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Abstract 
In this paper, the roughness of the model function to the basis functions and its properties have 
been considered. We also consider some conditions to take the limit of the roughness when the 
observations are i.i.d. An explicit formula to calculate the power of change-point test for the two 
phases regression through the roughness was obtained. 
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1. Introduction 
Many authors have used the likelihood ratio to study the change-point problem (see [1] [2]). Worsley, K.J. [3] 
gave exact approximate bounds for the null distributions of likelihood ratio statistics in two case of known and 
unknown variance. Simulation study results indicated that the approximation of his upper bound is very good for 
the small sample size, but the study does not support the case of large one. Koul and H.L, Qian. L. [4] studied 
the change-point by the maximum likelihood and random design. In the case of known variance, Jaruskova, D. 
[5] derived an asymptotic distribution of log-likelihood type ratio to detect a change-point from a known (or 
unknown) constant state to a trend state. Aue A., Horvath, L., Huskova, M. and Kokoszka, P. [1] studied the lim-
it distribution of the trimmed version of the likelihood ratio, from which they received the test statistic to detect 
a change-point for the polynomial regressions. Researchers have used to take simulation studies on the various 
scenarios of the parameters of alternative hypothesis to find the power of a test. They have found that it depends 
on the sample size, variance of error and the behavior of the model function under alternative. For two phases’ 
regression, Lehmann, E.L. and Romano, J.P. [6] gave a formula to calculate the power of change-point through 
the noncentral F-distribution.  

In this paper, the behavior of the model function under alternative is quantified by the roughness that is used 
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to calculate the power of tests. The present paper is organized in the following way. In Section 2, we give a defi-
nition of the roughness of the model function and show some its properties; it is possible to take the limit of the 
roughness when the sequence of designs converges weakly to a limit design as well as designs are random. In 
Section 3, we present an explicit formula to calculate the noncentrality parameter of F-test in [6] through the 
roughness, and then the power of change-point test and some of its limits are considered. 

2. The Roughness of the Model Function  
In what follows, we will denote the unit matrix of size n by nI , the matrix having elements ija  in the i-th row 
and j-th column by ( )ija , the transpose of a matrix A  by ′A , the Euclidean norm of a vector and the maxi-
mum norm of a matrix by . . For a distribution function F(x) whose support belongs to I, we will denote the  
Lebesgue-Stieltjes measure associated with F(x) by (dF), and choose ( ) ( ) ( ), d

I

h g h x g x F x= ∫  as the inner 

product in ( )2L F . 
To approximate the function ( )f x  by a given system of functions ( ) ( ){ }1 , , pz x z x  at the given points

, 1, ,ix I i n∈ =  , we consider the model 

( ) ( ) ( )1 1 , 1, , .i i ip ipf x z x z x i nγα α= + + + =                        (1) 

Let ( )
( )

( )
( )

( )

( )

( )

( )

1 1 1 1 1

, , , , .

p n n p n

z x x f x
x x

z x x f x

α γ

α γ

′        
        = = = = =        

       ′        

z
z Z Y

z
    α γ  

In matrix notation, (1) is written as  
= +Y Zα γ .                                     (2) 

We always assume that ( )Rank p=Z , then the estimate for α  that minimizes the mean square error

( ) ( )( )2

1

1 n

i i
i

f x x
n =

′−∑ z α  is  

( ) 1ˆ = −′ ′Ζ Ζ Z Yα                                    (3) 

and the estimate for the error of the model (1) is 

( ) ( )( ) ( )( ) 22 12

1

1 .ˆ 1n

i i n
i

S f x x
n n

−

=

′ ′= ′− = −∑ I Z Z Z Z Yz α                   (4) 

We call this value the roughness of the function ( )f x  to the system of functions ( ) ( ){ }1 , , pz x z x  based on 
the design { }1, , nx x  and denote it by { }( )2 , , i n

S f xz . In the case of a linear trend where ( )12, 1,p z x= =
( )2 ,z x x=  2S  shows the nonlinearity of the curve ( )y f x=  based on observations at 1, , nx x . 
To study limits cases as well as other purposes, we call a distribution function ( ) ,F x  whose support belongs 

to I  a (generalized) design on I . A design ( )F x  is called to be adapted to a system of functions  

( ) ( ){ }1 , , ,pz x z x x I∈  if its support belongs to I  so that the matrix ( ), ,i jF F
z z′ =z z  is invertible. In 

this paper, the used designs are assumed to be adapted to the system ( ) ( ){ }1 , , , .pz x z x x I∈  

To continue, we will establish some assumptions:  
(A1) The model function ( ) ,f x x I∈  is measurable and bounded, 
(A2) Trend functions ( ) ( )1 , , ,pz x z x x I∈  are linearly independent and continuous. 
Now suppose that (A1) and (A2) hold, we approximate the function ( )f x  to ( ) ( ){ }1 , , pz x z x  in the eq-

uation: 

( ) ( ) ( ) ( )1 1 .p pf x z x z x xα α γ= + + +                             (5) 

The estimate for the parameter vector ( )1, , pα α ′= α  that minimizes the weighted mean square error 

( ) ( )( ) ( )2
d

I
f x x F x′−∫ z α  is 
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( ) ( ) 1
1ˆ ˆ ˆ, , , , ,p F Ffα α

−′= = ′z z zα                            (6) 

where ( )1, , , , ,pF F F
f z f z f ′=z  . Hence, the estimate for the error of the model (5) is 

( ) ( )( ) ( )22 dˆ
I

S f x x F x= ′−∫ z α .                               (7) 

We also call this value the roughness of the function ( )f x  to the system of trend functions 
( ) ( ){ }1 , , pz x z x  based on the design ( )F x  and denote it by ( )2 , , .S f Fz  It is easily seen that each dis-

crete design is a generalized design, thus (3), (4) is a special case of (6), (7), respectively. 
According to [2], to evaluate the roughness of the model function based on polynomial trend functions  

{ }1, , , nx x , by using the linear transformation of independent variables, instead of observing on the arbitrary  

interval [ ], ,a b  one can observe on the standard interval [0, 1]. Then, from now on, the model functions defined 
on [0, 1] are considered only.  

The following theorem in [7] shows the conditions for occurring the convergence of the estimated parameters 
and the roughness. 

Theorem 1. Assume that conditions (A1), (A2) are satisfied where I = [0, 1]. Let ( ) ( ), 1, 2, ,nF x n F x=   be 
designs, and ( )2ˆ , , ,n nS f Fzα , ( )2ˆ , , ,S f Fzα  be the estimates of the coefficients and the roughness of the  
model function defined by (6) and (7), respectively. Assume that ( )nF x  converges weakly to ( )F x  having  
Lebesgue-Stieltjes ( )dF -measure. If fD  is the set of discontinuities of ( ) ,f x  such that ( )( )d 0fF D =  then: 

1) ˆ ˆlim ,nn→∞
=α α  

2) ( ) ( )2 2lim , , , , .nn
S f F S f F

→∞
=z z

 
Now, we consider the model (1) where the observations 1 2, ,X X   are i.i.d. with the distribution function 
( )F x  having support on .I  The roughness of ( )f x  is calculated by (4), in which ix  is replaced by :iX  

( )( ) ( )( ) 212 1, , ,n i n n n n n nS f X
n

−′ ′= −z I Z Z Z Z f                        (8) 

where 

( ) ( ) ( )1 , , , 1, , ,( )i i p iX z X z X i p= =z    

( ) ( )( ) ( ) ( )( )1 1, , , , , .n n n nX X f X f X′ ′ ′ ′= =Z z z f   

Theorem 2. Suppose that (A1) and (A2) hold for [ ]0,1I =  and  
1) 0 1 2, , ,X X X X=   are independent random variables with the common distribution function ( )F x  

having support on I , 
2) ( ) ( ) ( )( )( ) ( ), 1, 2, . ,n n i jRank Rank E z X z X p n a s′ = = =Z Z   

3) The roughness ( )( )2 , ,n iS f Xz  is defined by (8). 
Then  

( )( ) ( )( ) ( )2 2lim , , , , . .n in
S f X S f F x a s

→∞
=z z  

Proof. We note that ( )( )2 , ,n iS f Xz  is the sample variance of the model 

( ) ( ) ( )1 1 , 1, , .i i p p i if X z X z X i nγα α= + + + =   

Let ˆnα  be the least-square estimate of α  bases on n  observations, we get 

( ) ( )
1

1
1

1 1ˆ ˆ ˆ, , ,n n np n n n n n n n nn n
α α

−
−    ′ ′ ′ ′ ′= = =    

   
Z Z Z f Z Z Z fα  

( )( ) ( ) ( ) ( )( )( )22
1 1

1

1 ˆ, , .ˆ
n

n i i n i np p i
i

S f X f X z X z X
n

α α
=

= − + +∑z 
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Because ( ) ( ){ }, 0,1, 2,i t j tz X z X t =   is a sequence of i.i.d. variables which have finite variance then by the 
strong law of large numbers, 

( ) ( ) ( ) ( )( ) ( )
1

1 1lim lim . .
n

ni nj i t j t i jn n t
z X z X E z X z X a s

n n→∞ →∞ =

′ = =∑Z Z  

Then, according to the assumption 2),  

( ) ( )1lim , 0 . ,n n Fn
det det a s

n→∞

  ′ 
 

′ = ≠z zZ Z  

which follows that elements of the matrix 
11

n nn

−
 ′ 
 
 

Z Z  converge (a.s) to corresponding elements of the matrix 

( ) ( )( )( ) 1
.i jE z X z X

−
 

Similar arguments yield 

( ) ( )( ) ( ) ( )( )( )1
1lim , , ( . ).n n pn

E z X f X E z X f X a s
n→∞

′′ =fZ   

Consequently, we obtain the limit 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )
( )

1

1 1
1

1 1lim lim

ˆ
ˆ .

ˆ

.
ˆ

n n n nn n

i j

pp

n n n

E z X f X

E z X z X a s

E z X f X

α

α

−

→∞ →∞

−

   
   
   

′ ′=

   
   

= = =   
       

Z Z Z f

 α

α

                (9) 

Note that α̂  is not random and the roughness can be expressed by 

( )( ) ( ) ( ) ( )( )( ) ( )
2 22

1 1
1 1

1 1ˆ ˆ, , ,
n n

n i i n i np p i i i
i i

S f X f X z X z X A B
n n

α α
= =

= − + + = +∑ ∑z   

where 

( ) ( ) ( )( )1 1ˆ ,ˆi i i p p iA f X z X z Xα α= − + +  

( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ .i n i p np p iB z X z Xα α α α= − + + −  

Because { }iA  are i.i.d. and bounded then according to the central limit theorem, 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ( ) ( ) ( )

22
1 1

1
2

1 1

1

ˆ ˆ d . .

ˆ ˆ
n

i p p

I

i

p p

A E f X z X z X
n

f x z x z x F x n a sα α

α α
=

→ − + +

= − + + →∞

∑

∫





               (10) 

Inasmuch as ( )1ˆ ˆ ˆ, , pα α ′= α  satisfies (9), it can be calculated by (6). Hence, the right side of (10) is 

( )( )2 , , .S f F xz  

Again, according to the central limit theorem and (9), 

( ) ( )( ) ( ) ( )
222

11, ,1 1

1 1ˆ ˆmax 0 . .
n n

i i ni i p ii pi i
B z X z X n a s

n n
α α

== =

≤ − × + + → →∞∑ ∑


  

Combining the above with the fact that ( ) ( )2 2 22i i i iA B A B+ ≤ + we obtain 

( )( ) ( )( ) ( )2 2lim , , , , . .n in
S f X S f F x a s

→∞
=z z  
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This completes the proof of the theorem.   

3. Applications to the Change-Point Test 
Suppose that the model function is defined as: 

( ) ( ) ( )
( ) ( )

*
11 1 1

*
21 1 2

  if  ,
  if  ,

p p

p p

z x z x a x x
f x

z x z x x x b
β β
β β
 + + ≤ ≤=  + + < ≤





                       (11) 

where ( )iz x  are known functions, ijβ  are unknown parameters. Observations { }1 2, , , nx x x  belong to the 
closed interval [ ], ,I a b=  without the loss of generality, we can assume 1 2 ,nx x x≤ ≤ ≤  some ix  can be 
identical. Suppose that a change-point happened at a some time *,k  the model is written: 

( )
( )

*
11 1 1

*
21 1 2

( )   if 1, , ,
( )   if 1, , ,

i p p i i
i

i p p i i

z x z x i k
y

z x z x i k n
β β ε
β β ε
 + + + ==  + + + = +

 

 

                     (12) 

where { }iε  is a sequence of i.i.d. variables ( )20,N σ  with the unknown common variance 2σ .  
Let 

( )
( )

( )

( )

( )

( )

( )

*

*

*

*

*

*

1

2

11

1 2
2

1 11 1
1

1 2 1 2

1 1 1

22

, ,

, , ,

, , , ,
k k

n np

k

nk

kk

z x
x

x yx

x

y

x y yxz

εε

ε ε

+

+

+
                 = =                           
  
     

= = = =       
    

′′

= = = =
′′

 
   

zz
Z

Z Z Y Y
Z

zz

Y Z
Y Z

z Z

Y f

    

 

β
ε

β
ε

1
1

1
2

, , , 1, 2.
i

i

ip

i
β

β

 
   

= = =   
   

 



ε
ε β

ε

 

Using matrix notations, the Equation (12) is written as  

1 1 1

2 2 2

, 1, 2 or .i i i i i
+ 

= + = =  + 

Z
Y YZ

Z
β ε

β ε
β ε

                        (13) 

We are interested in testing the hypothesis of structural stability against the alternative of a regime switch at a 
sometime *,k  that is 

0 1 2 1 1 2: against :  .H H= = ≠β β β β β                           (14) 

Let *k  be known as it was studied in Bischoff and Miller [8]. In addition, we assume that the matrices 
1 2, ,Z Z Z  have full rank: ( ) ( ) ( )1 2Rank Rank Rank p= = =Z Z Z  thence 2 .n p≥  From that, vector f  be-

longs to a 2 p -dimensional linear subspace ,ΩΠ  and the null hypothesis 0H  to test that f  lies in a -p
dimensional subspace ωΠ  of .ΩΠ  

The least-squares estimate of β  under 0H  and 1 2,β β  under 1H  are ( ) 1ˆ − ′= ′Z Z Z Yβ ,

( )1 1 1
1

1 1
ˆ − ′= ′Z Z Z Yβ  and ( )2 2 2

1
2 2

ˆ − ′= ′Z Z Z Yβ , respectively. Let ˆˆ , ˆY Y  are the orthogonal projections of Y  

onto ΩΠ  and ωΠ  then 1 1

2 2

ˆ  
=  
 

Z
Y

Z
β
β

 and ˆ̂ ˆ.=Y Zβ  

We already know that (see Lehmann, E.L. and Romano, J.P. [6]): Under 0 ,H  the statistics 

( )

2 2

2

ˆ̂ ˆ

2

ˆ

ˆ

p
F

n p

 
 − − −

=
− −

 
Y Y Y Y

Y Y
                                (15) 

will be distributed ( ), 2 .F p n p−  Thus, the test rejects the null hypothesis at level α  if 

( ), 2 ,F f p n pα> −                                  (16) 
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where ( ), 2f p n pα −  is the α -critical value for ( ), 2 ,F p n p−  a F -distributed random variable with p   

and 2n p−  degrees of freedom. According to [6], by denoting ( )
2 2ˆ ,ˆ ˆg = − − −X X X X X  where ˆˆ , ˆX X   

are orthogonal projections of X  onto ΩΠ  and ,ωΠ  respectively, then under 1H , the statistic F  defined 
by (15) will be noncentral F -distribution with , 2p n p−  degrees of freedom and noncentrality parameter  

( )2

1 .gλ
σ

= f  

We note that ˆ =f f  and ( ) 1ˆ̂ ˆ ,−′ ′= =f Z fZ Z Z Zα  which implies that 

{ }( )22

2 2

,ˆ
. 

, i n
nS f x

λ
σ σ
−

= =
zZf α

 

Now, we call 
{ }( )2

2

, , i n
n

S f x
R

σ
=

z
 and 

( )( )2

2

, ,S f F x
R

σ
=

z
 the signal-to-noise of the model (11) based on 

the design ( )F x  and { } ,i n
x  respectively. 

Theorem 3. If assumptions (A2), (A3) hold then the power of test (16) is defined by 

( ) ( ){ }, 2 , , 2 .nPow P F p n p nR f p n pα= − > −                        (17) 

Remark. Theorem 3 shows an explicit formula of the power of change-point test. In the case of 2p =  and
( ) ( )1 21,z x z x x= = , if the model function ( )f x  is continuous segment, the shift of the slope between the first 

segment and the last one is ,h  by Theorem 1 in [7], the maximum roughness is obtained if the change-point 
*x  is the midpoint of the observations. With the given common variance 2σ  of the model, the maximum signal- 

to-noise R  is obtained at this change-point, thence from Theorem 3, the power is maximum. This fits results of 
simulation studies in [1]. 

To increase signal-to-noise ratio, we can decrease the noise or increase the roughness of the model function. 
When the variance 2σ  is small, we can assert that if the model function has a change-point then this test will 
find it surely. On the other hand, if the variance is large, the test is poorly. 

With the sample size n  and design { }i n
x  if the variance 2σ  decreases to 0 then R  increases to ∞  and 

if 2σ  increases to ,∞  then R  decreases to 0. We have the following corollaries that show the relationship 
between power and the common variance and the roughness. 

Corollary 1. If the assumptions in Theorem 3 are satisfied then the following limits hold:  
1) 

0
lim 1,Pow
σ→

=  

2) lim .Pow
σ

α
→∞

=  

Limits of the powers are obtained by the following corollary. 
Corollary 2. 1) With the same conditions as in Theorem 3, assume that 0nR R≥  for every 0n N≥ ∈  and 

some 0 0R >  then lim 1.nn
Pow

→∞
=  

2) Furthermore, if the model function ( )f x  and a sequence of designs ( )nF x  satisfies the conditions of 

Theorem 1, then lim 1nn
Pow

→∞
=  as long as ( )2 , , 0.( )S f F x >z  

Proof. First of all, it is easy to see that  

( ) ( ){ }

( ) ( )

, 2 , , 2

, 2 ,
2

n n

n

n

Pow P F p n p nR f p n p

X p
P f p n p

Y n p

α

α

= − > −

  = > − 
−  

 

where ( )2 ,n nX p nR=  , ( )2 2nY n p= −  are independent. 

Because lim ,nn
nR

→∞
= ∞  then ( )lim . .n

n

X
a s

p→∞
= ∞  
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Moreover, ( )lim 1 .
2
n

n

Y
a s

n p→∞
=

−
 and ( ) ( )21lim , 2 ,

n
f p n p p

pα α→∞
− =   then the last probability converges to 1 

that yields 1). 
Now, according to Theorem 1, 

( )( ) ( )( )2 2

2 2

, , , ,
lim lim 0,n

nn n

S f F x S f F x
R R

σ σ→∞ →∞
= = = >

z z
 

then 2) is implied straight from 1).    
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