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Abstract 
Let { }n n N

X
∈

 be a strictly stationary sequence of ρ−-mixing random variables. We proved the 
almost sure central limit theorem, containing the general weight sequences, for the partial sums 

n nS σ , where ∑n
n iiS X1== , n nSσ 2 2E= . The result generalizes and improves the previous results. 
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1. Introduction 
Let C  be a class of functions which are coordinatewise increasing. For a random variable X, define 

( )1E
pp

pX X= . 

For two nonempty disjoint sets ,S T N⊂ , we define ( )dist ,S T  to be { }min ; ,j k j S k T− ∈ ∈ . Let ( )Sσ  
be the σ -field generated by { },kX k S∈ , and define ( )Tσ  similarly. 

A sequence { }, 1nX n ≥  is called negatively associated (NA) if for ever pair of disjoint subsets S, T of N, 

( ) ( ){ }cov , , , 0,i jf X i S g X j T∈ ∈ ≤  

where ,f g ∈C . { }, 1nX n ≥  is called ρ*-mixing, if 

( ) ( ) ( ){ }* sup , ; , ,dist , 0, ,k S T S T N S T k kρ ρ= ⊂ ≥ → →∞  
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where 

( )
( )( )

( )( ) ( )( )2 2
2 2

E E E
, sup ; , .

E E
f f g g

S T f L S f L T
f f g g

ρ σ σ
 − − = ∈ ∈ 

− ⋅ −  
 

Definition 1. [1] A sequence { }, 1nX n ≥  is called ρ−-mixing, if 

( ) ( ) ( ){ }sup , : dist , , , 0, as ,k S T S T k S T N kρ ρ− −= ≥ ⊂ → →∞  

where 

( )
( ) ( ){ }

( ){ } ( ){ }
cov , , ,

, 0 sup ; , .
var , var ,

i j

i j

f X i S g X t T
S T f g

f X i S g X t T
ρ−

 ∈ ∈ = ∨ ∈ 
 ∈ ∈
 

C  

The definition of NA is given by Joag-Dev and Proschan [2], and the concept of ρ*-mixing random variables 
is given by Kolmogorov and Rozanov [3]. In 1999, the concept of ρ−-mixing random variables was introduced 
initially by Zhang and Wang [1]. Obviously, ρ−-mixing random variables include NA and ρ*-mixing random va-
riables, which have a lot of applications. Their limit properties have received more and more attention recently, 
and a number of results have been obtained, such as Zhang and Wang [1] for Rosenthal-type moment inequality 
and Marcinkiewicz-Zygmund law of large numbers, Zhang [4] for the central limit theorems of random fields, 
Wang and Lu [5] for the weak convergence theorems. 

Starting with Brosamler [6] and Schatte [7], in the last two decades several authors investigated the almost 
sure central limit theorem (ASCLT) for partial sums n nS σ  of random variables. We refer the reader to Bro-
samler [6], Schatte [7], Lacey and Philipp [8], Ibragimov and Lifshits [9], Berkes and Csáki [10], Hörmann [11] 
and Wu [12]. The simplest form of the ASCLT [6]-[8] reads as follows: let { }; 1nX n ≥  be i.i.d. random va-
riables with mean 0, variance 2 0σ >  and partial sums nS . Then 

( )
1

1 1lim a.s. for any .
log

n
k

n k

S
I x x x R

n k kσ→∞ =

 
≤ = Φ ∈ 

 
∑                    (1) 

where I denotes indicator function, and ( )xΦ  is the standard normal distribution function. For other version of 
ρ−-mixing sequences, see [13]-[15]. 

The purpose of this article is to study and establish the ASCLT, containing the general weight sequences, for 
partial sums of ρ−-mixing sequence. Our results not only generalize and improve those on ASCLT previously 
obtained by Brosamler [6], Schatte [7] and Lacey and Philipp [8] from the i.i.d. case to ρ−-mixing sequences, but 
also expand the scope of the weights from 1 k  to ( )exp log k kα , 0 1 2α≤ < . 

Throughout this paper, n na b∼  means lim 1n n na b→∞ = ; and set the positive absolute constant c to vary 
from line to line. 

Theorem 1. Let { }n n N
X

∈
 be a strictly stationary ρ−-mixing sequence with 1E 0X = , 10 E rX< < ∞  for a 

certain 2r > , and denote 
1

n
n iiS X

=
= ∑ , 2 2En nSσ = . Assume that 

(a) ( )2 2
1 1

2
E 2 cov , 0,k

k
X X Xσ

∞

=

= + >∑  

(b) ( )1
2

cov , ,k
k

X X
∞

=

< ∞∑  

(c) ( )
1

.
k

k
k

ρ−∞

=

< ∞∑  

Suppose 0 1 2α≤ <  and set 

( )
1

exp log
, .

n

k n k
k

k
d D d

k

α

=

= = ∑                              (2) 

then 
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( )
1

1lim a.s. for any R.
n

k
kn kn n

S
d I x x x

D σ→∞ =

 
≤ = Φ ∈ 

 
∑                      (3) 

Remark 1. By the terminology of summation procedures (cf. [16], p. 35), Theorem 1 remains valid if we re-
place the weight sequence { } 1k k

d
≥

 by any { }*

1k k
d

≥
 such that *0 k kd d≤ ≤  and *

1 kk d
≥

= ∞∑ . 
Remark 2. ρ−-mixing random variables include NA and ρ*-mixing random variables, so for NA and 

ρ*-mixing random variables sequences Theorem 1 also holds. 
Remark 3. Essentially, the open problem that whether Theorem 1 holds for 1 2 1α≤ <  still remains open. 

2. Some Lemmas 
Lemma 1. [4] Let { }, 1nX n ≥  be a weakly stationary ρ−-mixing sequence with E 0nX = , 2

10 EX< < ∞ , and 

( )2 2
1 1

2
E 2 cov , 0k

k
X X Xσ

∞

=

= + >∑ , ( )1
2

cov , k
k

X X
∞

=

< ∞∑ , then 

2
2 , , as ,dn n

n

S
n

n
σ

σ
σ

→ → →∞  

where   denotes the standard normal random variable. 
Lemma 2. [5] For a positive real number 2q ≥ , if { }, 1nX n ≥  is a sequence of ρ−-mixing random va-

riables with E 0iX = , E q
iX < ∞  for every 1i ≥ , then for all 1n ≥ , there is a positive constant 

( )( ),c c q ρ−= ⋅  such that 

( )
2

2

1 1 1
E max E E .

qn nq q
j i ij n i i

S c X X
≤ ≤ = =

  ≤ +     
∑ ∑  

Lemma 3. [17] Let { }, 1nX n ≥  be a weakly stationary ρ−-mixing sequence. Assume sup E .r
n

n
X < ∞  Then 

for any bounded Lipschitz function f: R R→ , We have 

( ) ( )
2

2

1 2 1

1cov , cov , 8 2
i i l

ji i
l m

l m ii j i j j

SS
f f c X X i

σ
ρ

σ σ σ σ σ

+
−

= = +

≤ − + +∑ ∑  

Lemma 4. Let { }, n n N
ξ ξ

∈
 be a sequence of uniformly bounded random variables. Assume that 

( )
1 ,k

k
k

ρ−
∞

=
< ∞∑  and existing constants 0c >  and 0ε >  such that 

( )E , for 1 2 ,k l
kc k k l
l

ε

ξ ξ ρ−
  ≤ + ≤ <     

 

then 

1

1lim 0 a.s.,
n

k k
n kn

d
D

ξ
→∞ =

=∑                                  (4) 

where kd  and nD  are defined by (2). 

Proof. Set 1

1 n
n k kk

n

T d
D

ξ
=

= ∑ , we get 

2
2

2 2 2
1 1 ,2 1 ,2

1 22 2

1 1 1E E E E

1 1: .

n

n k k k l k l k l k l
k k l n k l k l n k ln n n

n n
n n

T d d d d d
D D D

T T
D D

ξ ξ ξ ξ ξ
= ≤ ≤ ≤ ≥ ≤ ≤ ≤ <

 = ≤ + 
 

= +

∑ ∑ ∑
 

Firstly we estimate 1nT . Since kξ  is a bounded random variable, we get 
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( ) ( )
2 2

2
1

1 1

1exp log exp log .
n k n k

n k l k n
k l k k l k

T c d d c n d cD n
l

α

= = = =

≤ ≤ ≤∑∑ ∑ ∑  

Now we estimate 2nT . By the conditions ( )E k l
kc k
l

ε

ξ ξ ρ−
  ≤ +     

 for 2l k> , we get 

( )

( )

1 1

2
1 ,2 2 1 2 1

1 2
1 1 1 1

E

: .

n l n l

n k l k l k l k l
k l n k l l k l k

n n n l

l k k l
l k l k

kT d d c d d k c d d
l

kc d d k c d d A A
l

ε

ε

ξ ξ ρ

ρ

− −
−

≤ ≤ ≤ < = = = =

−

= = = =

 = ≤ +  
 

 ≤ + = + 
 

∑ ∑∑ ∑∑

∑ ∑ ∑∑
 

By condition 
( )

1k

k
k

ρ−
∞

=
< ∞∑ , we obtain 

( ) ( ) ( )1
1 1

exp log exp log .
n n

l n
l k

k
A c n d cD n

k
α αρ−

= =

≤ ≤∑ ∑  

and 

( ) ( ) ( ) ( ) ( )2 1 1 1
2 1 1

exp log exp log exp log
exp log exp log .

n l n

n
l k l

l k l lA c c n cD n
l k l

α α α ε
α α

ε ε ε ε+ − +
= = =

≤ ⋅ ≤ ⋅ ≤∑∑ ∑  

Since ( )11 log exp lognD n nα α

α
−∼  and log lognD nα∼  for 0 1 2α< <  from the proof of Lemma 2.2 in  

Wu [18], we have, as n →∞ , 

( )
( )( ) 11

exp log ,
loglog

n n

n

D D
n

nD
α

αα α

α α
−−

∼ ∼  

Thus 

( )
( )2

1 1 22 1

exp log1E .
logn n

nn

n cT T A A c
DD n

α

α−≤ + + = ≤  

Let ( )expkn kτ= , ( )1 1τ α> − , we get 

( ) ( )
2

1
1 1 1

1E .
k kn n

K k k
P T c T c

k α τ
ε

∞ ∞ ∞

−
= = =

> ≤ ≤ < ∞∑ ∑ ∑  

By Borel-Cantelli lemma, 

0 a.s., .
knT k→ →∞  

For any n, existing kn  and 1kn +  such that 1k kn n n +< ≤ , then, by i cξ ≤  for any i, 

1
1

1 1

1 1 0 a.s. ,
k k

k k
k

kk k k

n n
n n

n i i i i n
i i nn n n

D D
T d d T c n

D D D
ξ ξ

+
+

= = +

 −
≤ + ≤ + → →∞  

 
∑ ∑  

from 
( )( )
( ) ( )1

exp 1
exp 1 1 1

1exp
nk

nk

kD kk
D kk

τ
τ

τ

τ
+

+     ∼ ∼ + − →    +   
. i.e., (4) holds. This completes the proof of 

Lemma 4. 



F. Xu, Q. Y. Wu 
 

 
1578 

3. Proof 
Proof of Theorem 1. By Lemma 1, we have 

, as .dk

k

S
k

σ
→ →∞  

This implies that for any ( )g x  which is a bounded function with bounded continuous derivatives, 

( )E E , as ,k

k

S
g g k

σ
 

→ →∞ 
 

  

Hence, by the Toeplitz lemma, we obtain 

( )
1

1lim E E .
n

k
kn kn k

S
d g g

D σ→∞ =

 
= 

 
∑   

In the other hand, from Theorem 7.1 of Billingsley [19] and Section 2 of Peligrad and Shao [20], we know 
that (3) is equivalent to 

( )
1

1lim E a.s..
n

k
kn kn k

S
d g g

D σ→∞ =

 
= 

 
∑   

Hence, to prove (3), it suffices to prove 

1

1lim E 0 a.s.,
n

k k
kn kn k k

S S
d g g

D σ σ→∞ =

    
− =         

∑                          (5) 

for any ( )g x  which is a bounded function with bounded continuous derivatives. 
Let 1k ≥ , define 

E .k k
k

k k

S S
g gξ

σ σ
   

= −   
   

 

For any 1 2k l≤ < , we get, 

2 1 2 1

1 2

E cov ,

cov , cov ,

: .

k l
k l

k l

l l
i ik l i k k i k

k l l k l

S S
g g

X XS S S
g g g g g

I I

ξ ξ
σ σ

σ σ σ σ σ
= + = +

    
=          

                 = − +                      
= +

∑ ∑         (6) 

Firstly we estimate 1I . By Lemma 1 
2

2n

n
σ

σ→ , we note that certain 0n N∈ , 0 ε σ< <  exist such that 

( ) 0
1 1 as

n

n n
nσ σ ε

≤ >
−

. Since g is a bounded Lipschitz function, i.e., there exists a constant c > 0 such that  

( )g x c≤ , ( ) ( )g x g y c x y− ≤ −  for any , Rx y∈ . By Jensen inequality, Lemma 2 and σ < ∞ , we obtain 
that 

( ) ( ) ( )22 2 22 2 2 1 211 1 11
1

E E EE
.

k k kk
i ii i i ii

X X XX kI c c c c c
ll l l l

= = ==  ≤ ≤ ≤ ≤ ≤  
 

∑ ∑ ∑∑
         (7) 

Now we estimate 2I . Note that g is a bounded function with bounded continuous derivatives, so, by Lemma 
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3, we have 

( )2 .I c kρ−≤                                       (8) 

So if 2l k> , combining with (6), (7), (8), we obtain 

( )
1 2

E .k l
kc k
l

ξ ξ ρ−
  ≤ +     

 

By Lemma 4, (5) holds. 
This completes the proof of Theorem 1.1. 
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