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Abstract 
This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential 
equations. Unlike the traditional power series method which is applied to solve only linear differ-
ential equations, this new approach is applicable to both linear and nonlinear problems. The 
method produces a system of algebraic equations which is solved to determine the coefficients in 
the trial solution. The method provides the solution in form of a rapid convergent series. The ob-
tained results for numerical examples demonstrate the reliability and efficiency of the method. 
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1. Introduction 
Although both ordinary differential equations (ODEs) and delay differential equations (DDEs) are used to de-
scribe physical phenomena, they are different. While in ODEs the derivatives of unknown functions are de-
pendent on only the current value of the independent variable, in addition to this in DDEs, the derivatives of 
unknown functions are dependent on the values of the functions at previous time. This implies that the solution 
of DDEs requires the knowledge of the current state and the state at certain previous times.  

Some of the application areas of delay differential equations are population dynamics, infectious disease, 
physiological and pharmaceutical kinetics, chemical kinetics, models of conveyor belts, urban traffic, heat ex-
changers, robotics, navigational control of ships and aircrafts, and more general control problems (see [1]-[4]).  

There are a few classes of nonlinear ODEs for which solutions can be easily found and despite the obvious 
similarities between ODEs and DDEs, solutions of DDE problems can differ from solutions for ODE problems 
in several striking and significant way [5]. Delay problems always lead to an infinite spectrum of frequencies. 
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Therefore, they are solved by numerical methods, asymptotic solution, approximations and graphical approaches 
[6]. As a result of a dramatic increase in the application of delay models, many authors have investigated and 
proposed various methods for solving DDEs, Spline methods (see [7]-[9]), Homotopy Analysis Method (HAM) 
[10], Homotopy perturbation method (HPM) [11], Adomain decomposition method (see [12]-[14]), Iterative 
decomposition method [15] and Variation Iteration Method (VIM) [6]. 

In this paper, we consider a modified power series method for solving the delay differential equations of the form.  
( ) ( ) ( ) ( )( )( ), , ,    0 1ny t f t y t y t tε= ≤ ≤                              (1) 

( ) ( ) ,    0,1, , 1i
iy t y i n= = −                                  (2) 

where n and ( )i n i>  denote the order of derivatives. 

2. Description of the Method 
According to the MPSM, the Nth degree approximate solution to the DDE (1)-(2) is given by 
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where  
( ) ( )lim

NN
y t y t

→∞
=                                      (4) 

The MPSM is described by the following five-step procedure: 
Step 1 
Rewrite Equation (1) such that only the nonhomogeneous term is on the right hand side of the equation 
Step 2 
On the left hand side of the nonhomogeneous differential equation, substitute 
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and the derivatives of ( )
N

y t  up to order n. However, if the nonhomogeneous term or a coefficient of y or its 
derivative is not a polynomial but analytic at 0t = , then replace it by its Taylor series expansion of degree N 
about 0t = . 

Step 3 
Collect the power of t on the left hand side of the equation resulting from step 2 and set the coefficient of each 

power of t on the left hand side equal to the corresponding coefficient on the right hand side of the equation. 
Step 4 
Solve, using either the Newton’s method or forward substitution method, the first ( )1N n− +  equations re-

sulting from Step 3 (these are the equations obtained by equating the coefficients of the corresponding powers of 
t from 0t  up to N nt − ) together with the n equations generated by the associated given conditions to find ja , 

0,1, ,j N=  . 
Step 5 
Substitute the coefficients ja  determined in Step 4 into Equation (3) to obtain an approximate solution of 

degree N to the delay differential Equation (1)-(2). 

3. Illustrative Examples 
Example 3.1 (see [8] [9] [15]) 
Consider the first-order nonlinear DDE 

( ) 2d
1 2 ,    0 1

d 2
y t ty t

t
 = − ≤ ≤ 
 

                               (7) 

Subject to 
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( )0 0y =                                         (8) 

Applying the proposed method illustrated in section 2 to this problem for the cases N = 3, 5, 7, 8, 11, we ob-
tain as follows: 
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Obviously,  

( ) ( )lim sin
NN

y t t
→∞

=  

which is the exact solution to Example 3.1. 
 
Example 3.2 (see [7] [8] [10] [15]) 
Consider the second-order linear DDE 

( ) ( )
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Using the proposed method for 2N = , we obtain ( ) 2y t t=  which is the exact solution to this example. 
 
Example 3.3 (see [8] [9] [12] [15]) 
Consider the third-order nonlinear DDE 
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with the proposed method illustrated in section 2, we obtain for the cases N = 5, 7, 9, 11 and 13 as follows: 
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Clearly,  

( ) ( )lim sin
NN

y t t
→∞

=  

which is the exact solution to Example 3.3. 
 
Example 3.4 (see [6] [10] [12]) 
Consider the first-order linear DDE 
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( )0 1y =                                       (14) 

The exact solution is given by ( ) ety t =  
For 2, 4,6,8,10N = , the present method yields in turn 
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which converges to ( ) ety t =   the exact solution to Example 3.4. 

4. Conclusion  
A simple and straight forward technique based on the power series method has been studied for the solution of 
delay differential equations. This new approach is implemented without using restrictive assumptions or adding 
perturbation term and it gives excellent performance compared with existing techniques for solving delay dif-
ferential equations. 
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