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Abstract 
The paper describes an efficient direct method to solve an equation Ax = b, where A is a sparse 
matrix, on the Intel® Xeon PhiTM coprocessor. The main challenge for such a system is how to en-
gage all available threads (about 240) and how to reduce OpenMP* synchronization overhead, 
which is very expensive for hundreds of threads. The method consists of decomposing A into a 
product of lower-triangular, diagonal, and upper triangular matrices followed by solves of the re-
sulting three subsystems. The main idea is based on the hybrid parallel algorithm used in the In-
tel® Math Kernel Library Parallel Direct Sparse Solver for Clusters [1]. Our implementation ex-
ploits a static scheduling algorithm during the factorization step to reduce OpenMP synchroniza-
tion overhead. To effectively engage all available threads, a three-level approach of parallelization 
is used. Furthermore, we demonstrate that our implementation can perform up to 100 times bet-
ter on factorization step and up to 65 times better in terms of overall performance on the 240 
threads of the Intel® Xeon PhiTM coprocessor. 
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1. Introduction 
This paper describes a direct method for solving the equation =Ax b  with sparse matrix A on Intel® Xeon 
PhiTM coprocessors. The objective is to utilize effectively all available threads. Additionally, it is very important 
to reduce OpenMP* [2] synchronization overhead because it has a significant impact on the overall performance 
on systems with a large number of threads. The main idea of the method is to decompose matrix A into a product 
of lower-triangular L, diagonal D, and upper triangular U matrices and then to solve the subsystems obtained. To 
achieve good scalability on a large number of threads a “multi-frontal” approach is used. The multi-frontal ap-
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proach first proposed in Duff [3] and further expanded by Liu [4]. The algorithm includes several stages: reor-
dering, factor, solve. The initial matrix is subject to a reordering procedure described in Karypis [5] [6] in order 
to represent it in the form of a dependency tree. A symbolic factorization is then done where the total number of 
nonzero elements is computed in the form of LDU factors. Then actual factorization of the permuted matrix in 
the LDU form is performed as described in Amestoy [7]. In this paper we primarily focus on implementation of 
the factorization and solve steps. We present an OpenMP implementation of the LDU decomposition and solve 
of the triangular systems obtained based on the hybrid parallel algorithm used in Intel® Math Kernel Library Pa-
rallel Direct Sparse Solver for Clusters [1]. This approach demonstrates good performance and scalability on a 
large number of MPI processes [8]. We describe several approaches to parallelization of LDU decomposition 
using OpenMP. In particular, we use a three-level approach of parallelization to address issues related to the 
large number of threads (about 240) and expensive synchronization. 

2. Algorithm Description 
Direct sparse solver typically rely on three stages/steps: reordering, factorization and solve. The reordering step 
includes METIS [9] functionality to produce fill-in reducing ordering for sparse matrices and symbolic factori-
zation to detect nonzero pattern of the factored matrix, dependency tree, and scheduling for work distribution 
between threads (see Figure 1). The optimization of the first stage is achieved by a loop parallelized via OpenMP 
and by using nested dissection parallelization from METIS [9]. 

In this chapter, we optimize algorithms for the last two stages of the direct solver. For most matrices investi-
gated the second stage brings noticeable improvement for the overall performance. So we focus our investiga-
tion on this part of the solver. 

2.1. Factorization Step 
Consider sparse matrix A. We begin by performing a permutation of initial matrix to reduce the number of non-
zero elements in the matrix L in LDU decomposition. Then neighboring columns with identical nonzero struc-
ture are formed into a super-node [3]—we can view the matrix as a set of super-nodes composed of sub-matrices. 
Since the initial matrix is sparse, it is possible to factor certain super-nodes independently. Taking into accaunt 
super-node approach structure of factorized matrix all operation implemented via MKL BLAS and LAPACK 
functionality [1]. During the symbolic factorization step, we determine the order in which we can perform the 
numerical factorization and then complete it in parallel. The simplified implementation of this approach can be 
expressed in Algorithm 1. 
 

 
Figure 1. Nonzero pattern of the original matrix (left) and of the same matrix after reordering 
(right). 

 
Algorithm 1. Simple parallel factored. 

1  Each thread takes a separate super-node; 
2  If all super-nodes on which current depends on are processed then 
3  │  factor this super-node via MKL BLAS & LAPACK functionality; 
4  else 
5  ∟  wait until all needed super-nodes are factored; 
6  Take the next super-node and go to 2. 
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This approach shows good performance on a small number of threads, but when their number increases, the 
performance is reduced due to multiple OpenMP synchronization points. 

During the reordering step we compute a dependency tree which allows us to factor the matrix in parallel. 
Figure 2 shows a sample matrix and its dependency tree. One can see that it is possible to factor the 1st, 2nd, 
4th and 5th blocks independently. Once this is done, blocks 3 and 6 can be processed, and block 7 is factored 
last. More details about constructing the dependency tree can be found in [10]. From [11], we know that this ap-
proach scales well up to 32 MPI processes, while additional MPI processes do not provide significant perfor-
mance improvements. 

We can use the dependency tree to perform the factorization as described in Algorithm 2. 
Because we store the initial matrix in super-nodal format, during factorization step we deal with dense ma-

trices. The dense matrices can be large, so using BLAS level 3 [1] functionality to compute the matrix-matrix 
product and to perform the Cholesky decomposition for diagonal blocks helps improve performance. For this 
purpose, we use four threads that are available on each Intel Xeon Phi core. 

Now we formulate a three-level approach to parallelization based on the three algorithms considered earlier. 
All OpenMP threads are divided into independent groups which are responsible for parallelization according to 
the dependency tree and all synchronizations take place only inside each group of threads. This will be the first 
level of parallelization. Then inside each group we can apply Algorithm 1. This will be the second level of pa-
rallelization. Finally, inside each group we unite two or four (depending on the maximum number of available 
threads) threads into one group to perform BLAS level 3 functionality in parallel. This will be the third level of 
parallelization. This three-level approach allows us to utilize all threads effectively. In particular, this distribu-
tion of threads between the different groups reduces the OpenMP synchronization overhead that historically ne-
gatively impacted performance. 

2.2. Solution Step 
We now consider the last stage of direct sparse solver, namely the solving of the systems with lower-triangular L, 
diagonal D and upper triangular U matrices. Similar to the implementation of parallel factorization algorithm, 
we use two-level parallelization for this case. As before, we distribute all of the leaf nodes of the dependency 
tree between threads and compute the elements corresponding to these nodes. Then we use respective threads 
from the child nodes to compute unknowns that correspond to their parent node in the tree. As a result more and 
more threads are involved in computations of a node as we proceed closer to the top of the tree. This composes 
the second level of parallelization in our algorithm. To utilize effectively threads collaboratively working on 
nodes up the tree we apply parallelization algorithm that is similar to that used when we start computations for 
the whole tree. The scheme of the algorithm on the example of the lower triangular matrix L is shown in Figure 
3. 

The idea described above comes from the left-looking 1D directed acyclic graph approach. First, we distribute 
the nodes of the tree among super-nodes. Next each thread starts to handle its own super-node. 
 

 
Figure 2. Dependency tree sample. 

 
Algorithm 2. LDU decomposition based on the dependency tree. 

1  for level = bottom_level, top_level do 
2  │Calcuate update of current node by calcluated nodes 
3  │Calculate LDUT decomposition of each node of the current level with a separate thread; 
4  end 



A. Kalinkin et al. 
 

 
1279 

 

sequential part performed 

paralled part 

ve
ct

or
 o

f u
nk

no
w

n x1 
x2 
x3 
x4 

x1 
x2 
x3 
x4 

 
Figure 3. Parallel implementation of solution step. 
 

To prevent multiple synchronizations near the top of the tree we apply a right-looking approach to the root. 
Thus, to compute unknowns corresponding to any of the nodes of the tree we first update these values with the 
computed values at the children level. 

3. Experimental Results 
The platform used for the experiments in this paper is an Intel Xeon Phi coprocessor. The system is equipped 
with 16 GB GDDR5 memory and includes a 61-core coprocessor running at 1.23 GHz. In this work, we used 60 
cores to test the solver, leaving the remaining core to run the operating system and other software. 

Sparse matrices used in our performance evaluation are taken from The University of Florida Sparse Matrix 
Collection [12]. 

On the Figure 4 one can see the scalability of our implementation from 1 to 240 threads with KMP_AFFINITY 
= compact setting. The number of columns and nonzero elements for each matrix is as follows: 3DLaplace_100 
N = 106, NNZ = 39 × 105; dielFilterV3real N = 11 × 105, NNZ = 45 × 106; CoupCons3D N = 4 × 105, NNZ = 22 × 
106; and torso3 N = 25 × 104, NNZ = 44 × 105. The Chart shows that our implementation can achieve up to 100 
times better performance during the factorization step using the full coprocessor and up to 65 times improve-
ment in the overall performance. Currently, during the solution step we can effectively utilize about 60 cores (4 
threads each). Adding additional threads does not yield any improvement. 

Figure 5 demonstrates the impact of every stage to the overall performance. One could see that on one thread 
factorization has the most impact on performance (about 90%). As the number of threads increases, the reorder-
ing step begins to take more than 50% of the total time. As was shown on Figure 4, the first stage has low sca-
lability. For example, in spite of scalability for matrix dielFilterV3real on factorization and solving steps being 
good (60 and 25 times, respectively), the overall performance is low (only about 17 times improvement) because 
the reordering step takes about 74% of the total computational time (see Figure 5). Therefore the next step for 
the improvements is to optimize reordering and symbolic factorization. 

4. Conclusions 
In this paper, we presented an efficient implementation of the Intel MKL PARDISO for the Intel Xeon Phi co-
processor. The implementation uses a three-level parallelization approach that allows for a more optimal utiliza-
tion of all of the available cores. The first level is based on the sparsity of the initial matrix and, as a result, on 
the sparsity of the factorized one. The second level is related to the dependency tree which can be calculated at 
the reordering step using METIS [9]. The third level uses four threads available on each core allowing the use of 
parallel BLAS level 3 functionality for the matrix-matrix multiplication and Cholesky decomposition for the di-
agonal blocks. We used static work distribution among OpenMP threads to reduce expensive synchronizations. 
The required distribution can be calculated at symbolic factorization on the reordering step. We showed that our 
implementation has good scalability for different matrices. It gives up to 100 times performance improvements 
factorization step and up to 65 times in overall performance. We also proposed an approach to parallelize the 
solution step. There are still performance issues related to the reordering step which can take more than 50% of 
the total time for a large number of threads. This is a topic for research. 
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Figure 4. Speedup of Intel MKL PARDISO for 240 threads. 
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Figure 5. Percentage impact of each solver stage for 1 and 240 threads. 
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The Intel Math Kernel Library now includes several new features such as the Schur complement of a sparse 
matrix [13] and a cluster version of the direct sparse solver [11]. At the same time, Intel MKL continues to pro-
vide high performance functionality on modern Intel processors. 
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