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Abstract 
Nonlinear systems involving impulse effects, appear as a natural description of observed evolu-
tion phenomena of several real world problems, for example, many biological phenomena involv-
ing thresholds, bursting rhythm models in medicine and biology, optimal control models in eco-
nomics, population dynamics, etc., do exhibit impulsive effects. In a recent paper [1], both real and 
complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit cycles and in 
[2] an active control and chaos synchronization was introduced. In this paper, impulsive synchro-
nization for the real and complex Van der Pol oscillators is systematically investigated. We derive 
analytical expressions for impulsive control functions and show that the dynamics of error evolu-
tion is globally stable, by constructing appropriate Lyapunov functions. This means that, for a rel-
atively large set of initial conditions, the differences between the master and slave systems vanish 
exponentially and synchronization is achieved. Numerical results are obtained to test the validity 
of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos 
synchronization in our nonlinear oscillators. 
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1. Introduction 
The stabilization and control of nonlinear systems is one of the most important properties of the systems and has 
been studied widely by many researchers in control theory (see Refs. [2]-[5]). As the key technology of secure 
communication, chaotic synchronization has been widely developed since Pecora and Carroll [6] proposed the 
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principle of chaos synchronization and realized it in the circuit in 1990. The basic behavior and chaotic 
synchronization have been studied by several researchers (see Refs. [7]-[10]). The concept of synchronization 
consists in making two chaotic systems (identical or different) which oscillate in a synchronized manner. 

On the other hand, since Fowler et al. [11] introduced the complex Lorenz equations as a generalization of the 
real Lorenz system, many chaotic complex systems have been proposed such as chaotic complex Lu and Chen 
[1] [4] [8] [12], complex Van der Pol [1], and references therein. 

A wide variety of methods have been proposed and applied for the synchronization of chaotic systems which 
include, for example, active control, global synchronization, adaptive control, linear and nonlinear feedback and 
back stepping design (see Refs. [5] [6] [9] [10] [13]-[15]) and references therein. The great interest in synchro-
nization is not only due to the possibility of sending messages through chaotic systems for secure communica-
tion, but also due to applications in other fields, such as electrical and automation engineering, biology and 
chemistry. The synchronized systems usually consist of two parts: A transmitter of chaotic signals (master os-
cillator) and a receiver (slave oscillator). A chaotic signal generated by the master oscillator may be used as an 
input in the slave oscillator. After synchronization, the trajectory of the slave oscillator asymptotically ap-
proaches that of the master oscillator and the error signal is zero. 

In applied sciences and engineering there are a lot of problems involving complex variables which are de-
scribed by these complex systems. For example, in secure communications, doubling the number of variables or 
using complex variables (which means using higher dimensional chaotic systems) increases the content and se-
curity of the transmitted information and in many important fields of physics, engineering and computer science, 
such as laser physics, control, flow dynamics and liquid mixing, electronic circuits, secure communications and 
information sciences (see Refs. [11] [16]-[22]). 

Recently, impulsive control has been widely used to stabilize and synchronize chaotic systems (see Refs. 
[23]-[27]). Its necessity and importance lie in that, in some cases, the system cannot be controlled by continuous 
control. For example, a government cannot change savings rates of its central bank every day. Additionally, im-
pulsive control may give a more efficient method to deal with systems that cannot endure continuous distur-
bance. Furthermore, impulsive method can also greatly reduce the control cost. 

The main ideas of these impulses are to use samples of the state variables of the master system at discrete 
moments and to synchronize the slave system discretely. Once the error system of the two coupled systems is 
asymptotically stable, they are said to be synchronized. Generally speaking, these impulses are samples of the 
state variables of the master system at current discrete moments to drive the slave system. However, we can also 
design a novel impulse using not only current instantaneous errors, but also the previous time instants of errors. 
By using such a technique, we can increase the impulse distances and reduce the control cost. 

In this work both real and complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit 
cycles (see Ref. [1]). We use the impulsive control technique to achieve synchronization of both real and 
complex Van der Pol oscillators. 

( )21 0,x x x x+ − − =                                       (1) 

( )1 0,z z zz z+ − − =                                       (2) 

where z x iy= +  is a complex function with 2 1i = − , the par denotes the complex conjugate and   is a scalar 
parameter. If we select 0<  then both real and complex Van der Pol exhibit unstable limit cycles as shown in 
Figure 1. These systems arise in many important applications in physics, electronics, and biology. For more 
details, see Refs. [1] [28]-[30]), and references therein. 

The rest of the paper is organized as follows: In Section 2, a theory on the stability of impulsive nonlinear 
equations is given. In Section 3, we apply the impulsive synchronization technique to study the chaos synchro-
nization of real Van der Pol oscillator. In Section 4, we extend this investigation to complex Van der Pol oscil-
lator in a chaotic state by using the same technique of Section 3. A good agreement is found between the analyt-
ical results and the numerical ones. Section 5 is devoted to the conclusions of this study. 

2. Impulsive Control of Nonlinear System 
The impulsive differential equations, that is, differential equations involving impulse effects, appear as a natural 
description of observed evolution phenomena of several real world problems, for example, that many biological 
phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in  
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Figure 1. (a) The phase portrait of the chaotic real Van der Pol oscillators (1) for ( ) ( )1 10.18, 0 1.5, 0 1.21x y= − = = , and 

( )0 1 10 ;t x x x y= = = , and (b) x versus x , (c) y versus y  the phase portrait of the chaotic complex Van der Pol oscillators 

(2); for ( ) ( ) ( ) ( )1 1 2 20.18, 0 1.5, 0 1.21, 0 1.5, 0 1.21x y x y= − = = = = .                                                        

 
economics, population dynamics see Refs. [11] [16]-[22]). The mathematical description of these impulsive 
systems of differential equations are usually define as an ordinary differential equations coupled with a system 
of difference equations, as expressed in the following system: 

( )
( ) ( )

( ) ( )0 0

, ,

,

1, 2,3, ,
k

k

t k k k

x f t x t t

x x t x t t t

x t x k

+ −

+

 = ≠
∆ = − =


= =





                                  (3) 

where [ )0 0, , 0, nt J t t x R∈ = +∞ ≥ ∈  is the state variable, and : n nf J R R× →  is a continuous-valued func-  
tion. The impulsive control law of system (3) is given by the sequence ( )( ){ },k k kt u x t , which has the effect of  

suddenly changing the state of the system at the instants kt , where 1 2 , limk k kt t t t→∞< < < < = ∞   and 
0 1t t< . The difference equations are given by 

( ) ( ) ( )( ) ,kt k k k kx x t x t u x t+ −∆ = − =                                (4) 

where ( ) ( )lim
k

k t t
x t x t+

+
→

=  and ( ) ( )lim
k

k t t
x t x t−

−
→

= . For simplicity, we assume that ( ) ( )k kx t x t− =  and  
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( )( )k ku x t  can be chosen as ( )k kB x t  where kB  being n n×  matrices. The objective is to find some 
(sufficient) conditions on the constant control gains, kB , and the impulsive intervals  

( )1 1, 2,3,k k kt t kτ −= − < ∞ =  , such that the impulsively controlled system (3) is stable. 
The above chaotic system can be written into the form  

( )

( ) ( )0 0

,

,

1, 2,3, ,
k

k

t k k

x Ax x t t

x B x t t

x t x k+

 = +Φ ≠
∆ = =


= =





                                   (5) 

where A is the linear part matrix of the corresponding system, and ( )xΦ  is the nonlinear part. We consider the 
system (5) as the master or drive system. 

We consider the following chaotic system described by the dynamics 

( )

( ) ( ) ( )0 0

,

,

1, 2,3, ,
k

k

t k k

y Ay y t t

y B y t t

y t y t k+

 = +Φ ≠
∆ = =


= =





                                (6) 

as the slave or response system. If we define the synchronization error as  
,e y x= −                                                   (7) 

then the error dynamics system of the impulsive synchronization is obtained as  

( )

( ) ( )0 0

, ,

,

1, 2,3, ,
k

k

t k k

e Ae e t t

e B e t t

e t e k+

 = +Ψ ≠
∆ = =


= =





                                   (8) 

where ( ) ( ) ( )e y xΨ = Φ −Φ . We assume that the parameters of the master and slave systems are known and 
that the states of both systems (5) and (6) are available for measurement. Note that there exists a positive 
constant M for the chaotic systems (1) and (2) that ( )ix t M≤  for all t. For convenience, define the following 
notations:  

( ) ( ) ( ) ( )TT
2 max max

1 , .
2 k k kA A A I B I Bλ λ β λ  = + = + +   

The impulsive synchronization calculations lead to the following Theorem. 
Theorem: If we consider the Lyapunov function defined by ( ) TV x e e=  and  
(I) If ( )22 0rA Lλ λ+ = < , ( λ  is a constant) and there exist a constant 0 α λ≤ < − , such that 

( )1ln 0, 1,2, .k k kt t kβ α −− − ≤ =   Then the trivial solution of system (8) is globally exponentially stable, that is, 
system (6) is globally exponentially synchronous with system (5). 

(II) If ( )22 0,rA Lλ λ+ = ≥  ( λ  is a constant) and there exist a constant 1α ≥ , such that  
( ) ( )1ln 0, 1,2, .k k kt t kαβ λ −+ − ≤ =   Then system (6) is globally exponentially synchronous with system (5). 

In the following, we will takes real and complex Van der Pol oscillators for examples to obtain some more 
practical results. 

3. Chaos Synchronization of Two Identical Real Van der Pol Oscillators 
Assume that, the system (1) has two identical chaotic Van der Pol oscillators playing the master and slave 
oscillators respectively. The master oscillator is described as:  

( )21 0,x x x x− − + =                                           (9) 

and the slave oscillator is given by: 
( )21 0,y y y y− − + =                                         (10) 
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where dots denote differentiation with respect to time, 1x  denotes the state vector of the master oscillator, 2x  
denotes the state vector of the slave oscillator. 

Substituting 1x x= , 1 2x x=  in (9) and 1y y= , 1 2y y=  in (10) the resulting two systems of first order 
ODEs are: 

1 2 ,x x=                                             (11) 

( )2
2 1 2 11 ,x x x x= − −   

and 

1 2 ,y y=                                             (12) 

( )2
2 1 2 11 .y y y y= − −   

We wish to obtain an appropriate impulsive synchronization such that the solution of the slave oscillator 
asymptotically approaches the solution of the master oscillator, hereby, the two oscillators are synchronized with 
each other. To do that let us consider the error equation: 

1 1 1 2 2 2ande y x e y x= − = −  

According to the synchronization theory the subtraction of Equation (12) from Equation (11) now gives:  

1 2 ,e e=                                            (13) 

( )2 2
2 1 2 2 1 2 1 1 1 22 .e e e e y x e e x x= − + − + +    

We can rewrite the above systems into the matrix form 

( )
1 1

2 2
2 1 2 1 1 1 22 2

00 1
.

21
e e

e y x e e x xe e

     
= +       − + +−        



 
                     (14) 

Then the error system of the impulsive synchronization is given by  

( )

( ) ( )0 0

,

,

1, 2,3, ,
k

r r k

t k k

e A e e t t

e B e t t

e t e k+

 = +Ψ ≠
∆ = =


= =





                                 (15) 

where 
0 1
1rA  

=  − 
 is the linear part matrix of the corresponding system,  

( ) ( )( )T2 2
2 1 2 1 1 1 20, 2r x e y x e e x xΨ = − + +  and kt  denotes the instant when impulsive control occurs. 

System (13) can be considered as a control problem, which is a function of the error vector , 1, 2.ie i =  Also it 
is synchronized with respect to a Lyapunov function ( )V t  via the design of Impulsive control, so one can 
achieve synchronization between the master and the slave oscillators. 

Let us consider the Lyapunov function ( ) TV x e e= . For t τ≠ , we have 

( )( ) ( )( ) ( )( )
( )
( ) ( )( ) ( ]

T T

T T 2 2 2
2 2 1 1 2 1 2 1 1

2 1 1

2 2

2 3 , , , 1, 2,3, ,

r r

r r

r k k

V e t A e e e e A e e

e A A e e x y e e e e x y

A L V x t t t t kλ −

= +Ψ + +Ψ

 = + − + + 
≤ + ∈ =  





                   (16) 

where 2
1L M= − . 

Corollary 1. Assume that 0kt τ= >  and matrices ( )1,2, .kB B k= =   
I) If ( )2 12 2 0rA Lλ λ+ = <  and there exists a constant 0 α λ≤ < − , such that ln 0,β ατ− ≤  then the 

system (12) is globally exponentially synchronous with system (11). 
II) If ( )2 12 3 0,rA Lλ λ+ = ≥  ( λ  is a constant) and there exist a constant 1α ≥ , such that  
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( )ln 0, 1,2,kαβ λτ+ ≤ =  , then system (12) is globally exponentially synchronous with system (11).  
According to Equation (16), the fixed point of system (13) is asymptotically stable, which means that the 

errors ( )1, 2ie i =  vanish as t goes to infinity. 
Systems (11) and (12) with (13) are solved numerically using Scilab software and the simulation results are 

shown in Figure 2 for 0.18,= −  ( )1 0 1.5,x =  ( )1 0 1.21y =  and ( )2 0 1.5,x = −  ( )2 00 1.21, 0.y t= − =  The 
eigenvalues are 0, −0.36. Then ( )22 0Aλ λ= = . If we choose ( ) ( )1 2diag , diag 0.85, 0.95B b b= = − − , then  

( ) ( ){ }2 2
1 2max 1 , 1 0.0225b bβ = + + = . In the synchronization of two real systems, the initial conditions for the  

drive and response systems are chosen as ( )T1.5,1.21  and ( )T1.5, 1.21− − . We can get from the simulation that 
the approximate bounds 2M  of system (15) is 3. Thus ( )2 12 3 4.82rA Lλ λ= + = . Take 1.01α = , thus if  

ln 0.7786αβτ
λ

< − = , when 0.75τ =  system (11) is globally asymptotically synchronous with system (12). 

Impulsive Synchronization of the Complex Van der Pol Oscillators 
We study the impulsive synchronization of the complex Van der Pol oscillator. For simplifying the the problem, 
 

 
Figure 2. Left figures (a) x1 versus y1, (b) x2 versus y2, (c) error e1 versus e2, impulsively synchronization 
of the real Van der Pol oscillator (1) cannot be stabilized with τ = 0.85; right figures (d) x1 versus y1, (e) 
x2 versus y2, (f) error e1 versus e2. Synchronization errors solutions of systems (1) and (13) with τ = 0.75.                 
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we assume that we have two identical complex Van der Pol oscillator and using the same technique of sub- 
section 2. Oscillator (2) is a system of two coupled nonlinear Van der Pol oscillators that takes the form  

( )2 2 1 0,x x y x x+ + − + =                                 (17) 

( )2 2 1 0.y x y y y+ + − + =   

Let 1,x x=  2 ,x x=  3y x=  and 4y x= , then system (12) becomes: 

1 2 ,x x=                                               (18) 

( )2 2
2 1 2 1 3 1 ,x x x x y= − − + −   

3 4 ,x x=  

( )2 2
4 3 4 1 3 1x x x x y= − − + −   

which represent the master oscillator, so the slave oscillator is given by:  

1 2 ,y y=                                               (19) 

( )2 2
2 1 2 1 3 1 ,y y y y y= − − + −   

3 4 ,y y=  

( )2 2
4 3 4 1 3 1y y y y y= − − + −   

let ( )T
1 2 3 4, , ,x x x x=x  and ( )T

1 2 3 4, , ,y y y y=y  denote the state vectors of master and slave oscillators respec- 
tively and T denotes the transpose. In order to apply the impulsive synchronization, we define the error e  
vector as: 

= −e y x                                             (20) 
The subtraction of system (18) from (19) gives a function of error vector e  as follows:  

1 2 ,e e=                                                      (21) 

( ) ( )2 2 2 2
2 1 2 2 1 3 2 1 3 ,e e e y y y x x x= − + − + + +     

3 4 ,e e=  

( ) ( )2 2 2 2
4 3 2 4 1 3 4 1 3 .e e e y y y x x x= − + − + + +     

We can rewrite the error systems into the matrix form  

( ) ( )

( ) ( )

1 1
2 2 2 2

2 1 3 2 1 32 2

3 3

2 2 2 2
4 4 4 1 3 4 1 3

00 1 0 0
1 0 0

.
0 0 0 1 0
0 0 1

e e
y y y x x xe e

e e
e e y y y x x x

            − + + + −    = +              −  − + + +     









 

  

                (22) 

Then the error system of the impulsive synchronization is given by 

( )

( ) ( )0 0

,

,

1, 2,3, ,
k

c c k

t k k

e A e e t t

e B e t t

e t e k+

 = +Ψ ≠
∆ = =


= =





                              (23) 

where 
0 1 0 0
1 0 0

,
0 0 0 1
0 0 1

cA

 
 − =
 
 

− 




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is the linear part matrix of the corresponding system and  

( )
( ) ( )

( ) ( )

2 2 2 2
2 1 3 2 1 3

2 2 2 2
4 1 3 4 1 3

0

.
0c

y y y x x x
x

y y y x x x

 
 
− + + + 

Ψ =  
 
 − + + + 

 

 

 

Let us consider the Lyapunov function ( ) TV x e e= . For t τ≠ , we have  

( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ]

T T

T T 2 2 2 2 2 2 2 2
2 2 1 3 2 2 1 3 4 4 1 3 4 4 1 3

22 2 22 2
2 1 2 3 4 2

2 2 1

2

2 4 2 2 2 8

2 8 , , , 1, 2,3, ,

c c c c

c c

k k

V e t A e e e e A e e

e A A e y e y y x e x x y e y y x e x x

A V x t M e e e e A M V x t

A L V x t t t t k

λ λ

λ −

= +Ψ + +Ψ

 = + + − + + + − + + + 
   ≤ − + + + ≤ −  

≤ + ∈ =  







 
      (24) 

where 2
2L M= − . 

Corollary 2. Assume that 0kt τ= >  and matrices ( )1,2, .kB B k= =   
I) If ( )2 22 8 0cA Lλ λ+ = <  and there exists a constant 0 α λ≤ < − , such that ln 0β ατ− ≤ , then the sys- 

tem (19) is globally exponentially synchronous with system (18). 
II) If ( )2 22 8 0,cA Lλ λ+ = ≥  ( λ  is a constant) and there exist a constant 1α ≥ , such that  
( )ln 0, 1,2,kαβ λτ+ ≤ =  , then system (19) is globally exponentially synchronous with system (18).  
If 0<  then V  is negative and the system (21) is asymptotically stable which mean the error ie  ap- 

proaches zero as t approaches infinity. 
Systems (18) and (19) with (21) are solved numerically using Scilab software and the simulation results are 

shown in Figure 3 for 0.18,= −  ( )1 0 1.5,x =  ( )1 0 1.21y =  and ( )2 0 1.5,x = −  ( )2 00 1.21, 0.y t= − =  The 
eigenvalues are 0, −0.18. Then ( )22 0Aλ λ= = . If we choose  

( ) ( )1 2 3 4diag , , , diag 0.85, 0.95, 0.85, 0.95B b b b b= = − − − − , then 
 

 
Figure 3. Left figures (a) x1 versus y1, (b) x2 versus y2, (c) x3 versus y3, impulsively synchronization of the complex 
Van der Pol oscillator (2) cannot be stabilized with τ = 0.85; right figures (a1) x1 versus y1, (b1) x2 versus y2, (c1) x3 
versus y3 impulsively synchronization of the complex Van der Pol oscillator (2) can be stabilized with with τ = 0.75.            
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Figure 4. Synchronization errors solutions of system (21) cannot be stabilized with with τ = 0.85; (e), (f) 
and can be stabilized with τ = 0.75; (e1), (f1).                                                            

 

( ) ( ) ( ) ( ){ }22 2 2
1 2 3 4max 1 , 1 , 1 , 1 0.0225b b b bβ = + + + + = . In the synchronization of two real systems, the initial  

conditions for the drive and response systems are chosen as ( )T3.0,4.0,3.0,4.0  and ( )T6.0,7.0,6.0,7.0 . We 
can get from the simulation that the approximate bounds 2M  of system (23) is 3. Thus  

( )2 22 8 12.96cA Lλ λ= + = . Take 1.01α = , thus if 
ln 0.2919976573αβτ
λ

< − = , when 0.2τ =  system (18)  

is globally asymptotically synchronous with system (19). Synchronization errors solutions of systems (21) are 
shown in Figure 4. 

4. Conclusion 
In this paper, we have applied an impulsive control technique for both real and complex Van der Pol oscillators 
to synchronize the chaotic limit cycles. This technique is widely used in the control of chaotic dynamical sys-
tems. The simulation results illustrate that, the trajectory of the slave system of both real and complex oscillators 
asymptotically approaches its analog of the master system, and finally the two systems implement their mutual 
synchronization. 
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