, fons y) are 6y =(4,1,-2,-3,1) and o =+2.

Then, we have

dxM) (4-2x +x? it V2o o0 )(dw®
dx? ) 1+ xP-3x® 0 v2)law®

Now, we can simulate a sample path of the Homogeneous Gaussian diffusion using the “yuima” package of R

language [20]. We use the function “nlm” to compute a value of the estimator.

We generate 500 sample paths of the process, each of size 500. The kernel function and the bandwidth are

those of the previous example.

We compare the estimator obtained by the minimum Hellinger distance method (MHD) of this paper and the
estimator obtained in [19] by estimating function. Table 2 summarizes results of simulation of means and stan-

dard errors of the different estimators.

Table 2 shows that the two estimators have good behavior. For the two methods, the means of the estimators
are close to the true values of the parameter. But the standard errors of the MHD estimator are lower than those

of the estimating function estimator.
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Appendix
A1l. Proof of Theorem 1
Proof.
fu ()= £, 09] = £, () BF, (x))+ (Ef, (x)- £,00)
<[, (00~ Bf, ()| (B, (x)- £,00)
We have:
Step 1:

by Theorem 2.1 [21].

Hence
Ef, (x) - f,(x) > 0.
Step 2:
~ 1 n
f, (x)—Ef =—
2 (9)-BF, (0] = o7 2%
where
Yk:K(X_X"J—EK(X XKJ
bn n
E(Y,)=0
ARSI

Then by theorem 2.1 [9], we have forall ¢>0

1 |a 1|l& d eznbfd
Pi—=> Y, [>er=P<=>Y,|>eby t <2Cexp| - — |
nbn k=1 1= 2 2€N1bn
2 E|Yl| 4 —Lh
3
We have
2
EY, =E K(nglj—EK(ngl] :EKZLX;XlJ—[EK{

(6)
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where
A, = £, (%) [ K2 (u)du.
Then
P{% kziiYk >e}§2Cexp —2 y Eznb;iNlbd <2Cexp —Ezn—bz”deNl .
” [ A +3“) o(A+23)
Therefore
f, (x)~Ef, (x) - 0 almost surely, )

by the Borel-Cantelli’s lemma.
(6) and (7) imply that

~

f, (x) > f,(x) almost surely.

This achieves the proof of the theorem.

A2. Proof of Theorem 2

Proof.
Jnbg (£, (%)= T, (x)) = ¢ (, (x)~ B, (x))+/nb? (EF, (x)- f, (x)).

)
By making the change of variable t= xb—u and using assumptions (A4) and (As), we get:

b;
K (6)] f, (x=tb,) = £, (x)]dt]

)
h %;a ;iiZ(X)jmdtizK(t)dHO(l)}_’0 as N — +o.
(2)
b (£, ()=, (x)) = (nb? ) * 2,
where -
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We have E(Y,)=0 and |V, |<2N,.

Let p=p(n), g=q(n) and r=r(n) be positive integers which tend to infinity as n—o such that
r(p+a)<n<r(p+q+l).
Define U, and V_ by

(m_l)( p+q)+p m(p+q)
Um: Yk’ Vm: z Ykl m—]., 'r
k=(m-1)(p+q)+1 k=(m-1)(p+q)+p+l
and
Vr+1 - 2 Yk
k=r(p+q)+1
We have

n r r+l
2V =2Un+ 2V,
k=1 m=1 m=1

_ r+l
Step 1: We prove that (nby ) v >V, -0 in probability.

m=1

By Minkowski’s inequality, we have

(E (nby )7]/2 fvm

m=1
(1) Using Billingsley’s inequality [22],

s -5 ZY] =B (1) +25(1Y))

k=p+1 i<j

N

2\/2 ala \2 2\1/2
| <tuty [ Sfemar) (e

<(nby )W2 [r(ﬂ:‘:‘h/lr)]/2 +(E|V”1 2)]/2}

<qE(Y?)+2q pfl‘E(Yp+le+l)
j=p+l

< q{E(le)Jr?;ZNf piqfla(j— p)}

j=p+1

< q{E(Yf)+32Nf§a(j)} <qC withC = E(Y12)+32Nfia(j).
2

E|v,+l|2=E[ Z Yk] =(n—r(p+0))E(Y?)+2YE(YY;)<rC.

k=r(p+q)+1 i<j

Hence,

12
j <C(nb )_1/2 (r\/a+\/F)
Therefore, choosing q=gq(n),r=r(n) and b, such that

G

———>0 as n— x, (8)

-12 r+l 2
[E\(nb:) 5V,

m=1

we get
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which implies that
_ r+l
(nb¢) ™ 3V, 0 in probability.
m=1

Step 2: asymptotic normality of (nby )_]/2 U,
m=1

] m=1---,r have the same distribution; so that

m?

lL[E exp(itU,, ) = (Eexp(itu,)) .

m=1

From Lemma 4.2 [23], we have

Sfonfigy. ||

:‘E[ﬁexp(itum)J—]L[EEXD(itUm)

= E{exp(itmzr:_lumﬂ —f[Eexp(itUm)

m=1

<4(r-1)a(l+q)<4ra(q).

m=1 m=1

Setting ¢ (t)=Eexp(itu,).If q=q(n) and r=r(n) arechosen such that

ra(q)—0 asn—» oo, ©)]

_ r — r
the charasteristic function of (nb,f) v DU, is 4 (t(nbﬁ) M) which is the charasteristic function of >'Z_
m=1 m=1
-12
where Z_, m=1---,r areindependent random variables with distribution that of (nb,f) ! u,.

m?

We have E(Z,)=0 and
(zz] —rB(2?) = (mb? ) rE(U;)
= B0 s 2B,

n i<j

oo ) 2o o

(2) Note that «(k )gexp(—ik)zgo(k) with 1>0.

(nb)” r{ PE(Y2)+ ZZP:E(Yin )}

i<j

n Z}‘E NE Z—EF_)ZZJ‘E Yi) < b =L 16N ZJ(Z( )
—3?;1":2_‘:2: ()_32N r:zil”z: ()
<SS o) (1) 10)
<3 o)) S (o0
S0 | >0 i L0 o

Therefore
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r 2
E(Zij (%)[_K?(u)du as n—co.
m=1

Since the random variables U, (m :1,~-,r) have the same distribution, then by Lyapunov’s theorem [24],

the limiting distribution of (nb )7]/2 Zr:Um is N(0,7°(x)) where
m=1

7 (x) = f,(x) | K* (u)du.
The condition (8), (9) and (10) are satisfied, for example, with

r(n)~log(n),p(n)~

log(n)

This achieves the proof of the theorem.

-n**,q(n)~n"* and b :M with 0<A<%

nl

A3. Proof of Lemma 1

Proof. The proof of the lemma is done in two steps.
Step 1: we prove that

Y, f{j hy, (x )dx——Zh (X )}—)Oin probability.

E[Y,[=Vn],

N 1n iK[X X259, ()

o (Y)Y

=Vnf, fo, (v)dy

ol bld K(Xb_yjdx_hg"(y)
=V, |fohy, (y+ub, ) K (u)du—h, (y)
+fj o hy, (Y +ub,)K (u)du—h, (y)

=1, +1,,.

With assumptions (A;) and (As), we have

[50 y+ub, )- ho(y)]K(u)du

1.&0%h, (y)

Je {zzwui”i (bf)+°(bf)}<(u>du

o*h (y)
.[JR“ Z 6y|2

62h00 (y)
E; oy?

< \/Hb”ZJ-En fgo (y){%i

f, (y)dy

fo, (y)dy

-,

=Jnb J’

K(u)du+o(2)(f, (y)dy

_\/_sz LUK (u)du+o(2)l f, (y)dy

o*hy, ()
oy;

i=1

(fRdufK(u)du)+o(l)}dy
—0 asn—+w.

Furthermore,
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L, =x/ﬁ.[Eg [ ohg, (y+ub, ) K (u)du—h, (y) f, (y)dy
< e ([ I v+ 00, K () ) 1 () ) i (v)]
<o (oo o (U )| K () ) B () ey + [, (9)] 122 ()

—0 asn— +oo.

Therefore

Y, :\/ﬁ{ g () T, (x )dx——Zhgo( )} l,, +1,, — 0 in probability.

Step 2: asymptotic normality of %Zhg0 (X)), G eR®, s>1
ni-
(1) 6,eR

Proof is similar to that of theorem 2; we use the inequality of Davidov [22] instead of that of Billingsley.
Note that:

B(by, (X)) = [y () £, (x)d deggo V12 (x )dx:%fRdZng(x)ggo(x)dx:O,

and

( ) IRd % 0 =%.[Rdg§o( .[Rdgﬁo geo( )d

) 6,eR®, s>1

Recall that X, —~%— X if and only if utxn%utx forall ueR®.

4 .
X.) and T = , the real random variables (u'Y.,i>1) are
2f;§2( ) " Un .ZIY' ( ' )

strongly mixing with mean zero and variance u'Tu where T is the covariance matrix of Y,; T = E(YlYl‘) :

Let ueR®, Y, =h, (X)=

1 n
From (1), u'T, =—=>Uu'Y,—£->N(0,u'Tu).
O =52 (0]
Therefore,
1 n
—%h, (X, )—~->N(0,I') where == dx.
\/ﬁéo( «) (or) Jgeo ) dg, (x)dx
This completes the proof of the lemma.

A4. Proof of Lemma 2

Proof.
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We have,
or i (£, (0, (%)) b (£, 4 (0) )
|Rnl|—.|.en\/_ hy, ( )|(fnl/2(x)+f;é2(x))2d _J.Gn\/— M ( )| o (X) &
Now,
B([Ral) < [, [he ()] £ CONRE( T, () 1, () ¢
< .[en hy (X)| fggl(x)\/ﬁ[E( f (x)-Ef, (X))Z +(Efn (x)— 1, (X))Z}dx
@)
B(f, (x) -5, (x))
Jn n o\ . X=X, X=X;
:(nb:)z]E(éYij WItth:K( b ]—EK( o ]
Jn

o2y 28wy, )}

[l =

i n
< gz | " (v2) +2Z‘E(Yivj)ﬂ

1

SW nEK( - ]+ZZJ‘E Y,Y, 1)@

Using Davidov’s inequality for mixing processes, we get

:ij ]E( f j+1)‘ < :ij[Zp(Za(j))l/P(E|Yl|q)1/q( . r)l/r}
<2p(f ) (21| Si(2a ()"

Choose q>2 and r>2,we obtain
Sl ) s 2 (B ) (B ) S e ()
2p(2n)" ) ((2n) ) (el ) (s ) (e

<2p(2) (M) (2m) ) (el | S5

IA

+1/r
n-1

EKz[X;nxlﬂw ” Silo(i) where o(3)=(a(i)]"

|
{2 ]

Hence,

1608
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1 x—X [ x—x [
< ns/szZd |:nEK2( bn 1J:|+ ng/zénZd |:EK2{—bn 1J:|
Ya+yr
1 [1 L (x=X, c, 1. .(x=-X
= W73 [b_dEK ( b, H+n3/2t)f‘+d/p Cas

C,
<y [ K7 (8, (x-th, )dt+W[ K2 (1) fy, (x—tb, )dt |

1/q+1r

(2
Jn(Ef, (0~ 1, (0))
_\F{j K(t Bi Zaxai ). t (-b,) +0(b2):ld}
n1/2b4{ jWldzlazfj:( ) ek (0t o )}2
l/2b4{2 > ;ﬁoz(X)IRd ( )dt+0( )}
< 2dn]/2b4{ i > ; Z(X)I( K (t)dt)z +o(1)}
Therefore,

1
B(|Rul) < 27 [, I (%)

ol OO LoK? (8) fy, (x—tb, )dlt)ox
h, () T2 (x )([ K1) fgo(x—tbn)dt}wrjdx

fogl(x){%i(azgiﬁ(x)] (IRdtizK(t)dt)ero(l)}dx

i=1

C,
+—
n3/2b:+d/P J‘Gn

2001 [ |y, (%)

—>0 asn— +oo.

The last relation implies that
R, — 0 in probability as n — +o.

Furthermore,
[Real <, (0722 (0= 122 ()
szﬁfen o OO](F, )+, (x ))
< 2\/ﬁfGn N (x)| f,, (X)d )dx
32\/5165 G, ()| £ () (x)dx
< Zx/HIGﬁ dg, (¥)| 22 (x)dx+ R,

(11)
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We have,

)|E(fn(x))dx

sl onl
el

x|{j K (u) f, (x+ub,)d }

n22

Therefore, if

Jn,

Gn

Jg, (x)| f4? (x)dx—>0 and /n[_|h

o ( |{j K (u x+ub)du}dx—>0

then
R,, = 0 in probability as n — +o. (12)

(11) and (12) imply that

R, = [ vh,, (x)( ¥ (x)~ 122 (x)) dx 0. in probability as n— oo
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