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Abstract 
The objective of this paper is to review the lifespan model. This paper will also suggest four addi-
tional general alternative computational methods not mentioned in Kass, R.E. and Vos, P.W. [1] [2]. 
It is not intended to compare the four formulas to be used in computing the Gaussian curvature. 
Four different formulas adopted from Struik, D.J. [3] are used and labeled here as (A), (B), (C), and 
(D). It has been found that all four of these formulas can compute the Gaussian curvature effec-
tively and successfully. To avoid repetition, we only presented results from formulas (B) and (D). 
One can more easily check other results from formulas (A) and (C). 
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1. Introduction 
The exponential, Weibull, gamma, lognormal, inverse Gaussian, and generalized gamma distributions are the 
most frequently used parametric lifespan models. Among the most commonly used lifespan models, the author 
has chosen three that he has studied since he was a graduate student. Lawless, J.F. [4] has suggested at least six 
different categories in applications. In the early 1980s, Chen, W. [5]-[8] pursued this area of study for two basic 
reasons. First, there was industrial interest. Engineering, medicine and biological sciences used the lifespan 
model to predict the best future values of their censored samples. Secondly, the author wanted to expand on his 
dissertation. If we summarized the last forty years of statistical research, the scientific community has had two 
fundamental topics to study. The first fundamental topic: suppose we are given a set of lifetime data, how do we 
decide which lifespan model best describes the data? A second interesting topic for researchers is data sets that 
can be “censored data”, where experiments in the sample only provide a lower or upper bound of lifetime. For 
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example, Gupta, A. [9] presented results of a life-test on ten laboratory mice following inoculation with a uni-
form culture of human tuberculosis. The test was terminated with the death of the seventh specimen. Thus, the 
sample in this case was Type-II single right censored. Gupta then assumed that log lifespan was distributed 
normally with mean µ  and variance 2σ , and then carried out the analysis as described in reference [10]. 
Chen, W. and Balakrishnan, N. [10] [11] have computed over one hundred thousand numerical integrations to 
find the moments of inverse Gaussian model and lognormal model, and then standardized these moments to find 
the best linear unbiased predicted sequences (EBLUP). Using these computed sequences it will give us the best 
prediction of the missing observations. However, in this paper we switch our attention to the geometrical prop-
erty of lifespan model. To make it easier to follow what we have accomplished in this paper, we summarized our 
approach into four systematic steps to compute the Gaussian curvature: Step 1—compute the coefficients of the 
expected Fisher Information Matrix or coefficients of the first fundamental form, namely, E, F and G; Step 
2—compute the needed first or second derivative of E, F and G, and thus the six Christoffel symbols; Step 
3—apply formula (B) or (D), which necessitates in the computation of the mixed Riemann curvature tensors 

1
121ℜ  and 2

121ℜ , then subsequent computation of the inner product of this tensor with the metric tensor, F or G, 
results in the covariant Riemann curvature tensor 1212ℜ , and Step 4—observe that the Gaussian curvature has a 
very simple relation to Riemann symbols of the second kind. By adhering to this procedure, the correct Gaussian 
curvature will be calculated. In the case where 0F ≠  or the parametric lines on the surface are not orthogonal, 
the computational procedure can be extremely tedious such as our model 2. It is always prudent to find a proper 
transformation to form an orthogonal system of parametric lines in order to simplify the computational proce-
dures. 

2. Formulas 
In this section, we suggest four formulas that can be used to compute the Gaussian curvature. 

(A) 1 1 1G E
u u v vEG E G

    ∂ ∂ ∂ ∂
− +        ∂ ∂ ∂ ∂    

 

(B) 
( )2 2 2 22

1 1

24

E F G
Gu Fv Fu EvEu Fu Gu

u vEG F EG F EG FEG F Ev Fv Gv

 ∂ − ∂ −
− − − 

∂ ∂− − −−  
 

(C) 2 2 1 1
11 12 22 12

1 1D D D D
D v E u E D u G v G
 ∂ ∂   ∂ ∂        Γ − Γ = Γ − Γ          ∂ ∂ ∂ ∂          

 where 2 2D EG F= −  

(D) 
( )1212

2 2

12,12
,

EG F EG F
ℜ

=
− −

 where ( )
2

1212 121 2
1

12,12 ,m
m

m
g

=

= ℜ ℜ∑  ,l l l m l m l
ijk ik jk ik mj jk mi

j iu u
∂ ∂

ℜ = Γ − Γ +Γ Γ −Γ Γ
∂ ∂

  

sum on m, where the quantities of l
ijkℜ  are components of a tensor of the fourth order. This tensor is called the 

mixed Riemann curvature tensor. Notice that g11, g12 and g22 are simply tensor notation for E, F and G. Formula 
(B) was developed by G. Frobenius while formula (C) was derived by J. Liouville. Clearly, formula (A) is a 
special case that is valid only when the parametric lines are orthogonal. Formula (D) is a general form repre-
sented in Riemann symbols of the first and second kind, respectively. In formula (D), 1212ℜ , the inner product 
of the mixed Riemann curvature tensor and the metric tensor, is called the covariant Riemann curvature tensor; 
it is a covariant tensor of the fourth order. The components l

ijkℜ  and 1212ℜ  are also known as Riemann sym-
bols of the first and second kind, respectively. Notice that Riemann symbols of the second kind will satisfy the 
relation 1212 1221 2112 2121ℜ = −ℜ = −ℜ = ℜ , the well-known property of skew-symmetry with respect to the last 
two indices. It is useful to be aware of the fact that the Christoffel symbols depend only on the coefficients of 
the first fundamental form and their derivatives. The same holds true for the mixed Riemann curvature tensor. 
From this point of view, as long as we can find the coefficients of the first fundamental form of a given distribu-
tion and their first and second derivatives, we can uniquely define the corresponding Christoffel symbols and 
hence mixed Riemann curvature tensors. Thus, the process of computing the covariant Riemann curvature tensor 
and Gaussian curvature is simplified. When F = 0, formulas (B) and (C) are trivially similar to formula (A). For 
example, in formula (C), we may substitute the following equation on the left hand side: 
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2 2
11 12or

2 22 2
D G Ev Ev D G Gu Gu
E E G E E GEG EG

− − Γ = = Γ = = 
 

 

We can immediately calculate the same results as found from formula (A) while formula (D) results in a 
Riemann representation. In this way, we have supplied some more general alternative methods to compute the 
Gaussian curvature, including the case when 0.F ≠  

3. Curvature of Three Life Span Model 
In this section, we give the needed result of derivation by applying formula (B) and (D) for computing our 
Gaussian curvature. The process and formulas (B) and (D) are complicated, so we decided to tabulate formulas 
by units, which yields some advantages. It turns out that it is much easier to check partial results than to check 
the whole equation. It is also much easier to understand why and how we obtain the final results, or in the event 
of an error it should be much easier to correct it. In model 1, we will deal with Gamma Families. In model 2, we 
discuss the Weibull Families. In model 3, density function is of form of Inverse Gaussian families. 

Model 1: A random variable X has a gamma distribution if its probability density function is of form 

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

2

2

2

2

2 2

2

exp
, , ,       0,   0,  0

ln ln ln 1 ln ln

ln ln 11 ln ln ln ,       

ln 1 ,          ,

ln 1 ln,         

u uu v x xu v
f x u v u v x

u
xul u u v u x u
v

l x lu v x u u
u v uu

lE E u E x v
uu

l x lF E
v u v v uv

ψ ψ

ψ

− −
= > > >

Γ

= − + − − Γ −

∂ ∂ ′= + − + − − = −
∂ ∂

 ∂ ′= − = − = ∂ 
∂ − ∂

= + = −
∂ ∂ ∂ ∂

( ) ( )
( ) ( )( )
( )( )

2

2 2

2 2 2 3 2 2

22

3 22

1 0

ln ln 2 ln,       ,      

1 1
1 1

2 1

u v

u v

v
v v

f u xu l u xu l uG E
v v v v v v v v

G F v
vu u v u uEG F

u u uG F
u v u uEG F

ψ ψ

ψ ψ

ψ

 − = − + =   
  

 ∂ − ∂ ∂
= + = − = − = ∂ ∂ ∂ 

−
= =

′ ′− −−

′′ ′− + −∂
= ∂ ′ −− 

 

Now, the information unit needed to apply the formula (B) has been available. In Table 1, we tabulate the 
most important coefficient of the first fundamental form and their derivatives. It should be aware that F, Fu and 
Fv are equal zero. Using one of the fundamental properties of determinants we know that three by three’s deter-
minant is zero. This will greatly improve the efficiency of our computation process. 

In Table 2, we tabulate what is needed of partial results in formula (B). Also due to the fact that 0u vF E− = , 
hence the second term in bracket can also be ignored. Thus, there is only one term needed to compute, and we 
do so as follows. 

( )
( ) ( )( )
( )( )

( ) ( )
( )( )

3 22 2

2

1 1
2 1 2 12

4 1
gamma

u u uGu Fv v
u u u v u uEG F EG F

u u u
K

u u

ψ ψ

ψ ψ

ψ ψ

ψ

 ′′ ′− +∂ −  − = −
∂  ′ − ′ −− −  

′′ ′+
=

′ −

            (3.1) 

Notice that the detailed results of six Christoffel symbols are given in summary Table 3. Finally, we list that 
the formula (D) required results of symbol of Riemann and Gaussian curvature in Table 4. Be awe that 
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Table 1. List computing results of coefficient of the first fundamental form and their derivatives. 

 E F G uE  uF  uG  vE  vF  vG  

Gamma ( ) 1  u
u

ψ ′ −  0 2

u
v

 ( ) 2

1u
u

ψ ′′ +  0 2

1
v

 0 0 3

2u
v
−  

Weibull 1
2

C
u

 2C
v

 
2

2

u
v

 1
3

2C
u
−  0 2

2u
v

 0 2
2

C
v
−  

2

3

2u
v

−  

Inverse 
Gaussian 3

v
u

 0 2

1
2v

 4

3v
u
−  0 0 3

1
u

 0 3

1
v
−  

 
Table 2. List important partial results of computing formula. 

 Δ: Determinant of formula A 2EG F−  2EG F−  2

1
EG F−

 
u vG F−  u vF E−  

Gamma 0 ( )
2

1u u
v

ψ ′ −
 ( ) 1u u

v
ψ ′ −

 ( ) 1
v

u uψ ′ −
 

2

1
v

 0 

Weibull 0 3
2

C
v

 3C
v

 
3

v
C

 2
2

2u C
v
+  0 

Inverse Gaussian 0 3

1
2u v

 
1
2u uv

 2u uv  0 3

1
u
−  

Where 2
3 1 2 1.64493406C C C= − = . 

 
Table 3. List the computed results of the six Christoffel symbols. 

 1
11Γ  2

11Γ  1
12Γ  2

12Γ  1
22Γ  2

22Γ  

Gamma 
( )
( )( )

1

2 1
u u u

u u
ψ
ψ

−′′ +
′ −

 0 0 
( )
( )( )

1

2 1
u u

u u
ψ
ψ

−′ −
′ −

 ( )( )22 1
u

v u uψ
−
′ −

 1
v
−  

Weibull 1

3

C
C u
−  1 2

3
3

C C v
C u

 2

3

C u
C v
−  1

3

C
C u

 
3

2
3

u
C v
−  2 3

3

C u C
C v
−  

Inverse Gaussian 3
2u
−  

2

3

v
u
−  1

2v
 0 0 1

v
−  

 
Table 4. List the computed results of symbol of Riemann and Gaussian curvature. 

 2
12

D
u E
∂  Γ ∂  

 1
121R  2

121R  1212R  K 

Gamma 
( ) ( )( )
( )( )3 2

4 1

u u u

v u u

ψ ψ

ψ

′′ ′− +

′ −
 * 

( ) ( )
( )( )4 1

u u u
u u u
ψ ψ

ψ
′′ ′+

′ −
 ( ) ( )

( )( )24 1
u u u
v u u
ψ ψ

ψ
′′ ′+

′ −
 

( ) ( )
( )( )2

4 1

u u u
u u

ψ ψ

ψ

′′ ′+

′ −
 

Weibull 
3

1
C v

 2

3

C
C v

 1
2

3

C
C u
−  

2

1
v
−  0.60792710−  

Inverse Gaussian 0 * 32
v

u
−  3

1
4u v
−  1

2
−  
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( )
( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( ) ( )

2 1
11 12

2
2 2 2 2 2 2 1 2 2 2
121 11 21 11 2 21 1 21 11 12 12 12

1

1 1 1 1 1

1

0

2 1 2 1 2 1 2 1 2 1

4

m m
m m

mv u u

u u u u u u u u u u u
u u u u u u u u u u u

u u u

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

ψ ψ

=

− − − − −

−

Γ = Γ =

∂ ∂ ∂
ℜ = Γ − Γ + Γ Γ −Γ Γ = − Γ +Γ Γ −Γ Γ

∂ ∂ ∂

     ′ ′′ ′ ′ ′− + − − −−∂
= + ∗ − ∗     

′ ′ ′ ′ ′∂ − − − − −          
′ ′′+

=

∑

( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( )
( ) ( )

( )( )
( ) ( )

( )( )

12
1 2 2

1212 121 2 121 12 121 22 121 2 2
1

2
1212

2 22

1

4 1 4 1

1 4 1 4 1

m
m

m

u u

u u u u u uug g g G
vu u v u u

u u u u u uvK
u uEG F v u u u u

ψ

ψ ψ ψ ψ
ψ ψ

ψ ψ ψ ψ
ψ ψ ψ

−

=

′ −

′ ′′ ′ ′′+ +
ℜ = ℜ =ℜ +ℜ =ℜ = ∗ =

′ ′− −

   ′ ′′ ′ ′′+ +ℜ
= = =  ′ ′−− − ′ −    

∑

   (3.2) 

Model 2: A random variable X has a Weibull Distribution if its probability density function is of form 

( )

1 exp
, , ,       0

u
u

u

xux
v

f x u v x
v

−
  −     = >  

: scale parameter,   : shape parameterv u  

( )

( )
( )

( )
( )

22

2 2

2 222
2 2 1

2 2 2 2 2 2

2

ln ln 1 ln ln

ln 1 ln 1ln ln ln ,       ln ,

 1ln 1 1ln

ln 1 1

u

u u

u

xl u u x u v
v

l x x l x xx v
u u v v u u v v

l x x CE E E
u u v v u u u u

l
v u v

 = + − − −  
 

∂ ∂ −       = + − − = −       ∂ ∂       

Γ Γ +  ∂    = − = + = + = =      ∂        

∂ − −
= −

∂ ∂

( )
( )

( )

( ) ( )

1

2

12
2 2

22 2

1 2 2 2 2

ln ,

ln 1 1 ln  

1ln ln ln,      ,    

2 1 1 0

u u

u u

uu

u u

x ux x x
v v v v v

l x u x x CF E E E
v u v v v v v v v v

u u xl u ux l u l uG E
v v v v v v v v

ψ ψ

−

+ +

    −    
     

Γ  ∂    = − = − − = − =      ∂ ∂        

+  ∂ − ∂ ∂  = + = − = − =   ∂ ∂ ∂   
= + = − ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )

22 2

2
1 2

22
3 1 2

1

.5772156649 1 0.422784335 2

2 2 2 0.644934067 0.422784335 0.823680661

2 1 1.823680661,       2 0.422784335,

0.231830245,      1.644934067

C C
C C C C
C

ψ

′+ = = Γ

′ ′Γ = + Γ = + =

′= Γ + = = −Γ = −

= − = − =  

We are ready to apply the formula (B). The first term involves the 3 × 3 determinant expansion. From the 
previous computation we aware that two terms of expansion are zero, i.e. 0vE = , 0uF = . Hence our final ex-
pansion has 
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2 2
1 2 2 1 1 2

3 2 2 3 3 2 2 2 4

2 2 2 2 0 0u v u v v u
C C C C C Cu u uE F G FE G EF G

vu v v u v u v v uv
   − − − −−  − − = − − = =         

 

This means the first term of the determinant can be ignored. Also due to the fact that 0vE = , 0uF = , so the 
second term in the bracket can also be ignored. Finally, there is only one term that we need to take care of i.e. 

2 2
33 3

1 1 2 1 1
2 1.6449340672

0.607927101

u vG F vK
u CC C vEG F EG F

K

 −∂ − −
= − = − = =  ∂− − 
= −

           (3.3) 

Using the formula (D) to find the Weibull Distribution Gaussian curvature is our next mission. This is a 
somewhat messy one, as no short cut can be utilized, since two of the components of Riemann symbols have 
nonzero values. We show the computation as follows. 

( ) ( )1 1 1 1 1 1 1 2 1 2 1
121 11 12 11 12 12 11 11 22 21 21

3
1 2 1 2 2 1 1 2 1 2

3 2
3 3 3 3 3 3 3 33 3

2 3 1 2 1 2 2
2

33

2 2
121 11

C

v u
C C u C C u C u C C C v C C uu

v C u u C v C u C v C v C u C u C vC u C v
C C C C C C C

C vv

v

∂ ∂
ℜ = Γ − Γ + Γ Γ −Γ Γ + Γ Γ −Γ Γ

∂ ∂
      − − − − − − −∂ ∂ −

= − + − + −      ∂ ∂       
− +

= =

∂ ∂
ℜ = Γ −

∂
( ) ( )

( )

2 1 2 1 2 2 2 2 2
12 11 12 12 11 11 22 12 21

2 31 2 1 1 1 2 1 2 1 2 1 1
3 3 3

3 3 3 3 3 3 33 3 3

2 2 2
1 1 2 1 1 2 1

2 2 2
3 3

2

1212 121 2
1

2 2

m
m

m

u
uC CC C v C C C C u C C v C C v C C

v u C u C u C u C v C v C u C uC u C u C u

C C C C C C C
C u C u

g
=

Γ + Γ Γ −Γ Γ + Γ Γ −Γ Γ
∂

       −−∂ ∂
= − + + + −      ∂ ∂       

− − + −
= =

ℜ = ℜ =∑
( )22

1 21 2 2 2 1
121 12 121 22 2 2 2 2

3 3 3
2

1212
2 2

33

1   

1 1 0.607927101

C CC C C ug g
C v v C u v C v v

vK
CEG F C v

− − −
ℜ +ℜ = − = =

ℜ −
= = = − = −

−

      (3.4) 

Model 3: A random variable X has an Inverse Gaussian Distribution if its probability density function is of 
form 

( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

1
2 2

3 2

23
2

22 2

4 3 2 4

2 3

2 3

2

3

, , exp ,    0
2π 2
1ln , , ln ln 2π ,   
2 2

3 2ln ln,       

ln ,       ,     var ,

ln ,    

v vf x u v x u x
x u x

vl x u v v x x u
u x

v u x u u x u v x u v x ul l
u xu u u u

l v uE E E x u x
vu u

l x u
v u u

   = − − >   
   

= − − −

− + − − − −∂ ∂
= = =

∂ ∂
 ∂

= − = = = ∂ 

∂ −
=

∂ ∂

( )

2

2 3

2 2 2

2 2 2 2 2

ln     0

ln 1 ln 1 ln 1,       ,     
2 2 2 2

l u uF E
v u

x uf l lG E
v v u x v v v v

 ∂ −
= − = − = ∂ 

−  ∂ ∂ − ∂
= − = = − = ∂ ∂ ∂ 
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Again, the information unit needed to apply the formula (B) has been available. Again, we aware that F, Fu and 
Fv are all equal zero. Hence the first term of determinant is zero. Also due to the fact that 0u vG F− =  hence 
the first term in bracket can also be ignored. There is only one term need to compute and we do it as follows. 

3
32 2

1 1 1 2 12  
2 2 22

1
2IG

Fu Ev u v
v u vEG F EG F

K

   ∂ − −
− − = − =   

∂− −   
−

=

               (3.5) 

Notice that the detailed results of six Christoffel symbols are given in summary table. Next, we apply the 
formula (D) to compute the curvature as below. 

( ) ( )

( )

2 2 2 1 2 1 2 2 2 2 2
121 11 12 11 12 12 11 11 22 12 21

2 2 2

3 3 3 3

2
1 2 2

1212 121 2 121 12 121 22 121 3
1

31212
2 3

2 2

1
4

1 12
24

m
m

m

v u
v v v v

v u vu vu u

g g g G
u v

K u v
EG F u v

=

∂ ∂
ℜ = Γ − Γ + Γ Γ −Γ Γ + Γ Γ −Γ Γ

∂ ∂
 ∂ − −

= + + = ∂  

−
ℜ = ℜ =ℜ +ℜ =ℜ =

ℜ − −
= = =

−

∑
                 (3.6) 

To summarize and compare the Gaussian curvature computed in Equations (3.1), (3.2), (3.3), (3.4), (3.5), and 
(3.6), it is obvious that formula (B) and (D) give us the identical results. 

4. Concluding Remark 
It is also a well-known fact that two surfaces which have the same Gaussian curvature are always isometric and 
bending invariant. For instance, Struik, D.J. on p. 120 provided an excellent example that demonstrated a corre-
spondence between the points of a catenoid and that of a right helicoid, such that at corresponding points, the 
coefficients of the first fundamental form and the Gaussian curvatures are dentical. In fact, one surface can pass 
into the other by a continuous bending. This has been demonstrated by the deformation of six different stages. 
However, if the Gaussian curvature is different, the two surfaces will not be isometric. For example, a sphere 
and plane are not locally isometric because the Gaussian curvature of a sphere is nonzero while the Gaussian 
curvature of a plane is zero. This is why any map of a portion of the earth must distort distances. One of the 
most important theorems of the 19th century is “Theorema Egregium”. Many mathematicians at the end of the 
18th century, including Euler and Monge, had used the Gaussian curvature, but only when defined as the product 
of the principal curvatures. Since each principal curvature of a surface depends on the particular way where the 
surface is defined in R3, there is no obvious reason for the product of the principal curvatures to be intrinsic to 
that particular surface. Gauss published in 1827 that the product of the principal curvatures depends only on the 
intrinsic geometry of the surface revolutionized differential geometry. Gauss wrote “‘The Gaussian curvature of 
a surface is a bending invariant’, ‘a most excellent theorem’, ‘This is a Theorema egregium’”. In this theorem, 
Gauss proved that the Gaussian curvature, K, of a surface, depends only on the coefficient of the first funda-
mental form and their first and second derivatives. This important geometric fact will link the concepts of bend-
ing and isometric mapping. 
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Appendix 
Next, we define the six well known Christoffel symbols see Struik, D.J. or Gray A. [12] 

( ) ( ) ( )

( ) ( ) ( )

1 2 2
11 12 112 2 2

1 1 2
22 12 222 2 2

2 2,   ,     ,
2 2 2

2 2,    ,    
2 2 2

u u v u v u v u

v u v v u v v u

GE FF FE EG FE EF EE FE
EG F EG F EG F

GF GG FG GE FG EG FF FG
EG F EG F EG F

− + − − −
Γ = Γ = Γ =

− − −

− − − − +
Γ = Γ = Γ =

− − −

 

we applied the following integral results 
( ) ( )2 22 1

2
0

2
ln ln e d ;

uxu u u
v

u

x x x x uxE x
v v v v v u

 ∞ − − 
 

  Γ          = =                  
∫  

( )1

0

2
ln ln e d

uxu u u
v

u

x x x x uxE x
v v v v uv

 ∞ − − 
 

  ′Γ       = =                 
∫  

we define the nth derivative of the gamma function: 

( ) ( ) ( )1

0

e ln d ,   0nn t xx t t t x
∞

− −Γ = >∫  
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