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Abstract 

Let ( ){ }X t t; 0≥  be a Gaussian process with stationary increments ( ) ( ){ } ( )2+ −E X t s X t s
2
= σ . 

Let ( )≥ta t 0  be a nondecreasing function of t with ta t0 ≤ ≤ . This paper aims to study the almost 

sure behaviour of ( ) ( ) ( )
→

+
k

tk

k kt
s ak

X t s X t,
0

lim sup sup
≤ ≤∞

−αβ  where  

( ) ( ) ( ) ( )( ),
− + + 

2 1 22 log log log 1 log log
k k kk t k t k tt a t a t aαβ σ α α= −  

with 0 1α≤ ≤  and { }kt  is an increasing sequence diverging to ∞ . 
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1. Introduction 
Let ( ){ }; 0W t t ≥  be a standard Wiener process. Suppose that ( )0ta t ≥  is a nondecreasing function of t such 
that 0 ta t< ≤  with ta t  is nonincreasing and { }kt  is an increasing sequence diverging to ∞ . In [1] the 
following results are established. 

i) If ( )1lim sup 1
kk k t

k
t t a+

→∞
− < , then 

( ) ( ) ( ),
0

lim sup sup 1 . .
k

tk

k kt
s ak

W t s W t a sαλ
≤ ≤→∞

+ − =                     (1) 

and 
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( ) ( ) ( ),lim sup 1 . .
kk k t kt

k
W t a W t a sαλ

→∞
+ − =                        (2) 

where 0 1α≤ ≤  and 

( ) ( ) ( )( ) 1 2

, 2 log log log 1 log log
k k kk t k t k tt a t a t aαλ α α

−
 = + + −  . 

ii) If ( )1lim inf 1
kk k t

k
t t a+

→∞
− > , then 

( ) ( ) ( ) ( ) ( ) ( ), ,
0

lim sup lim sup sup . .k kk k
k

t k k kt t
s ak k t

W t a W t W t s W t a sα αλ λ ε ∗

≤ ≤→∞ →∞
+ − = + − = , 

where 0 1α≤ ≤ , ( )( )
2

inf 0 : kk g t
α

γ
ε γ

−∗  = > < ∞ 
 

∑  and ( ) ( ) ( )1log log
k kk k k t tg t t t a a

α

αα −
= .  

In this paper the limit theorems on increments of a Wiener process due to [1] are developed to the case of a 
Gaussian process. This can be considered also as an extension of the results to Gaussian processes obtained in 
[2]. Throughout this paper, we shall always assume the following statements: Let ( ){ }; 0X t t ≥  be an almost  
surely continuous Gaussian process with ( )0 0X = , ( ){ } 0E X t =  and ( ) ( ){ } ( )2 2E X t s X t sσ+ − = , where  

( )sσ  is a function of 0s ≥ . Further we assume that ( )tσ , 0t ≥ , is a nondecreasing continuous concave, 
regularly varying function at exponent ( )0 1τ τ< <  at ∞  (e.g., if ( ){ }; 0X t t ≥  is a standard Wiener pro- 
cess, then ( )t tσ = ). 

Let ( )0ta t >  be a nondecreasing function of t with 0 ta t< ≤ . For large t, let us denote 

( ) ( ) ( )( )2 1 2
, 2 log

k tt k
a h tααβ σ − =    

where 0 1α≤ ≤  and ( ) ( ) ( )1log log t th t t t a aαα
α

−=  is an increasing function of t . 
We define two continuous parameter processes ( )1Y t  and ( )2Y t  by 

( ) ( ) ( )1
0
sup

ts a
Y t X t s X t

≤ ≤
= + −  

and 

( ) ( ) ( )2 tY t X t a X t= + − . 

2. Main Results 
In this section we provide the following two theorems which are the main results. We concern here with the de-
velopment of the limit theorems of a Wiener process to the case of a Gaussian process under consideration the 
above given assumptions. 

Theorem 1. Let ( )0ta t >  be a nondecreasing function of t where 0 ta t< ≤  with the nonincreasing func-
tion ta t  and let { }kt  be any increasing sequence diverging to ∞  such that 

( )1lim sup 1
kk k t

k
t t a+

→∞
− < ,                                  (3) 

then 

( ) ( )1,lim sup 1 . .
k kt

k
Y t a sαβ

→∞
=                             (4) 

and 

( ) ( )2,lim sup 1 . .,
k kt

k
Y t a sαβ

→∞
=                            (5) 

where ( ) ( ) ( )( )2 1 2
, 2 log

kk tt a h tααβ σ − =   . 

We note that ( ) ( ), ,k kt tα αβ λ≥  for large k in case of the Wiener process. It is interesting to compare (1) and (2) 
with (4) and (5) respectively. 
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Theorem 2. Let ( )0ta t >  be a nondecreasing function of t  where 0 ta t< ≤  with the nonincreasing 
function ta t  and let { }kt  be an increasing sequence diverging to ∞  such that 

( )1lim inf 1
kk k t

k
t t a+

→∞
− > ,                                    (6) 

then 

( ) ( ) **
1,lim sup . .

k kt
k

Y t a sαβ ε
→∞

=                             (7) 

and 

( ) ( ) **
2,lim sup . .,

k kt
k

Y t a sαβ ε
→∞

=                            (8) 

where 0 1α≤ ≤  and ( )( ){ }2
** inf 0 : kk h t

γ
αε γ

−
= > < ∞∑ .  

3. Proofs 
In order to prove Theorems 1 and 2, we need to give the following lemmas. 

Lemma 1. (See [3]). For any small 0ε ′ >  there exists a positive Cε ′  depending on ε ′  such that for all 
0u >  

( ) ( )
( )

( )2 2

0
sup e u

s m

X t s X t
P u C u

m
ε

εσ
′− +

′
≤ ≤

 + − > ≤ 
  

, 

where m is any large number and ( ){ }; 0X t t ≥  is defined above. 
Lemma 2. (See [4]) Let ( ){ };X t t T∈  and ( ){ };Y t t T∈  be centered Gaussian processes such that  

( ) ( )2 2EX t EY t=  for all t T∈  and ( ) ( ){ } ( ) ( ){ }E X t X s E Y t Y s≤  for all ,s t T∈ . Then for any real 
number u 

( ){ } ( ){ }sup sup
t T t T

P X t u P Y t u
∈ ∈

≤ ≤ ≤ . 

Proof of Theorem 1. Firstly, we prove that 

( ) ( )1,lim sup 1 . .
k kt

k
Y t a sαβ

→∞
≤                              (9) 

For any { }kt  with the condition (3), we define an increasing sequence { }ku  by 
1 10 and , 1

kk k k u k ku t u a t t k+ +< < ≤ < − ≥ . 

For instance, let kt k β=  for some 1β ≥ , 
1and

1 2kk k t k
k ku t a t

k k

β β+   = =   + +   
. 

The condition (3) is satisfied, and for large k, 1k k ku t u +< ≤  and 
k ku t ka a t< < . By Lemma 1, we have, for any 

small 0ε > , 

( ) ( ){ } ( ) ( )
( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )( )
( ) ( )( )

( ) ( )( )
( )( )( )
( )( )

2

1 2
1,

0

2 1 2 1

1

1

1

1 sup 1 2log

1 2 exp

exp log log

exp log log 1 log

exp log log 1 log

exp log

k
uk k

k

k

k

k

k k
kt

s a u

k k

k u

ak u k

ak u k

u

X u s X u
P Y u P h t

a

C h u C h u

C u a

C u u

C u u

C a

αα

ε ε
ε α α

αα

α

β ε ε
σ≤ ≤

− + + −

−

−

−

 + − ≤ + = ≤ + 
  

′≥ − ≥ −

 ′≥ − 
 

′≥ −

′≥ −

′≥ −

       (10) 
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where k is large enough and C′  is a constant. By the definition of 
kua , ( )( )1

exp log
ku

k
S C a

−
′= − = ∞∑ . 

We shall follow the similar proof process as in [5]. Set 

( )( ) ( )( )2 1 2

1 1

1 2exp log exp log
k ku u

k k
S C a C a S S

−

− −
′ ′= − + − = +∑ ∑ . 

Since { }kua  is an increasing sequence, the fact that S = ∞  implies 1 2S S= = ∞ . Consider the odd subse- 
quence { }2 1kt −  of { }kt  and define the sequence of events { }kA  in the following form 

( ) ( ){ }2 1 1 2 1, 1
kk ktA Y tαβ ε
− −= ≤ + . 

By (10), for large k we have 

( ) ( )( )2 1

1
exp log

kk tP A C a
−

−
′′≥ −  

where C′′  is a constant. From the fact 2 1 2 1 2k k ku t u− −< ≤ , it is clear that 

( ) ( )( )2 1

1
exp log

kk uP A C a
−

−
′′≥ − . 

Since 1S = ∞ , we get ( )kk P A = ∞∑ . Also, 

2 1 2 22 1 2 2 2 1k k kk t k u k u kt a u a t a t
−− ++ ≤ + < + = .                         (11) 

Setting 

( ) ( ) ( )( )
2 1

2 1

2 1 2 1,
0

sup 1
k

k

k k kt
s at

A X t s X tαβ ε
−

−

− −
≤ ≤

  ′ = + − ≤ + 
  

 

and 

( ) ( ) ( )( )
2 1

2 1

2 1 2 1,
0

sup 1
k

k

k k kt
s at

A X t s X tαβ ε
−

−

− −
≤ ≤

  ′′ = + − ≥ − − 
  

, 

we have 
( ) ( )k k

k k
P A P A′ ′′= = ∞∑ ∑ . 

Let 

( ) ( )( ) ( ) ( )( )
2 1

1 2 1 2 1 2 1 1 2 1
0

sup
k

k k k k
s at

X X t s X t X t s X t
−

− − − −
≤ ≤

= + − = + − , 

and  

( ) ( )( ) ( ) ( )( )
2 +1

2 2 +1 2 +1 2 +1 2 2 +1
0

sup
k

k k k k
s at

X X t s X t X t s X t
≤ ≤

= + − = + − . 

Then, by (11) and the concavity of ( )2 tσ  we find that 

( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

1 2 2 1 2 2 1 1 2 1 2 2 1

2 1 2 1 1 2 1 2 1

2 2
2 1 2 1 2 2 1 2 1 2 1

2 2
2 1 2 1 2 1 2 1 1

,

1 2

1 2 .

k k k k

k k k k

k k k k

k k k k

Cov X X E X t s X t s E X t s X t

E X t X t s E X t X t

t t s t t s s

t t t t s

σ σ

σ σ

+ − + −

+ − + −

+ − + −

+ − + −

= + + − +

− + +

= − + − − + −

− − − − −

 

This implies that ( )1 2, 0Cov X X ≤ . Using Lemma 2, we obtain 

( ) ( ) ( ) ( ) ( ) ( )andk l k l k l k lP A A P A P A P A A P A P A′ ′ ′ ′ ′′ ′′ ′′ ′′∩ ≤ ∩ ≤   

where k l≠ . It follows from the Borel-Cantelli lemma that 
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( ) ( ) ( )( )
2 1

2 1

2 1 2 1,
0

1 lim sup sup 1 , . .
k

k

k kt
s ak t

X t s X t a sαε β ε
−

−

− −
≤ ≤→∞

− − ≤ + − ≤ +  

Also, the same result for the even subsequence { }2kt  of { }kt  is easily obtained. Therefore we have (9). 
To finish the proof of Theorem 1, we need to prove 

( ) ( )2,lim sup 1 . .
k kt

k
Y t a sαβ

→∞
≥                            (12) 

The proof of (12) is similar to the provided proof in [1]. Thus the proof of Theorem 1 is complete. 
Proof of Theorem 2. Firstly, we prove that 

( ) ( ) **
1,lim sup . .

k kt
k

Y t a sαβ ε
→∞

≤                          (13) 

According to Lemma 1, we have 

( ) ( ){ } ( ) ( )
( ) ( ) ( )( )

( )( ) ( ) ( )

( )( ) ( )

2**

2**
1

** ** 1 2
1,

0

2 2

2

sup 2log

2

2

k
tk k

k k
k kt

s a t

k

k

X t s X t
P Y t P h t

a

C h t

C h t

αα

ε ε ε
ε α

ε ε
ε α

β ε ε ε ε
σ≤ ≤

− + +

− +

 + − ≥ + = ≥ + 
  

≤

≤

 

provided k is large enough, where 0ε >  and 3 2
10 ε ε< < . 

From the definition of **ε , it follows that 

( ) ( ){ }**
1,k kt

k
P Y tαβ ε ε≥ + < ∞∑ . 

Thus, (13) is immediate by using Borel Cantelli lemma. 
To finish the proof of Theorem 2 we need to prove 

( ) ( ) ( )( ) **
,lim sup , . .

k kk k t tt
k

X t a X a a sαβ ε
→∞

+ − ≥                       (14) 

Let 

( ) 2 21 e d , 0
2π

x
u

u x u
+∞ −Φ = ≥∫ . 

Using the well known probability inequality 

( )
( )

( )
2 22 21 4 1e e , 0

32π 1 2π 1
u uu u

u u
− −≤ Φ ≤ ≥

+ +
 

(see [6]), one can find positive constants C and K such that, for all k K≥ , 

( )
( ) ( )

( ) ( ) ( )( )

( ) ( )( ){ } ( )( ) ( )

( )( ) ( )

2**

2**

1 2**

1** 1/2

2 log

1 2log 1
2π

k k

k

k t t
k k

t

k k

k

X t a X a
P B P h t

a

h t h t

C h t

α

ε ε
α α

ε ε
α

ε ε
σ

ε ε
− − −

′− −

 + − = ≥ − 
  

≥ − +

≥

 

where **0 ε ε ε′< < < and ( ) ( ) ( )( ) ( ){ }**
, k kkk k t ttB X t a X aαβ ε ε= + − ≥ − . By the definition of **ε , we have  

( )k
k

P B = ∞∑ . 

The condition (6) implies that there exists 0K >  such that 1 kk k tt t a+ ≥ +  for all k K≥ . So, using Lemma 2 
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and the concavity of ( )2 tσ , we obtain 

( ) ( ) ( )k l k lP B B P B P B∩ ≤ , 

where k l≠  and Borel-Cantelli lemma implies (14). If ** 0ε = , then Theorem 2 is immediate. Thus the proof 
of Theorem 2 is complete. 

4. Some Results for Partial Sums of Stationary Gaussian Sequence 
In this section we obtain similar results as Theorems 1 and 2 for the case of partial sums of a stationary Gaussian 
sequence. Let { }nX  be a stationary Gaussian sequence with 0 0X = , { }1 0E X = , { }2

1 1E X =  and  

{ }1 1 0nE X X + ≤  for all 1, 2, .n =   We define ( ) 1
n

iiS n X
=

= ∑  with ( )0 0S =  and set ( ) ( ){ }2 2n E S nσ = .  

Assume that ( )nσ  can be extended to a continuous function ( )tσ  with 0t >  which is nondecreasing and 
regularly varying with exponent ( )0 1τ τ< <  at ∞ . Suppose that { }na  is a nondecreasing sequence of posi-
tive integers such that 0 na n≤ ≤ . For large n, we define 

( ) ( ) ( )( )2 1 2
, 2 lognn a h nααβ σ − =   , 

where 0 1α≤ ≤  and ( ) ( ) ( )1log log n nh n n n a aαα
α

−=  is an increasing function of n and also we define dis-
crete time parameter processes by 

( ) ( ) ( )1 0
max

nk
k k kj a

Y n S n j S n
≤ ≤

= + −  

and 

( ) ( ) ( )1 0
max

k
nk

k k n kj a
Y n S n a S n

≤ ≤
= + − , 

respectively, where { }kn  is an increasing sequence of positive integers diverging to ∞ . By the same way as in 
the proofs of Theorems 1 and 2, we obtain the following results. 

Theorem 3. Under the above statements of { }nX , ( ),n αβ  and ( ) , 1, 2i kY n i = , for 0 1α≤ ≤  we have the 
following: 

i) If ( )1lim sup 1
kk k n

k
n n a+

→∞
− < , then 

( ) ( ),lim sup 1 . ., 1, 2.
k i kn

k
Y n a s iαβ

→∞
= =  

ii) If ( )1lim inf 1
kk k n

k
n n a+

→∞
− > , then 

( ) ( ) **
,lim sup . ., 1, 2,

k i kn
k

Y n a s iαβ ε
→∞

≤ =  

where 

( )( ){ }2
** inf 0 : kk h n

γ
αε γ

−
= > < ∞∑ . 

Example. Let ( ){ }; 0X t t≤ < ∞  be a fractional Brownian motion with the covariance function  

( ) ( ){ } { } 2, 0 1E X t X s t s t sτ τ τ τ= + − − < < . Then 

( ) ( ){ }2
E X t S s t s τ− = − . 

Define random variables 

0 0X = , 

( ) ( )1 , 1, 2, ,n n nX X X n−= − =   

( ) 1
n

iiS n X
=

= ∑  and ( )0 0S = . 

Then 
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( ) ( ){ } ( ){ }2 2 2n E S n E X n nτσ = = =  

and { }; 1, 2,nX n =   is a stationary Gaussian sequence with { }1 0E X = , { }2
1 1E X =  and ( ){ }1 1 0nE X X + ≤  

for all 1, 2,n =  . So we have Theorem 3. 
In particular if 1 2τ = , then { }; 1, 2,nX n =   is an i.i.d. Gaussian sequence with { }1 0E X =  and 
{ }2

1 1E X = . 

5. Conclusion 
In this paper, we developed some limit theorems on increments of a Wiener process to the case of a Gaussian 
process. Moreover, we obtained similar results of these limit theorems for the case of partial sums of a stationary 
Gaussian sequence. Some obtained results can be considered as extensions of some previous given results to 
Gaussian processes. 
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