

A Note on the Almost Sure Central Limit Theorem for Partial Sums of ρ^- -Mixing Sequences

Feng Xu, Qunying Wu

College of Science, Guilin University of Technology, Guilin, China Email: <u>xufeng34@163.com</u>, <u>wqy666@glut.edu.cn</u>

Received 27 July 2015; accepted 18 August 2015; published 21 August 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u> Open Access

Abstract

Let $\{X_n\}_{n \in N}$ be a strictly stationary sequence of ρ -mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums S_n/σ_n , where $S_n = \sum_{i=1}^n X_i$, $\sigma_n^2 = ES_n^2$. The result generalizes and improves the previous results.

Keywords

ho--Mixing Sequences, Partial Sums, Almost Sure Central Limit Theorem

1. Introduction

Let \mathscr{C} be a class of functions which are coordinatewise increasing. For a random variable X, define

$$\left\|X\right\|_{p} = \left(\mathbf{E}\left|X\right|^{p}\right)^{1/p}.$$

For two nonempty disjoint sets $S,T \subset N$, we define dist(S,T) to be min $\{|j-k|; j \in S, k \in T\}$. Let $\sigma(S)$ be the σ -field generated by $\{X_k, k \in S\}$, and define $\sigma(T)$ similarly.

A sequence $\{X_n, n \ge 1\}$ is called negatively associated (NA) if for ever pair of disjoint subsets S, T of N,

$$\operatorname{cov}\left\{f\left(X_{i}, i \in S\right), g\left(X_{j}, j \in T\right)\right\} \leq 0,$$

where $f, g \in \mathcal{C}$. $\{X_n, n \ge 1\}$ is called ρ^* -mixing, if

$$\rho^*(k) = \sup \{\rho(S,T); S, T \subset N, \operatorname{dist}(S,T) \ge k\} \to 0, k \to \infty,$$

How to cite this paper: Xu, F. and Wu, Q.Y. (2015) A Note on the Almost Sure Central Limit Theorem for Partial Sums of ρ^- -Mixing Sequences. *Applied Mathematics*, **6**, 1574-1580. <u>http://dx.doi.org/10.4236/am.2015.69140</u>

where

$$\rho(S,T) = \sup\left\{\frac{\left|\mathrm{E}(f-\mathrm{E}f)(g-\mathrm{E}g)\right|}{\left\|f-\mathrm{E}f\right\|_{2} \cdot \left\|g-\mathrm{E}g\right\|_{2}}; f \in L_{2}(\sigma(S)), f \in L_{2}(\sigma(T))\right\}.$$

Definition 1. [1] A sequence $\{X_n, n \ge 1\}$ is called ρ^- -mixing, if

$$\rho^{-}(k) = \sup \left\{ \rho^{-}(S,T) : \operatorname{dist}(S,T) \ge k, S, T \subset N \right\} \to 0, \text{ as } k \to \infty,$$

where

$$\rho^{-}(S,T) = 0 \vee \sup\left\{\frac{\operatorname{cov}\left\{f\left(X_{i}, i \in S\right), g\left(X_{j}, t \in T\right)\right\}}{\sqrt{\operatorname{var}\left\{f\left(X_{i}, i \in S\right)\right\}\operatorname{var}\left\{g\left(X_{j}, t \in T\right)\right\}}}; f, g \in \mathscr{C}\right\}}.$$

The definition of NA is given by Joag-Dev and Proschan [2], and the concept of ρ^* -mixing random variables is given by Kolmogorov and Rozanov [3]. In 1999, the concept of ρ^- -mixing random variables was introduced initially by Zhang and Wang [1]. Obviously, ρ^- -mixing random variables include NA and ρ^* -mixing random variables, which have a lot of applications. Their limit properties have received more and more attention recently, and a number of results have been obtained, such as Zhang and Wang [1] for Rosenthal-type moment inequality and Marcinkiewicz-Zygmund law of large numbers, Zhang [4] for the central limit theorems of random fields, Wang and Lu [5] for the weak convergence theorems.

Starting with Brosamler [6] and Schatte [7], in the last two decades several authors investigated the almost sure central limit theorem (ASCLT) for partial sums S_n/σ_n of random variables. We refer the reader to Brosamler [6], Schatte [7], Lacey and Philipp [8], Ibragimov and Lifshits [9], Berkes and Csáki [10], Hörmann [11] and Wu [12]. The simplest form of the ASCLT [6]-[8] reads as follows: let $\{X_n; n \ge 1\}$ be i.i.d. random variables with mean 0, variance $\sigma^2 > 0$ and partial sums S_n . Then

$$\lim_{n \to \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I\left(\frac{S_k}{\sigma\sqrt{k}} \le x\right) = \Phi(x) \text{ a.s. for any } x \in R.$$
(1)

where *I* denotes indicator function, and $\Phi(x)$ is the standard normal distribution function. For other version of ρ^{-} -mixing sequences, see [13]-[15].

The purpose of this article is to study and establish the ASCLT, containing the general weight sequences, for partial sums of ρ^- -mixing sequence. Our results not only generalize and improve those on ASCLT previously obtained by Brosamler [6], Schatte [7] and Lacey and Philipp [8] from the i.i.d. case to ρ^- -mixing sequences, but also expand the scope of the weights from 1/k to $\exp(\log^{\alpha} k)/k$, $0 \le \alpha < 1/2$.

Throughout this paper, $a_n \sim b_n$ means $\lim_{n \to \infty} a_n/b_n = 1$; and set the positive absolute constant c to vary from line to line.

Theorem 1. Let $\{X_n\}_{n \in \mathbb{N}}$ be a strictly stationary ρ^- -mixing sequence with $\mathrm{E}X_1 = 0$, $0 < \mathrm{E}|X_1|^r < \infty$ for a certain r > 2, and denote $S_n = \sum_{i=1}^n X_i$, $\sigma_n^2 = \mathrm{E}S_n^2$. Assume that

(a)
$$\sigma^{2} = EX_{1}^{2} + 2\sum_{k=2}^{\infty} cov(X_{1}, X_{k}) > 0,$$

(b) $\sum_{k=2}^{\infty} |cov(X_{1}, X_{k})| < \infty,$
(c) $\sum_{k=1}^{\infty} \frac{\rho^{-}(k)}{k} < \infty.$

Suppose $0 \le \alpha < 1/2$ and set

$$d_k = \frac{\exp\left(\log^{\alpha} k\right)}{k}, D_n = \sum_{k=1}^n d_k.$$
 (2)

then

$$\lim_{n \to \infty} \frac{1}{D_n} \sum_{k=1}^n d_k I\left(\frac{S_k}{\sigma_n} \le x\right) = \Phi(x) \text{ a.s. for any } x \in \mathbb{R}.$$
(3)

Remark 1. By the terminology of summation procedures (cf. [16], p. 35), Theorem 1 remains valid if we replace the weight sequence $\{d_k\}_{k\geq 1}$ by any $\{d_k^*\}_{k\geq 1}$ such that $0 \le d_k^* \le d_k$ and $\sum_{k\geq 1} d_k^* = \infty$. **Remark 2.** ρ -mixing random variables include NA and ρ -mixing random variables, so for NA and

 ρ^* -mixing random variables sequences Theorem 1 also holds.

Remark 3. Essentially, the open problem that whether Theorem 1 holds for $1/2 \le \alpha < 1$ still remains open.

2. Some Lemmas

Lemma 1. [4] Let $\{X_n, n \ge 1\}$ be a weakly stationary ρ^- -mixing sequence with $EX_n = 0$, $0 < EX_1^2 < \infty$, and $\sigma^{2} = \mathrm{E}X_{1}^{2} + 2\sum_{k=2}^{\infty} \mathrm{cov}(X_{1}, X_{k}) > 0, \quad \sum_{k=2}^{\infty} |\mathrm{cov}(X_{1}, X_{k})| < \infty, \text{ then}$ $\frac{\sigma_n^2}{n} \rightarrow \sigma^2, \quad \frac{S_n}{\sigma_n} \xrightarrow{d} \mathcal{N}, \text{ as } n \rightarrow \infty,$

where \mathcal{N} denotes the standard normal random variable.

Lemma 2. [5] For a positive real number $q \ge 2$, if $\{X_n, n \ge 1\}$ is a sequence of ρ^- -mixing random variables with $EX_i = 0$, $E|X_i|^q < \infty$ for every $i \ge 1$, then for all $n \ge 1$, there is a positive constant $c = c(q, \rho^{-}(\cdot))$ such that

$$\mathbf{E}\left(\max_{1\leq j\leq n}\left|S_{j}\right|^{q}\right)\leq c\left(\sum_{i=1}^{n}\mathbf{E}\left|X_{i}\right|^{q}+\left(\sum_{i=1}^{n}\mathbf{E}X_{i}^{2}\right)^{q/2}\right).$$

Lemma 3. [17] Let $\{X_n, n \ge 1\}$ be a weakly stationary ρ^- -mixing sequence. Assume $\sup E|X_n|^r < \infty$. Then for any bounded Lipschitz function f: $R \rightarrow R$, We have

$$\left|\operatorname{cov}\left|f\left|\frac{S_{i}}{\sigma_{i}}\right|, f\left|\frac{S_{j}}{\sigma_{j}}\right|\right| \leq c \left|-\frac{1}{\sigma_{i}\sigma_{j}}\sum_{l=1}^{i}\sum_{m=2i+1}^{2i+l}\operatorname{cov}(X_{l}, X_{m}) + 8\rho^{-}(i) + 2\frac{\sigma_{2i}}{\sigma_{j}}\right|$$

Lemma 4. Let $\{\xi, \xi_n\}_{n \in \mathbb{N}}$ be a sequence of uniformly bounded random variables. Assume that $\sum_{k=1}^{\infty} \frac{\rho^{-}(k)}{\nu} < \infty, \text{ and existing constants } c > 0 \text{ and } \varepsilon > 0 \text{ such that}$

$$\left| \mathbb{E}\xi_k \xi_l \right| \le c \left(\rho^-(k) + \left(\frac{k}{l}\right)^{\varepsilon} \right), \text{ for } 1 \le 2k < l$$

then

$$\lim_{n \to \infty} \frac{1}{D_n} \sum_{k=1}^n d_k \xi_k = 0 \text{ a.s.,}$$
(4)

where d_k and D_n are defined by (2).

Proof. Set
$$T_n = \frac{1}{D_n} \sum_{k=1}^n d_k \xi_k$$
, we get

$$ET_n^2 = \frac{1}{D_n^2} E\left(\sum_{k=1}^n d_k \xi_k\right)^2 \le \frac{1}{D_n^2} \sum_{1 \le k \le l \le n, 2k \ge l} d_k d_l \left| E\xi_k \xi_l \right| + \frac{1}{D_n^2} \sum_{1 \le k \le l \le n, 2k < l} d_k d_l \left| E\xi_k \xi_l \right|$$

$$\coloneqq \frac{1}{D_n^2} T_{n1} + \frac{1}{D_n^2} T_{n2}.$$

Firstly we estimate T_{n1} . Since ξ_k is a bounded random variable, we get

$$T_{n1} \le c \sum_{k=1}^{n} \sum_{l=k}^{2k} d_k d_l \le c \exp\left(\log^{\alpha} n\right) \sum_{k=1}^{n} d_k \sum_{l=k}^{2k} \frac{1}{l} \le c D_n \exp\left(\log^2 n\right).$$

Now we estimate T_{n2} . By the conditions $|E\xi_k\xi_l| \le c \left(\rho^-(k) + \left(\frac{k}{l}\right)^{\varepsilon}\right)$ for l > 2k, we get

$$T_{n2} = \sum_{1 \le k \le l \le n, 2k < l} d_k d_l \left| \mathbf{E} \xi_k \xi_l \right| \le c \sum_{l=2}^n \sum_{k=1}^{l-1} d_k d_l \rho^-(k) + c \sum_{l=2}^n \sum_{k=1}^{l-1} d_k d_l \left(\frac{k}{l}\right)^{\varepsilon}$$

$$\le c \sum_{l=1}^n d_l \sum_{k=1}^n d_k \rho^-(k) + c \sum_{l=1}^n \sum_{k=1}^l d_k d_l \left(\frac{k}{l}\right)^{\varepsilon} \coloneqq A_1 + A_2.$$

By condition $\sum_{k=1}^{\infty} \frac{\rho^{-}(k)}{k} < \infty$, we obtain

$$A_{1} \leq c \exp\left(\log^{\alpha} n\right) \sum_{l=1}^{n} d_{l} \sum_{k=1}^{n} \frac{\rho^{-}(k)}{k} \leq c D_{n} \exp\left(\log^{\alpha} n\right)$$

and

$$A_{2} \leq c \sum_{l=2}^{n} \sum_{k=1}^{l} \frac{\exp\left(\log^{\alpha} l\right)}{l^{1+\varepsilon}} \cdot \frac{\exp\left(\log^{\alpha} k\right)}{k^{1-\varepsilon}} \leq c \exp\left(\log^{\alpha} n\right) \sum_{l=1}^{n} \frac{\exp\left(\log^{\alpha} l\right)}{l^{1+\varepsilon}} \cdot \frac{l^{\varepsilon}}{\varepsilon} \leq c D_{n} \exp\left(\log^{\alpha} n\right).$$

Since $D_n \sim \frac{1}{\alpha} \log^{1-\alpha} n \exp(\log^{\alpha} n)$ and $\log D_n \sim \log^{\alpha} n$ for $0 < \alpha < 1/2$ from the proof of Lemma 2.2 in Wu [18], we have, as $n \to \infty$,

$$\exp\left(\log^{\alpha} n\right) \sim \frac{\alpha D_n}{\left(\log D_n\right)^{(1-\alpha)/\alpha}} \sim \frac{\alpha D_n}{\log^{1-\alpha} n}$$

Thus

$$ET_n^2 \le \frac{1}{D_n^2} (T_{n1} + A_1 + A_2) = c \frac{\exp(\log^{\alpha} n)}{D_n} \le \frac{c}{\log^{1-\alpha} n}$$

Let $n_k = \exp(k^{\tau})$, $\tau > 1/(1-\alpha)$, we get

$$\sum_{K=1}^{\infty} P\left(\left|T_{n_{k}}\right| > \varepsilon\right) \le c \sum_{k=1}^{\infty} ET_{n_{k}}^{2} \le c \sum_{k=1}^{\infty} \frac{1}{k^{(1-\alpha)\tau}} < \infty.$$

By Borel-Cantelli lemma,

$$T_{n_k} \to 0 \text{ a.s., } k \to \infty.$$

For any *n*, existing n_k and n_{k+1} such that $n_k < n \le n_{k+1}$, then, by $|\xi_i| \le c$ for any *i*,

$$\left|T_{n}\right| \leq \left|\frac{1}{D_{n_{k}}}\sum_{i=1}^{n_{k}} d_{i}\xi_{i}\right| + \frac{1}{D_{n_{k}}}\sum_{i=n_{k}+1}^{n_{k+1}} d_{i}\left|\xi_{i}\right| \leq \left|T_{n_{k}}\right| + c\left(\frac{D_{n_{k+1}} - D_{n_{k}}}{D_{n_{k}}}\right) \to 0 \text{ a.s. } n \to \infty,$$

from $\frac{D_{n_{k+1}}}{D_{n_k}} \sim \frac{\exp((k+1)^r)}{\exp(k^r)} \sim \exp((k+1)^r \left(1 - \left(\frac{k}{k+1}\right)^r\right)) \rightarrow 1.$ *i.e.*, (4) holds. This completes the proof of

Lemma 4.

3. Proof

Proof of Theorem 1. By Lemma 1, we have

$$\frac{S_k}{\sigma_k} \xrightarrow{d} \mathcal{N}, \text{ as } k \to \infty.$$

This implies that for any g(x) which is a bounded function with bounded continuous derivatives,

$$\operatorname{Eg}\left(\frac{S_k}{\sigma_k}\right) \to \operatorname{Eg}(\mathcal{N}), \text{ as } k \to \infty,$$

Hence, by the Toeplitz lemma, we obtain

$$\lim_{n\to\infty}\frac{1}{D_n}\sum_{k=1}^n d_k \operatorname{Eg}\left(\frac{S_k}{\sigma_k}\right) = \operatorname{Eg}\left(\mathcal{N}\right).$$

In the other hand, from Theorem 7.1 of Billingsley [19] and Section 2 of Peligrad and Shao [20], we know that (3) is equivalent to

$$\lim_{n\to\infty}\frac{1}{D_n}\sum_{k=1}^n d_k g\left(\frac{S_k}{\sigma_k}\right) = \operatorname{E}g\left(\mathcal{N}\right) \text{ a.s.}.$$

Hence, to prove (3), it suffices to prove

$$\lim_{n \to \infty} \frac{1}{D_n} \sum_{k=1}^n d_k \left(g\left(\frac{S_k}{\sigma_k}\right) - \operatorname{E} g\left(\frac{S_k}{\sigma_k}\right) \right) = 0 \text{ a.s.},$$
(5)

for any g(x) which is a bounded function with bounded continuous derivatives. Let $k \ge 1$, define

$$\xi_k = g\left(\frac{S_k}{\sigma_k}\right) - \mathrm{E}g\left(\frac{S_k}{\sigma_k}\right).$$

For any $1 \le 2k < l$, we get,

$$|\mathbf{E}\xi_{k}\xi_{l}| = \left|\operatorname{cov}\left(g\left(\frac{S_{k}}{\sigma_{k}}\right), g\left(\frac{S_{l}}{\sigma_{l}}\right)\right)\right|$$
$$= \left|\operatorname{cov}\left(g\left(\frac{S_{k}}{\sigma_{k}}\right), g\left(\frac{S_{l}}{\sigma_{l}}\right) - g\left(\frac{\sum_{i=2k+1}^{l}X_{i}}{\sigma_{l}}\right)\right)\right| + \left|\operatorname{cov}\left(g\left(\frac{S_{k}}{\sigma_{k}}\right), g\left(\frac{\sum_{i=2k+1}^{l}X_{i}}{\sigma_{l}}\right)\right)\right|$$
$$:= I_{1} + I_{2}.$$
(6)

Firstly we estimate I_1 . By Lemma 1 $\frac{\sigma_n^2}{n} \to \sigma^2$, we note that certain $n_0 \in N$, $0 < \varepsilon < \sigma$ exist such that $\frac{1}{\sigma_n} \leq \frac{1}{(\sigma - \varepsilon)\sqrt{n}}$ as $n > n_0$. Since g is a bounded Lipschitz function, *i.e.*, there exists a constant c > 0 such that $|g(x)| \leq c$, $|g(x) - g(y)| \leq c|x - y|$ for any $x, y \in \mathbb{R}$. By Jensen inequality, Lemma 2 and $\sigma < \infty$, we obtain that

$$I_{1} \leq c \frac{E\left|\sum_{i=1}^{2k} X_{i}\right|}{\sqrt{l}} \leq c \frac{\sqrt{E\left(\sum_{i=1}^{2k} X_{i}\right)^{2}}}{\sqrt{l}} \leq c \frac{\sqrt{\left(\sum_{i=1}^{2k} E X_{i}^{2}\right)}}{\sqrt{l}} \leq c \frac{\sqrt{\left(\sum_{i=1}^{2k} E X_{1}^{2}\right)}}{\sqrt{l}} \leq c \left(\frac{k}{l}\right)^{1/2}.$$
(7)

Now we estimate I_2 . Note that g is a bounded function with bounded continuous derivatives, so, by Lemma

3, we have

$$I_2 \le c\rho^-(k). \tag{8}$$

So if l > 2k, combining with (6), (7), (8), we obtain

$$\left|\mathrm{E}\xi_{k}\xi_{l}\right|\leq c\left(\left(\frac{k}{l}\right)^{1/2}+\rho^{-}(k)\right).$$

By Lemma 4, (5) holds.

This completes the proof of Theorem 1.1.

Acknowledgments

We thank the editor and the referee for their comments. This work is supported by National Natural Science Foundation of China (11361019).

References

- Zhang, L.X. and Wang, X.Y. (1999) Convergence Rates in the Strong Laws of Asymptotically Negatively Associated Random Fields. *Applied Mathematics—A Journal of Chinese Universities Series B*, 14, 406-416. <u>http://dx.doi.org/10.1007/s11766-999-0070-6</u>
- Joag-Dev, K. and Proschan, F. (1983) Negative Association of Random Variables with Applications. Annals of Statistics, 11, 286-295. <u>http://dx.doi.org/10.1214/aos/1176346079</u>
- Kolmogorov, A.N. and Rozanov, U.A. (1960) On Strong Mixing Conditions for Stationary Gaussian Processes. *Theory of Probability and Its Applications*, 5, 204-208. <u>http://dx.doi.org/10.1137/1105018</u>
- Zhang, L.X. (2000) Central Limit Theorems for Asymptotically Negatively Associated Random Fields. Acta Mathematica Sinica, 6, 691-710. <u>http://dx.doi.org/10.1007/s101140000084</u>
- [5] Wang, J.F. and Lu, F.B. (2006) Inequalities of Maximum of Partial Sums and Weak Convergence for a Class of Weak Dependent Random Variables. Acta Mathematica Sinica, 22, 693-700. <u>http://dx.doi.org/10.1007/s10114-005-0601-x</u>
- [6] Brosamler, G.A. (1988) An Almost Everywhere Central Limit Theorem. Mathematical Proceedings of the Cambridge Philosophical Society, 104, 561-574. <u>http://dx.doi.org/10.1017/S0305004100065750</u>
- Schatte, P. (1988) On Strong Versions of the Central Limit Theorem. *Mathematische Nachrichten*, 137, 249-256. http://dx.doi.org/10.1002/mana.19881370117
- [8] Lacey, M.T. and Philipp, W. (1990) A Note on the Almost Sure Central Limit Theorem. Statistics and Probability Letters, 9, 201-205. <u>http://dx.doi.org/10.1016/0167-7152(90)90056-D</u>
- [9] Ibragimov, I.A. and Lifshits, M. (1998) On the Convergence of Generalized Moments in Almost Sure Central Limit Theorem. *Statistics and Probability Letters*, 40, 343-351. <u>http://dx.doi.org/10.1016/S0167-7152(98)00134-5</u>
- [10] Berkes, I. and Csáki, E. (2001) A Universal Result in Almost Sure Central Limit Theory. Stochastic Processes and Their Applications, 94, 105-134. <u>http://dx.doi.org/10.1016/S0304-4149(01)00078-3</u>
- [11] Hörmann, S. (2007) Critical Behavior in Almost Sure Central Limit Theory. *Journal of Theoretical Probability*, 20, 613-636. <u>http://dx.doi.org/10.1007/s10959-007-0080-3</u>
- Wu, Q.Y. (2011) Almost Sure Limit Theorems for Stable Distribution. *Statistics and Probability Letters*, 281, 662-672. <u>http://dx.doi.org/10.1016/j.spl.2011.02.003</u>
- [13] Zhang, M.D., Tan, X.L. and Zhang, Y. (2015) An Extension of Almost Sure Central Limit Theorem for Product of Partial Sums of ρ⁻-Mixing Sequences. *Journal of Beihua University (Natural Science)*, 16, 427-430.
- [14] Tan, L.X., Zhang, Y. and Zhang, Y. (2012) An Almost Sure Central Limit Theorem of Products of Partial Sums for ρ^- -Mixing Sequences. *Journal of Inequalities and Applications*, **2012**, 51-63.
- [15] Zhou, G.Y. and Zhang, Y. (2014) Almost Sure Central Limit Theorem of Products of Sums of Partial Sums for ρ^{-} -Mixing Sequences. *Journal of Jilin University (Science Edition)*, **50**, 1129-1134.
- [16] Chandrasekharan, K. and Minakshisundaram, S. (1952) Typical Means. Oxford University Press, Oxford.
- [17] Zhou, H. (2005) A Note on the Almost Sure Central Limit Theorem for ρ⁻-Mixing Sequences. Chinese Journal Zhejiang University (Science Edition), 32, C503-C505.
- [18] Wu, Q.Y. (2012) A Note on the Almost Sure Limit Theorem for Self-Normalized Partial Sums of Random Variables in

the Domain of Attraction of Thenormal Law. Journal of Inequalities and Applications, 2012, 17-26.

- [19] Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.
- [20] Peligrad, M. and Shao, Q.M. (1995) A Note on the Almost Sure Central Limit Theorem for Weakly Dependent Random Variables. *Statistics and Probability Letters*, 22, 131-136. <u>http://dx.doi.org/10.1016/0167-7152(94)00059-H</u>