
Applied Mathematics, 2015, 6, 1235-1240 
Published Online July 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.68116  

How to cite this paper: Natalini, P. and Ricci, P.E. (2015) A “Hard to Die” Series Expansion and Lucas Polynomials of the 
Second Kind. Applied Mathematics, 6, 1235-1240. http://dx.doi.org/10.4236/am.2015.68116 

 
 

A “Hard to Die” Series Expansion and Lucas 
Polynomials of the Second Kind 
Pierpaolo Natalini1*, Paolo E. Ricci2 
1Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma, Italia 
2International Telematic University UNINETTUNO, Roma, Italia 
Email: *natalini@mat.uniroma3.it, paoloemilioricci@gmail.com 
 
Received 5 June 2015; accepted 10 July 2015; published 14 July 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous 
linear differential system with constant coefficients, avoiding the Jordan canonical form for the 
relevant matrix. 
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1. Introduction 
It is well known that an analytic function f of a matrix r r×=  , i.e. ( )f   is the matrix polynomial obtained 
from the scalar polynomial interpolating the function f on the eigenvalues of   (see e.g. the Gantmacher book 
[1]), however, in many books (see e.g. [2]), the series expansion 

0
exp

!

n

n n

∞

=

= ∑                                     (1.1) 

is assumed for defining (and computing) ( )exp  . So, apparently, the series expansion for the exponential of a 
matrix is “hard to die”. 

Let { }1 2, , , rλ λ λΣ =   be the spectrum of  . Denoting by 

( ) 1
1 0 1 1

r
r rP x x a xα α −
− −= + + +  

the polynomial interpolating ( )exp x  on Σ , i.e. such that: ( ) ( )1 expn i iP λ λ− = , ( )for 1,2, ,i r=  , then 
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1
0 1 1exp .r

raα α −
−= + + +                              (1.2) 

If the eigenvalues are all distinct, 1rP −  coincides with the Lagrange interpolation polynomial and (1.2) is the 
Lagrange-Sylvester formula. In case of multiple eigenvalues, 1rP −  is the Hermite interpolation polynomial, and 
(1.2) reduces to Arthur Buchheim’s formula, generalizing the preceding one. 

This avoids the use of higher powers of   in the Taylor expansion (1.1). In any case, the possibility to write 
h , ( )2h ≥ , in an easy block form, requires not only the knowledge of the spectrum, but even the Jordan ca-

nonical form of  . It is necessary to compute the eigenvectors and moreover the principal vectors, if   is 
defective. A known machinery which implies a lot of computations. 

In the following, we show how to proceed in connections with the matrix ( )exp t , which appears in the 
solution of the vectorial Cauchy problem 

( ) ( )
( )0 0 ,

Z t Z t
Z t Z
′ = ⋅

 =


 

We propose an alternative method, based on recursion, using the functions ,k nF , which are essentially linked 
to Lucas polynomials of the second kind (i.e. the basic solution of a homogeneous linear recurrence relation with 
constant coefficients [3] [4]), and to the multi-variable Chebyshev polynomials [5]. 

Another Taylor series will be used, but using only functions of the invariants of  , not explicitly all powers 
of  . 

It is worth to recall that the knowledge of eigenvalues is equivalent to that of invariants, since the latter are the 
elementary symmetric functions of the former (with alternate sign). 

Up to our knowledge, this is the first time that polynomials are used to solve this kind of differential problems, 
furthermore our method has the advantage to avoid computation of higher powers of the matrix  . The solu-
tion of the considered problem is given in terms of the ,k nF  functions of the invariants of  . These functions 
are polynomials, independent of the Jordan canonical form of  , and can be computed recursively, avoiding 
the knowledge of eigenvectors and principal vectors. Moreover, if the matrix is real, the ,k nF  functions are real 
as well, and possible complex eigenvalues does not affect the form of solution. 

2. Homogeneous Linear Differential Systems with Constant Coefficients 
It is well-known that a higher order differential system can be always be reduced to a first order system, hence 
we will limit ourselves to considering such type of systems. 

For simplicity, we start off with the 2 2×  system 

( ) ( ) ( )
( ) ( ) ( ) ,

x t ax t b y t
y t cx t d y t
′ = +

 ′ = +
                                (2.1) 

with matrix  : 

: ,
a b
c d
 

=  
 

  

assuming 0bc ≠ , (otherwise the system is trivial), and put by definition: 

( ) ( ): , : .u tr a d v det ad bc= = + = = −   

In the following, consider the Cauchy problem with initial conditions: 

( )
( )

0 0

0 0 .
x t x
y t y

 =
 =

                                    (2.2) 

Looking at the first equation in (2.1), we note that since the right hand side is (real or) complex analytic, the 
solution is (real or) complex analytic as well. Deriving side by side, we find 

( ) ( ) ( ) ( ) ( ) ( ) ( )2x t ax t by t a bc x t ab bd y t′′ ′ ′= + = + + +                    (2.3) 
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Eliminating ( )y t  between the first equation in (2.1) and (2.3), since 0b ≠ , we find 

( ) ( ) ( ) ,x t ux t vx t′′ ′= −                                   (2.4) 

This procedure can be iterated, obtaining, for example 

( ) ( ) ( ) ( ) ( ) ( )2 .x t u x t vx t u v x t uvx t′′′ ′′ ′ ′= − = − −  

In general we find the same recursion satisfied by the powers of the matrix   [6], i.e. 
( ) ( ) ( ) ( ) ( ) ( )1, 1 2, 1, , ,n

n nx t F u v x t F u v x t− −′= +                         (2.5) 

where the coefficients ( ) ( ), , 1, 2; 1k nF u v k n= ≥ −  are essentially Lucas polynomials of the second kind (see 
[3]-[5] [7]), defined by the recurrence relation: 

( ) ( ) ( ), 1 , 2 , 3, , , ,k n k n k nF u v uF u v vF u v− − −= −                          (2.6) 

and the initial conditions: 

1, 1 1,0

2, 1 2,0

0 1,
1 0.

F F
F F

−

−

= =
= =

                                (2.7) 

It is easily shown that the second function ( )y t  satisfies the same recursion (2.5). 
As a consequence, putting 

( )
( )

0 0 0 0

0 0 0 0

: ,
:

x x t ax by
y y t cx dy
′ ′= = +
′ ′= = +

                               (2.8) 

and using Taylor expansion, the solution of the Cauchy problem (2.1) - (2.2), can be found in the form: 

( ) ( ) ( )

( ) ( ) ( )

1, 1 0 2, 1 0
0

1, 1 0 2, 1 0
0

, , ,
!

, , .
!

n

n n
n

n

n n
n

tx t F u v x F u v x
n
ty t F u v y F u v y
n

∞

− −
=

∞

− −
=

′ = + 

′ = + 

∑

∑
                       (2.9) 

The above result can be put in vectorial form, in order to be generalized. 

Let ( ) ( ) ( )( )T
: ,Z t x t y t= , ( )T

0 0 0: ,Z x y= , ( ) ( )T T
0 0 0 0 0: , ,Z x y x y′ ′ ′= = ⋅ . 

Introduce the matrix ( ) 0 0
0 0

0 0

,
x x

Z Z
y y
′ 

′ =  ′ 
 and define 

( ) ( )( )T
1 1, 1 2, 1: , , , ,n n nF F u v F u v− − −=  

then, the solution in vectorial form reads 

( ) ( )0 0 1
0

, .
!

n

n
n

tZ t Z Z F
n

∞

−
=

′= ⋅∑  

Note that the convergence of the vectorial series in any compact set K of the space ( ),u v  is guaranteed, 
since the components of 1nF −  are polynomials of weight not exceeding 1n − , and consequently are bounded 
in K. 

In the following section, we will extend this solution to the general vectorial case. 
Remark 2.1 Note that Equation (9) does not use all powers of matrix  , but only the ,k nF  functions of its 

invariants, which are simply computed by recursion, a worthwhile improvement of the computing cost. 

3. The 3D Case 
Now, we consider also the case of the 3 3×  system 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3 ,

x t a x t a y t a z t
y t a x t a y t a z t
z t a x t a y t a z t

′ = + +
 ′ = + +
 ′ = + +

                          (3.1) 

with matrix  : 

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

: ,
a a a
a a a
a a a

 
 

=  
 
 

  

we suppose 2,1 3,1 0a a ≠ , 1,2 3,2 0a a ≠ , 1,3 2,3 0a a ≠  (so that the system cannot be reduced to a 2 2×  or trivial 
system), and put by definition: 

( )

( ) ( ) ( ) ( ) ( )
( )

1 1,1 2,2 3,3

2 2
2 1,1 2,2 2,1 1,2 2,2 3,3 3,2 2,3 1,1 3,3 3,1 1,3

3

: ,
1: ,
2

: .

u tr a a a

u tr tr a a a a a a a a a a a a

u det

= = + +

 = − = − + − + − 

=



 



 

We consider, the Cauchy problem with initial conditions: 

( )
( )
( )

0 0

0 0

0 0 .

x t x
y t y
z t z

 =
 =
 =

                                      (3.2) 

By using the same technique as in the 2 2×  case, we find 

( ) ( ) ( ) ( )1 2 3 ,x t u x t u x t u x t′′′ ′′ ′= − +                              (3.3) 

and by iterating the procedure we obtain, for example, 
( ) ( ) ( ) ( ) ( ) ( ) ( )4 2

1 2 1 2 3 1 3 ,x t u u x t u u u x t u u x t′′ ′= − + − + +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5 3 2 2 2
1 1 2 3 1 2 2 1 3 1 3 2 32 ,x t u u u u x t u u u u u x t u u u u x t′′ ′= − + + − + + + −  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

6 4 2 2 3 2 2
1 1 2 1 3 2 1 2 1 2 2 3 1 3

3 2
1 3 1 2 3 3

3 2 2 2

2

x t u u u u u u x t u u u u u u u u x t

u u u u u u x t

′′ ′= − + + + − + − +

+ − +
 

and so on. In general we find the same recursion satisfied by the powers of the matrix   [6], i.e. 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1 1 2 3 2, 1 1 2 3 3, 1 1 2 3, , , , , , ,n

n n nx t F u u u x t F u u u x t F u u u x t− − −′′ ′= + +           (3.4) 

where the coefficients ( ) ( ), 1 2 3, , 1, 2,3; 1k nF u u u k n= ≥ −  are the generalized Lucas polynomials [4], defined by 
the recurrence relation: 

( ) ( ) ( ) ( ), 1 1 2 3 1 , 2 1 2 3 2 , 3 1 2 3 3 , 4 1 2 3, , , , , , , , ,k n k n k n k nF u u u u F u u u u F u u u u F u u u− − − −= − +           (3.5) 

and the initial conditions: 

1, 1 1,0 1,1

2, 1 2,0 2,1

3, 1 3,0 3,1

0 0 1,
0 1 0,
1 0 0.

F F F
F F F
F F F

−

−

−

= = =
= = =
= = =

                            (3.6) 

The second and third function ( )y t  and ( )z t  satisfy the same recursion (3.4). 
As a consequence, putting 
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( )
( )
( )

0 0 1,1 0 1,2 0 1,3 0

0 0 2,1 0 2,2 0 2,3 0

0 0 3,1 0 3,2 0 3,3 0

: ,
: ,
: ,

x x t a x a y a z
y y t a x a y a z
z z t a x a y a z

′ ′= = + +
′ ′= = + +
′ ′= = + +

 

and 

( )
( )
( )

0 0 1,1 0 1,2 0 1,3 0

0 0 2,1 0 2,2 0 2,3 0

0 0 3,1 0 3,2 0 3,3 0

: ,
: ,
: ,

x x t a x a y a z
y y t a x a y a z
z z t a x a y a z

′′ ′′ ′ ′ ′= = + +
′′ ′′ ′ ′ ′= = + +
′′ ′′ ′ ′ ′= = + +

 

and using Taylor expansion, the solution of the Cauchy problem (3.1) - (3.2), can be found in the form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1 1 2 3 0 2, 1 1 2 3 0 3, 1 1 2 3 0
0

1, 1 1 2 3 0 2, 1 1 2 3 0 3, 1 1 2 3 0
0

1, 1 1 2 3 0 2, 1 1 2 3 0 3, 1 1 2 3
0

, , , , , , ,
!

, , , , , , ,
!

, , , , , ,

n

n n n
n

n

n n n
n

n n n
n

tx t F u u u x F u u u x F u u u x
n
ty t F u u u y F u u u y F u u u y
n

z t F u u u z F u u u z F u u u z

∞

− − −
=

∞

− − −
=

∞

− − −
=

′′ ′ = + + 

′′ ′ = + + 

′′ ′= + +

∑

∑

∑ 0 .
!

nt
n

  

 

The above result can be put in the following vectorial form. 
Let ( ) ( ) ( ) ( )( )T

: , ,Z t x t y t z t= , ( )T
0 0 0 0: , ,Z x y z= , ( ) ( )T T

0 0 0 0 0 0 0: , , , ,Z x y z A x y z′ ′ ′ ′= = ⋅ , 
( ) ( )T T

0 0 0 0 0 0 0: , , , ,Z x y z x y z′′ ′′ ′′ ′′ ′ ′ ′= = ⋅ . 

Introduce the matrix ( )
0 0 0

0 0 0 0 0 0

0 0 0

, ,
x x x

Z Z Z y y y
z z z

′′ ′ 
 ′′ ′ ′′ ′=  
 ′′ ′ 

 and define 

( ) ( ) ( )( )T
1 1, 1 1 2 3 2, 1 1 2 3 3, 1 1 2 3: , , , , , , , , ,n n n nF F u u u F u u u F u u u− − − −=  

then, the solution in vectorial form reads 

( ) ( )0 0 0 1
0

, , .
!

n

n
n

tZ t Z Z Z F
n

∞

−
=

′′ ′= ⋅∑  

Remark 3.1 Even in this case, the considerations of Rem. 2.1 still hold, showing a more convenient form of 
computing solutions of the Cauchy problem (3.1) - (3.2), with respect to traditional methods, as reported e.g. in 
[2]. 

4. The General Result 
Theorem 4.1 Consider the Cauchy problem for a homogeneous linear differential system 

( ) ( )
( )0 0 ,

Z t A Z t
Z t Z
′ = ⋅

 =
                                  (4.1) 

where 

1,1 1,

,1 ,
,r

r r
r r r

a a
a a×

 
= =  

 





   

( ) ( ) ( ) ( )( )T
1 2, , , ,rZ t Z t Z t Z t=   

( ) ( ) ( )( )T
0 1 0 2 0 0, , , ,rZ Z t Z t Z t=   
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( ) ( ) ( )( )T
0 1 0 2 0 0 0, , , ,rZ Z t Z t Z t Z′ ′ ′ ′= = ⋅   

  

( ) ( ) ( )( )T1 1 1 1 2
0 1 0 2 0 0 0, , , ;r r r r r

rZ Z t Z t Z t Z− − − − −= = ⋅   

denote by ( ) ( )1 : , , :ru tr u det= =   the invariants of  , and recall the generalized Lucas polynomials 
( ), 1, ,k n nF u u  1, 2, , ; 1k r n= ≥ − , defined in [4]. 

Suppose that the system cannot be reduced to a lower order system, so that 

,1, , 1, 1,1, 2, , , 0j kj k k nk n a
= − +

∀ = ≠∏
 

 ,. 

Introduce the matrix ( )1
0 0 0, , ,rZ Z Z− ′
  and define 

( ) ( ) ( )( )T
1 1, 1 1 2, 1 1 , 1 1: , , , , , , , , , ,n n r n r r n rF F u u F u u F u u− − − −=      

then, the solution of problem (3.1) takes the form 

( ) ( )1
0 0 0 1

0
, , , .

!

n
r

n
n

tZ t Z Z Z F
n

∞
−

−
=

′= ⋅∑                             (4.2) 

Proof—The proof can be found by induction, considering the r vector 

( ) ( ) ( ) ( )( )T
1 2, , , rZ t Z t Z t Z t=   

composed of its first component ( )1Z t  and a second component given by the 1r −  vector ( ) ( )( )T
2 , , rZ t Z t , 

and applying the result from Section 2. 
Note that the convergence of the vectorial series in any compact set K of the space ( )1, , ru u  is guaranteed, 

since the components of 1nF −  are polynomials of weight not exceeding 1n − , and consequently are bounded in K. 

5. Conclusions 
We have recalled that the exponential ( )exp   of a matrix   can be written as a matrix polynomial, ob-
tained from the scalar polynomial interpolating ( )exp x  on the spectrum of  , and then avoiding the Taylor 
expansion for the exponential matrix. 

Furthermore, by using the functions ,k nF , and in particular the fundamental solution of a homogeneous linear 
recurrence relation, i.e. the generalized Lucas polynomials of the second kind, we have shown how to obtain the 
solution of the vectorial Cauchy problem (1) in terms of functions of the invariants of  , instead of powers of 
 . These functions are independent of the Jordan canonical form of  , and can be computed recursively, 
avoiding the knowledge of eigenvectors and principal vectors. Moreover, if the matrix is real, the ,k nF  func-
tions are real as well, and complex eigenvalues do not affect the form of the solution. 

Therefore, this is, in our opinion, a more convenient technique for solving problem (4.1). 
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