
Applied Mathematics, 2015, 6, 1263-1270 
Published Online July 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.68119  

How to cite this paper: Ivanov, I.G., Ivanov, I.G. and Netov, N.C. (2015) On the Iterative Solution to H∞ Control Problems. 
Applied Mathematics, 6, 1263-1270. http://dx.doi.org/10.4236/am.2015.68119 

 
 

On the Iterative Solution to H∞ Control 
Problems 
Ivan G. Ivanov1,2, Ivelin G. Ivanov2, Nikolay C. Netov1 
1Faculty of Economics and Business Administration, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria 
2Pedagogical College Dobrich, Shoumen University, Shoumen, Bulgaria 
Email: i_ivanov@feb.uni-sofia.bg, iwelin.ivanow@gmail.com, nnetoff@feb.uni-sofia.bg     

 
Received 28 May 2015; accepted 14 July 2015; published 17 July 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper addresses the problem for solving a Continuous-time Riccati equation with an indefi-
nite sign of the quadratic term. Such an equation is closely related to the so called full information 
H∞ control of linear time-invariant system with external disturbance. Recently, a simultaneous 
policy update algorithm (SPUA) for solving H∞ control problems is proposed by Wu and Luo (Si-
multaneous policy update algorithms for learning the solution of linear continuous-time H∞ state 
feedback control, Information Sciences, 222, 472-485, 2013). However, the crucial point of their 
method is to find an initial point, which ensuring the convergence of the method. We will show one 
example where Wu and Luo’s method is not effective and it converges to an indefinite solution. 
Three effective methods for computing the stabilizing solution to the considered equation are in-
vestigated. Computer realizations of the presented methods are numerically compared on the 
computational platforms MATLAB and SCILAB. 
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1. Introduction 
The continuous-time algebraic Riccati equations and their extensions have been investigated extensively in the 
literature. Recently, the H∞ control problem was solved for linear time-invariant system [1]-[3] and for stoch- 
astic systems [4]-[7]. 

Wu and Luo [8] have commented the iterative solution of the following continuous-time algebraic Riccati 
equation  
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( ) ( ) 1T T 2 T T T: 0.X A X XA C C XGG X XB D D B Xγ
−−= + + + − =                   (1) 

Note that this equation has indefinite quadratic part. Assume there exists a positive semidefinite solution *X  
to (1) with property that real parts of eigenvalues of ( ) ( ) 12 T * T T *A X A GG X B D D B Xγ

−−= + −  are negative. 
Such type solution is called a stabilizing solution. 

The H∞ linear quadratic problems have been introduces by Basar and Bernhard [9] as a two-player zero sum 
gane. We consider a model for a a two-player zero-sum game, where the control function ( )u t  is a minimizing 
player (or a controller player) of the functional ( ),J u vγ  and the disturbance function ( )v t  is a maximizing 
player (or a disturbance player), where  

( ) ( )T T T T 2 T
0

, d .J u v x C C x u D Du v v tγ γ
∞

= + −∫  

The controller player aims to minimize the ( ),J u vγ  and the disturbance player aims to maximize the 
( ),J u vγ  under a constrain of the system:  

( ) ( ) ( ) ( )d d d d .x t Ax t t Gv t t Bu t t= + +                                (2) 

Knowing the stabilizing solution *X  to (1) we define the following functions:  

( ) 1* T T * * 2 T *, .u D D B X x v G X xγ
− −= − =  

The functions ( )* *,u v  have the property  

( ) ( ) ( )* * * *, , , .J u v J u v J u vγ γ γ≤ ≤  

And thus they form the equilibrium point of the two-player zero-sum game described by (2) and the 
functional ( ),J u vγ . This fact is well known in the literature and it can be derived using the Pontryagin’s 
Maximum Principle for example. Moreover, the stabilizing solution is very important solution to Equation (1). 

So, why we need to study the iterative equations for computing the stabilizing equation to (1)? Many re- 
searchers have investigated Riccati Equation (1) and more specially how to compute his stabilizing solution. 
Lanzon et al. [1] have proposed two effective methods. The first method constructs two matrix sequences where 
the first sequence converges to the stabilizing solution. The second method avoids the second matrix sequence 
and defines one matrix sequence which directly approximates the stabilizing solution. Later, Wu and Luo [8] 
have studied the same equation and the proposed method in [1]. They have commented that the second Lanzon’s 
method (it is Algorithm 2 [8]) is not fully effective and by this reason they have introduced the new method 
described as Algorithm 4 in their paper [8]. Here, we consider an example where these two algorithms will be 
compared. 

Example 1. Let us we take the following matrix coefficients to (1) (using the MATLAB notations): 

[ ]0.0665 8 0 0;  0 3.663 3.663 0;  6.86 0 13.736 13.736;  0.6 0 0 0A = − − − − − ; 

[ ]8;  0;  0;  0G = − ; [ ]0;  10;  15;  0B = ; ( )T eye 4,4C C = ; T 1D D = ; 5.5γ = . 

We execute Algorithm 2 [8] and Algorithm 4 [8] with the initial point 0 0X = . Starting Algorithm 2 in  
MATLAB we obtain the following stabilizing solution to (1) after 4 main iterations and (the average number of 
iterations for the inner loop is 7):  

2

0.2842 0.1488 0.0128 0.3095
0.1488 0.1591 0.0058 0.1693

.
0.0128 0.0058 0.0295 0.0228

0.3095 0.1693 0.0228 2.0917

AlgX

− 
 − =
 − − −
 

− 

  

And the solution computed by Algorithm 4 is  

4

0.0834 0.0116 0.0954 0.0661
0.0116 0.0310 0.0718 0.0251

.
0.0954 0.0718 0.0045 0.1229
0.0661 0.0251 0.1229 1.7967

AlgX

− − 
 − − − =
 − − − −
 

− − 

  
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Note that the matrix 2AlgX  is positive definite and ( )2 3.3265 14AlgX e= −  while the matrix 4AlgX  is  

indefinite and ( )4 2.1367 12AlgX e= − . In addition 2 4 0.6579Alg AlgX X− =  . Thus these two solutions are 
different! Which of them is sought? We have to check whether the corresponding matrices stabilize system (2).  
We compute eigenvalues of ( )2AlgA X  and ( )4AlgA X . The eigenvalues of ( )2AlgA X  have negative real parts  

and the matrix ( )4AlgA X  has one positive eigenvalue. Thus the matrix 2AlgX  is the stabilizing solution to 
Equation (1) while the matrix 4AlgX  is not the stabilizing solution to (1). In addition we have execute the same 
example with the open software SCILAB (http://www.scilab.org/scilab/about). We apply the SCILAB’s function 
“lyap” for Algorithm 2 and Algorithm 4. After 4 main iterations Algorithm 2 in SCILAB computes the stabilizing  
solution with ( )2 7.4000 15AlgX e= − . After 18 iterations with Algorithm 4 in SCILAB we obtain the same  

solution 4AlgX  with ( )4 6.047 15AlgX e= − . The solution is indefinite and it is not the stabilizing solution. 
So, this example gives us the conclusion that the Algorithm 4 described in [8] compute only a solution to (1) 

and this solution is not always positive definite and this solution is not always stabilizing. 
In this reason we confirm that the Lanzon’s method [1] is an effective method for computing the stabilizing 

solution. His main essential feature is that the iterative process includes two iterative loops-the out loop and the 
inner loop. We extend the ideas described by Lanzon et al. [1] and Feng and Anderson [6] to propose iterative 
methods where one matrix sequence is constructed. Here we introduce additional two iterative methods which 
lead directly to the stabilizing solution. Our contribution is to apply two computational schemes for realization 
the first iterative equation. Moreover, the second iterative equation is a new method for computing the stabi- 
lizing solution to (1). We present a few examples for testing the introduced recurrence equations on the 
MATLAB and SCILAB computational platforms. 

We write X Y>  or X Y≥  if X Y−  is positive definite or X Y−  is positive semidefinite for any two 
symmetric matrices X and Y. We use some properties of positive definite and positive semidefinite matrices. A 
matrix A is said to be asymptotically stable if all the eigenvalues of A lie in the open left half plane. 

2. Iterative Methods for Stabilizing Solution to (1) 
The first method is the Lanzon’s method [1] and Algorithm 2 from [8]. We present the main theorem with pro-  

perties for constructing two matrix sequences of positive semidefinite matrices ( ){ } ( ){ }
0 0
,k k

k k
X Z

∞ ∞

= =
. The matrix  

sequences are constructed as follows. We take  
( ) ( ) ( ) ( )1 0, with 0, 0,1,2,k k kX X Z X k+ = + = =                           (3) 

We find )(kZ  as the stabilizing solution of the algebraic Riccati equation with definite quadratic part:  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )T T1T0 ,k k k k k k kA Z Z A Z B D D Z B X
−

= + − +                      (4) 

where  
( )( ) ( )

( )( ) ( ) ( )( )
( ) ( )( ) ( )( )

2 T
1

T1T
2

1 2 .

k k

k k

k k k

F X G X

F X D D X B

A A GF X BF X

γ −

−

 =

 = −

 = + +


 

The matrices ( ){ }
0

k

k
Z

∞

=
 are stabilizing solutions for the sequence of algebraic Riccati Equations (4). We will 

prove that the second sequence is monotonically non-decreasing and converges to the unique stabilizing solution 
to set of Equation (1). We reformulate the convergence theorem introduced in [1] (Theorem 3) and we present it 
as sufficient conditions to existence the stabilizing solution to (1). 

Theorem 1 Assume there exist symmetric matrices X̂  and ( )0X  such that ( )( )0 0R X ≥  and ( )ˆ 0R X ≤  and  
( )0 ˆ0 X X≤ ≤ , and the pair ( )( )0 ,A B  is a stabilizable one. Then for the matrix sequences ( ){ } ( ){ }

0 0
,k k

k k
X Z

∞ ∞

= =
  

defined by (3), (4) are satisfied for 0,1,2,k =   

http://www.scilab.org/scilab/about
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1) ( )( ),kA B  is stabilizable; 
2) ( )( ) ( ) ( )1 2 T 0k k kX Z GG Zγ+ −= ≥ ; 

3) the matrix ( ) ( )( ) ( )( )1
1 2

k k kA A GF X BF X += + +  is asymptotically stable for 0,1,k =  ; 

4) ( ) ( )1ˆ 0k kX X X+≥ ≥ ≥ .  
Proof. The proof follows the proof of Theorem 3 from [1].  
Theorem 1 presents sufficient conditions for the equation ( ) 0R X =  has a solution. Such type conditions are 

introduced here for the considered equation ( ) 0R X =  for the first time. Theorem 1 confirms the convergence 
properties of iterative method (3), (4). 

Further on, we consider an alternative iteration process where one matrix sequence is constructed. Consider 
the behaviour of the controller player (u(t)). Assume the controller player knows the matrix ( )1k

uP − . He wants to  
find ( )k

uP . Then he takes ( )12 T k
uv G P xγ −−= . The system (2) becomes  

( ) ( )( ) ( ) ( )12 T d d .k
udx t A GG P x t t Bu t tγ −−= + +  

And the functional ( ),k kJ u vγ  is  

( ) ( ) ( )( )( )1 1T T 2 T T T
0

, d .k k
k k u u k kJ u v x C C P GG P x u D Du tγ γ

∞ − −−= − +∫  

The corresponding Riccati equation regarding to ( )k
uP  is  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T 11 1 1T T0 k k k k k k k
u u u u u u uA P P A P B D D B P Q

−− − −= + − +                       (5) 

where  
( ) ( )

( ) ( ) ( )

1 12 T

1 1 1T 2 T .

k k
u u

k k k
u u u

A A GG P

Q C C P GG P

γ

γ

− −−

− − −−

 = +


= −
 

Based on recurrence Equation (5) we derive the following new iteration:  
( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

T1 12 T 2 T

1 1 1T T T 2 T

0

,

k k k k

k k k k

A GG P P P A GG P

P B D D B P C C P GG P

γ γ

γ

− −− −

− − −−

= + + +

− + −
                        (6) 

with 0 0P = . We perform iteration (6) using two recurrence approaches. The first one is to solve Equation (6) as 
a Riccati equation. We call this approach “(6) + care”. The second one is to solve Equation (6) applying the 
Lyapunov iteration:  

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )

T112 T T T
1

112 T T T
1

11 1T 2 T T T
1 1

:

0,

k
s s s

k
s s

k k
s s

Y A GG P B D D B Y Y

Y A GG P B D D B Y

C C P GG P Y B D D B Y

γ

γ

γ

−−−
−

−−−
−

−− −−
− −

= + −

+ + −

+ − + =



                    (7) 

with 0sY = . The matrix sequence { } , 0,1,sY s =   converges to ( )kP . Iteration (7) defines the inner loop for 
iteration (6). We call the second approach “(6) + lyap”. In fact, that is an extension of the Algorithm 2 [8]. 

The notation “(6) + care” means that the iteration (6) is solved as a Ricacti equation with unknown matrix 
( )kP . Each solution ( )kP ) of (6) is computed as a solution to Riccati Equation (6). The notation “(6) + lyap” 

stands for the fact that the solution ( )kP  to Equation (6) is computed as a limit of the sequence { }sY  and each 
matrix sY  is a solution to iteration (7). Iteration (7) describes the inner loop for finding the matrix sequence  

( ){ }kP  defined by iteration (6) and it is a Lyapunov iteration for computing ( )kP . 

Thus, Equation (6) can be considered as a new iteration formula. This equation constructs a new matrix  

sequence ( ){ }
0

k

k
P

∞

=
 which converges to the stabilizing solution to (1). It is easy to see that the recurrence  

Equation (6) is obtained from (4) when we substitute ( ) ( ) ( ) ( )1:k k k kP Z X X+= = − . This fact is observed by 
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Praveen and Bhasin in Lemma 2 [2]. Thus ( )kP  is the stabilizing solution to (7) with ( ) 0kP > , we conclude  

the matrix pair ( ) ( )( )2 1T ,kA GG P Bγ − −+  is a stabilizable pair and ( ) ( ) ( )2 1 1T Tk kC C P GG Pγ − − −−  is positive de-  

finite. This is enough to start iterative process (7) with ( )0 0, 0Y Iα α= > > . Following Theorem 9.1.1 derived 
by Lancaster and Rodman [10] it is sufficient to claim iterative process (7) converges. 

Further on, we extend the idea for constructing the matrix sequence ( ){ }
0

k

k
P

∞

=
. When we put ( ) ( ) ( )1k k kZ X X+= −   

in (4) we obtain:  
( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T
1 1

1 2 1 2

T

1 2 1 2

1T T 2 T T T

1 11 1 1T T T T

1 11T T T T

0

.

k k k k k k

k k k k k k

k k k k k k

k k k k

k k k k

A GF X BF X X X A GF X BF X

A GF X BF X X X A GF X BF X

A X X A C C X GG X X B D D B X

X B D D B X X B D D B X

X B D D B X X B D D B X

γ

+ +

−−

− −+ + +

− −+

= + + + + +

− + + − + +

+ + + + −

− +

+ −

 

Next, we extricate the term ( )( )( ) ( ) ( ) ( )( )( )T
1 1

2 2
k k k kA BF X X X A BF X+ ++ + +  and continue with some matrix  

manipulations. We derive  
( )( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

T
1 1

2 2

1 1 1 1T 2 T 2 T

1 11 1T T T T

0

.

k k k k

k k k k k k

k k k k k k

A BF X X X A BF X

C C X GG X X X GG X X

X B D D B X X X B D D B X X

γ γ

+ +

+ + + +− −

− −+ +

= + + +

+ + + − −

+ − − −

               (8) 

We apply the following implementation for the latest recurrence equation:  
( ) ( ) ( )

( )( )( ) ( ) ( ) ( )( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

0 1 1T T

T
1 1 T 2 T

2 2

11 12 T T T

11 1T T

0, 0 ,

0

1,2,

k k k k k k

k k k k k k

k k k k

X A X X A C C

A BF X X X A BF X C C X GG X

X X GG X X X B D D B X

X X B D D B X X k

γ

γ

+ + −

−− −−

−− −

= = + +

= + + + + +

+ − − +

− − − = 

              (9) 

Our thoughts and algebraic manipulations for deriving recurrence Equation (8) show that it is equivalent to 
the main iterative process (3)-(4). Thus iteration (9) constructs a new matrix sequence which converges to the 
stabilizing solution of (1). In order to execute iteration (9) we apply the following algorithm: 

1) We take ( )0 0X = , and ε  as a small positive number. 
2) We compute ( )1X  as a solution to the equation ( ) ( )1 1T T0 A X X A C C= + + . 
3) For 1,2,3,k =   we carry out. 

a) Compute ( )( )2
k

kA A BF X= +


 and  

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1T 2 T 2 T

1 11 1T T T T .

k k k k k k
k

k k k k k k

W C C X GG X X X GG X X

X B D D B X X X B D D B X X

γ γ − −− −

− −− −

= + + − −

+ − − −
 

b) Find ( )1kX +  as a solution to the Lyapunov equation ( ) ( )1 1T 0k k
k k kA X X A W+ ++ + =
 

. 
c) Algorithm stops when the inequality ( )( )1kX ε+ ≤  holds. 

4) The stabilizing solution is ( )1* kX X += . 
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3. Numerical Experiments 
We carry out experiments for solving a continuous-time algebraic Riccati equation with an indefinite quadratic  
term (1). We construct two matrix sequences ( ){ }kX  and ( ){ }, 0,1,kZ k =   for each example. The first matrix  

sequence is computed using the iterative process (3)-(4). Iteration (4) is a Riccati equation and ( )kZ  is its 
stabilizing solution. In addition, we apply two iterations (6) and (9) for computing the stabilizing solution to (1), 
where one matrix sequence is established. We perform iteration (6) in two ways “(6) + care” and “(6) + lyap”. 
We are solving Riccati recurrence Equations (4) and (6) with the MATLAB procedure care where the flops are  

381n  per one iteration. The MATLAB procedure lyab is applied for solving (7) and (9) and the flops are 327
2

n   

per one iteration. 
Moreover, we have carried out experiments in the open source software SCILAB  

http://www.scilab.org/scilab/about. It provides a computing environment for scientific applications. There are 
functions for solving linear and nonlinear matrix equations. We apply the “ricc” function for solving a con- 
tinuous Riccati equation and “lyap” function for a linear Lyapunov equation. 

Our experiments are executed in MATLAB on a 2.20 GHz Intel (R) Core (TM) i7-4702MQ CPU computer. 
We use two variables tolR and tol for small positive numbers to control the accuracy of computations. We  
denote ( )( ),

k
kError X=   and ( ),s sError Y=  . All iterations stop when the inequality 

0,kError tolR≤   

is satisfied for some 0k . That is a practical stopping criterion. However, iteration “(6) + lyap” defines two loops- 
external and inner. The inner loop stops when the inequality 

0,sError tol≤  is satisfied for some integer 0s . 
For our purpose we have executed hundred runs of each value of n for two family of examples. The tables 

report the maximal number It of iterations for which the inequality , ItError tolR≤  holds and the average 
number avIt  of iterations for all hundred runs of each size. In addition, the variable LavIt  stands for the 
average number of iterations executed by (7) in order to obtain the stabilizing solution through (6) for all hund- 
red runs of each size. For instance, the iteration “(6) + lyap” executes 4It =  main iterations and 7LavIt =  for 
Example 1. The column “CPU” presents the CPU time for execution the corresponding iterations. In our de- 
finitions the functions randn (p, k) and sprand (q, m, 0.3) return a p-by-k matrix of pseudorandom scalar values 
and a q-by-m sparse matrix respectively (for more information see the MATLAB description). 

Example 2. We consider a family of examples in case 10, ,15n =  , where the coefficient real matrices are 
given as follows: , , ,A G B D  and C were constructed using the MATLAB notations:  

( )( ) ( )
( ) ( )

( ) ( )T T

2; 2.5;

, 4 4 , ;

, ; , ;

0.45 , ; 0.2 , .

m
A abs randn n n eye n n

G randn n m B randn n m

D D eye m m C C eye n n

γ= =

= − ∗

= =

= ∗ = ∗

 

Results from experiments in Example 2 are given in Table 1 with 1 7, 1 5tolR e tol e= − = −  for all values of 
n. 

Example 3. We consider a family of examples in case 15, ,20n =  , where the coefficient real matrices are 
given as follows: , , ,A G B D  and C were constructed using the MATLAB notations:  

( )( ) ( )
( ) ( )
( ) ( )

1 2

2; 2.5;

, 6 4 , ;

2 , ; , ;

0.45 , ; 0.2 , .

m

A abs randn n n eye n n

B randn n m B randn n m

R eye m m Q eye n n

γ= =

= − ∗

= ∗ =

= ∗ = ∗

 

Results from experiments for Example 3 are given in Table 2 with 1 7, 1 5tolR e tol e= − = −  for all values of 
n. 

The application of all iterative methods shows that they achieve the same accuracy for different number of 
iterations. Our conclusions based on experiments are: 

1) The execution the iterations (3), (4) and “(6) + care” takes almost the same CPU time (see the corresponding  

http://www.scilab.org/scilab/about
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Table 1. Example 2. Results from 100 runs for each value of n.                                                            

 (3)-(4) (6) + lyap (Alg 2) (6) + care (9) 

n It avIt CPU It avIt CPU It avIt CPU It avIt CPU 

The MATLAB Execution 

10 3 2.6 0.5 s 4 6.9 0.32 s 4 3.15 0.54 s 5 4.1 0.16 s 

11 3 2.7 0.5 s 4 7.2 0.37 s 4 3.26 0.57 s 6 4.22 0.25 s 

12 3 2.8 0.56 s 4 7.24 0.39 s 4 3.28 0.62 s 6 4.31 0.22 s 

13 3 2.8 0.57 s 4 7.46 0.45 s 4 3.43 0.64 s 7 4.56 0.26 s 

14 3 2.9 0.65 s 4 7.7 0.40 s 4 3.62 0.65 s 8 4.86 0.25 s 

15 3 2.9 0.76 s 4 7.9 0.49 s 4 3.69 0.75 s 9 5.02 0.37 s 

The SCILAB Execution 

10 3 2.6 0.4 s 4 6.9 0.36 s 4 3.10 0.45 s 5 4.0 0.29 s 

11 3 2.7 0.5 s 4 7.1 0.40 s 4 3.22 0.58 s 5 4.1 0.31 s 

12 3 2.7 0.56 s 4 7.2 0.45 s 4 3.27 0.64 s 6 4.2 0.35 s 

13 3 2.8 0.72 s 4 7.5 0.52 s 4 3.38 0.80 s 7 4.4 0.4 s 

14 3 2.9 0.77 s 4 7.7 0.55 s 4 3.64 0.94 s 7 4.7 0.45 s 

15 3 2.9 0.92 s 4 8.0 0.64 s 4 3.76 1.10 s 8 5.0 0.52 s 

 
Table 2. Example 3. Results from 100 runs for each value of n.                                                            

 (3)-(4) (6) + lyap (Alg 2) (6) + care (9) 

n It avIt CPU It avIt CPU It avIt CPU It avIt CPU 

The MATLAB Execution 

15 4 3 0.42 s 11 8.3 0.5 s 4 4.0 0.57 s 12 6.6 0.28 s 

16 4 3 0.45 s 11 8.3 0.4 s 5 4.0 0.57 s 14 6.7 0.28 s 

17 4 3 0.54 s 10 8.5 0.39 s 5 4.0 0.57 s 11 7.0 0.32 s 

18 4 3 0.57 s 11 8.8 0.57 s 5 4.0 0.60 s 12 7.5 0.32 s 

19 4 3.1 0.61 s 17 8.8 0.56 s 6 4.1 0.68 s 21 7.7 0.38 s 

20 4 3.1 0.64 s 12 9.3 0.54 s 5 4.1 0.65 s 26 8.3 0.42 s 

The SCILAB Execution 

15 4 3 0.68 s 9 8.1 0.44 s 5 4.0 0.82 s 10 6.2 0.37 s 

16 4 3 0.72 s 12 8.5 0.47 s 5 4.0 0.87 s 10 6.5 0.38 s 

17 4 3 0.96 s 11 8.5 0.54 s 4 4.0 1.12 s 12 6.7 0.44 s 

18 4 3 1.03 s 11 8.7 0.58 s 4 4.0 1.20 s 11 6.9 0.49 s 

19 4 3.1 1.21 s 11 8.7 0.63 s 5 4.1 1.40 s 15 7.3 0.57 s 

20 4 3.1 1.29 s 12 9.0 0.67 s 7 4.2 1.53 s 25 8.0 0.70 s 

 
columns of the tables). Note that the procedure care in these iterations have to be applied; 

2) Iterations based on the solution of Lyapunov equations faster than the iterations based on the solution of 
Riccati equations; 

3) The new iteration (9) is fastest than other iterative methods; 
4) Comparing the MATLAB Execution and the SCILAB Execution we note the MATLAB implementations 

of the considered iterative methods are faster than the same executed in the SCILAB environment. However, the 
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SCILAB implementations achieve the same accuracy and based on the fact it is an open source software we 
deduce the SCILAB is an useful tool for education to master and PhD students. 

The conclusions are indicated by implemented numerical simulations. 

4. Conclusion 
We have studied two iterative processes for finding the stabilizing solution to generalized Riccati Equations (2). 
We have made numerical experiments for computing this solution and we have compared the considered 
methods numerically. We have compared the results from the experiments in regard of number of iterations and 
CPU time for executing. Our numerical experiments confirm the effectiveness of proposed new method (9). It is 
introduced here and moreover numerical experiments show its efficiency. 
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