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Abstract 
This paper investigates several competing procedures for computing the prices of vanilla Euro-
pean options, such as puts, calls and binaries, in which the underlying model has a characteristic 
function that is known in semi-closed form. The algorithms investigated here are the half-range 
Fourier cosine series, the half-range Fourier sine series and the full-range Fourier series. Their 
performance is assessed in simulation experiments in which an analytical solution is available and 
also for a simple affine model of stochastic volatility in which there is no closed-form solution. The 
results suggest that the half-range sine series approximation is the least effective of the three 
proposed algorithms. It is rather more difficult to distinguish between the performance of the half- 
range cosine series and the full-range Fourier series. However there are two clear differences. 
First, when the interval over which the density is approximated is relatively large, the full-range 
Fourier series is at least as good as the half-range Fourier cosine series, and outperforms the latter 
in pricing out-of-the-money call options, in particular with maturities of three months or less. 
Second, the computational time required by the half-range Fourier cosine series is uniformly 
longer than that required by the full-range Fourier series for an interval of fixed length. Taken to-
gether, these two conclusions make a case for pricing options using a full-range range Fourier se-
ries as opposed to a half-range Fourier cosine series if a large number of options are to be priced 
in as short a time as possible. 
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1. Introduction 
The need to price vanilla European options in a rapid manner arises in numerous activities at financial institu-
tions. Perhaps the most well-known situation in which this need occurs in practice is model calibration, in which 
exotic options are priced using models with values for the (risk-neutral) parameters chosen in such a way as to 
ensure that the model reproduces quoted prices for liquid options. For each set of parameters considered in the 
search space, it is therefore necessary to evaluate the prices of all options in the calibration set using the model, 
before comparing these with the quoted prices. In a similar vein, there is a growing literature which uses large 
panels of options data for estimating model parameters ([1]-[5]) in which the computational complexity is driven 
by the evaluation of vast numbers of option prices. Consequently, this paper investigates several competing 
procedures for computing the prices of vanilla European options, such as puts, calls and binaries and assesses 
their comparative performance on the basis of accuracy and computational speed. 

Various strategies have been proposed for calculating the price of option contracts from knowledge of the 
conditional characteristic function of the underlying model. It is an important fact that a surprisingly large num-
ber of models have a semi-closed expression for their conditional characteristic function. For example, the iden-
tification of the conditional characteristic function for multivariate affine models with/without jump processes 
leads to the solution of a family of ordinary differential equations, albeit in the complex plane. In view of the 
Levy-Khintchine theorem, the identification of the conditional characteristic function for Levy processes is ex-
pressed in terms of various integrals with respect to the Levy measure. 

The most commonly used techniques for taking advantage of a known conditional characteristic function have 
at their core the application of the Fast Fourier Transform (FFT). The best documented approaches is due to Carr 
and Madan [6] who construct an expression for the price of a European call option in terms of an integral over 
the characteristic function. This integral, which has an oscillatory kernel, is computed by an application of the 
FFT. Borak, Detlefsen and Hardle [7] apply the FFT strategy and demonstrate its efficacy by comparison with 
Monte Carlo simulation for a variety of models. Lord, Fang, Bervoets and Oosterlee [8] and Kwok, Leung and 
Wong [9] demonstrate how Fourier’s convolution theorem in combination with the FFT can be used to price 
certain exotic options from knowledge of the conditional characteristic function of the price of the underlying 
asset. A different approach pioneered by Fang and Oosterlee [10] uses the characteristic function to directly ap-
proximate the marginal transitional probability density of returns by a Fourier cosine series. Recently Zhang, 
Grzelak and Oosterlee [11] have demonstrated how this methodology can be extended to the pricing of ear-
ly-exercise commodity options under the Ornstein-Uhlenbeck process. 

Rather than describing in detail the nuances of these various strategies, it is useful to point out what over-
arching assumptions connect them. Recall that the FFT is simply a clever piece of linear algebra that reduces the 
arithmetical load in implementing the Discrete Fourier Transform (DFT), namely the pair of equations connect-
ing the coefficients of a finite Fourier series with values of the underlying function and vice versa. Therefore the 
decision to use the FFT implicitly makes the assumption that the underlying function is periodic over an interval 
of finite length, in practice determined by the range of frequencies submitted to the characteristic function, and 
that the function has been approximated over the interval by a finite Fourier series. The values of Fourier coeffi-
cients calculated from the characteristic function are in error by the extent to which the Finite Fourier Trans-
form1 differs from the Fourier transform. 

Thus techniques using the FFT and those based on the construction of Fourier series share the same common 
assumptions and deficiencies. However, an important difference between an implementation using the FFT ap-
proach and one using the Fourier series approach is that the latter is parsimonious in its use of arithmetic whe-
reas the former typically performs more arithmetic than necessary, albeit in an efficient way. For example, if the 
FFT is used to determine the value of a probability density function, what is recovered is the value of the func-
tion at each node of the interval, whereas all that might be needed is the value of the probability density function 
over a sub-interval. 

The focus of this work is on the algorithm proposed by Fang and Oosterlee [10] who give a convincing dem-
onstration of the efficacy of the Fourier cosine series. This series is more accurately called the half-range2 cosine 
series because the actual function to be expanded is defined only on half the interval of periodicity (or range), 
the function being extended to the full range as an even-valued function. Half-range cosine series usually fail to 

 

 

1The Finite Fourier Transform is the integral expression defining the coefficients of a Fourier series. 
2Historically, half-range Fourier series have largely arisen as analytical tools for handling various types of boundary conditions when solving 
partial differential equations using integral transforms. 
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represent derivatives whereas half-range Fourier sine series usually fail to represent function values. While the 
use of the half-range Fourier cosine series is a solid idea, Fang and Oosterlee [10] provide no motivation or ex-
planation as to why this choice of approximating transitional density should be preferred over the half-range 
Fourier sine series or the full-range Fourier series for that matter. For example, intuition would suggest that the 
latter might perform better simply because it uses higher frequencies, which in turn translate to a more rapidly 
converging Fourier expansion. Indeed this intuition is borne out in calculation, but of course speed is not the 
only criterion of relevance in assessing the efficacy of a numerical procedure. 

An important but subtle difference shared by the half-range Fourier cosine and full-range Fourier series ap-
proximations of density, but different from representations of density based on the half-range Fourier sine series, 
is that the former assign unit probability to the interval of support when in reality probability lies outside this in-
terval, whereas the latter imposes zero probability density at the endpoints of the interval of support in contra-
vention of reality, but on the other hand does not assign unit probability to the interval of support. Is one ap-
proach always superior to the other or is it a case of horses for courses? Intuition might suggest the latter. For 
example, when pricing a call option the most important component of the pricing error comes from the exclu-
sion of contributions from asset price exterior to the finite interval of support. Because the half-range cosine and 
full-range Fourier series necessarily capture unit density, intuition might suggest that these approximations pro-
vide potential compensation for this component of pricing error. On the other hand intuition would suggest that 
the same approximations, when used to price binary options, might have a tendency to exaggerate the probabili-
ty of exercise and therefore overprice this option in contrast to the half-range sine series approximation of prob-
ability density. 

2. Fourier Series and Transform 
Suppose that ( )f y  satisfies the Dirichlet conditions on [ ],a b , then there are three common ways in which 
( )f y  may be represented by a Fourier series. These are the half-range Fourier cosine series, the half-range 

Fourier sine series and the full-range Fourier series with respective representations 
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The use of the term “half-range” in describing Expressions (a) and (b) simply refers to the fact that the func-
tion ( )f y , although defined in [ ],a b , has for the construction of the Fourier series been extended into the in-
terval [ ]2 ,a b a−  as an even-valued function in the case of the half-range cosine series (so that sine contribu-
tions vanish) and as an odd-valued function in the case of the half-range sine series (so that the constant and co-
sine contributions vanish). Thus both half-range series are conventional Fourier series taken over the interval 
[ ]2 ,a b b−  such that the function represented by the half-range Fourier cosine series is usually not differentiable 
at y a= , whereas that represented by the half-range Fourier sine series is usually discontinuous at y a= . 

In the case of the half-range cosine and sine series in Expressions (1a) and (1b) respectively, the coefficients 
( )0ka k ≥  and ( )1kb k ≥  are calculated from the function ( )f y  via the formulae 
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In terms of the exponential function the real coefficients ka  and kb  are calculated respectively as the real 
and imaginary parts of the single complex Equation 

( ) ( )π
exp .

b
k k a

k i y a
a ib f y

b a
φ

− 
+ =  

− 
∫                             (3) 

In the case of the full-range Fourier series in Expression (1c) the real coefficients ( )0ka k ≥  and ( )1kb k ≥  
are calculated respectively as the real and imaginary parts of the complex Equation 
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Suppose now that ( )f y  is a transitional probability density function with known characteristic function de-
fined formally by the Equation 

( ) ( )e e d ,i y i yf y yω ωχ ω  = =  ∫                             (5) 

where ω∈  and ( )0 1χ = . A necessary condition for ( )f y  to be a probability density function is that 
( ) 0f y →  as y →∞ , and therefore there is guaranteed to be an interval [ ],a b  such that for all 
( ] [ ), ,y a b∈ −∞ ∞  it can be asserted that ( )f y ε<  for any arbitrary small positive ε . The implication of 

this observation is that the Fourier coefficients in Equations (3) and (4) can be approximated from knowledge of 
the characteristic function via the respective formulae k ka A≈  and k kb B≈ , where 
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while the coefficients of the full-range Fourier series can be approximated from knowledge of the characteristic 
function via the formula k ka A≈  and k kb B≈ , where 

2 π 2 πexp .k k
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                            (7) 

The accuracy of approximations (6) and (7) is investigated in Section 6, where it is demonstrated that the error 
can be made arbitrarily small by choosing a suitably large interval. 

3. Approximating Probability Density Functions 
The quality of this practical idea is now explored for three trial probability density functions with known 
closed-form expressions for their characteristic functions. The first choice is the Gaussian density which may be 
regarded as representative of distributions with super-exponentially decaying tail density. The second and third 
choices are the Gamma density and the Cauchy density which are treated as representative examples of distribu-
tions with exponentially decaying and algebraically decaying tail densities respectively. 

3.1. Gaussian Density 
It is well known that the Gaussian density with mean value µ  and variance 2σ  has characteristic function 
( ) ( )2 2exp 2iχ ω µω σ ω= − . In order to demonstrate the quality with which the true probability density ( )f x  

can be reconstructed from a truncated Fourier series of the form of Equation (1c), suppose that 1µ σ= =  and 
take the interval of support to be [ ] [ ], 3,5a b = − , i.e. four standard deviations on either side of the mean value. 
The approximating function in this case using 2N  frequencies is 
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where π 4nk n= . Figure 1 illustrates the quality of this approximation using 40 frequencies (solid line, 
80N = ) and using 4 frequencies (dashed line, 8N = ). 

With as few as 4 frequencies it is clear that the approximating density still provides a good representation of 
the true density; with 40 frequencies the approximating density function is indistinguishable from the true den-
sity function, at least in terms of the resolution in Figure 1. It will be seen that this excellent performance is ex-
plained by the fact that the cumulative distribution function of the Gaussian probability density function con-
verges to zero super-exponentially as x → −∞  and to unity as x →∞ . 

3.2. Gamma Density 
The Gamma density with shape parameter α  and scale parameter β  has probability density function and 
characteristic function give by the respective formulae 
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The approximating density is identical to Expression (8) with 8b a− = . The task is now to reconstruct the 
Gamma probability density function from ( )χ ω . Because Y X β=  is also Gamma distributed, in this case 
with shape parameter α  and unit scale parameter, then the appropriate comparison for the Gamma distribution 
is between the approximating Fourier series and a Gamma distribution with unit scale parameter. Figure 2 illu-  

strates the quality of this approximation for 3 ,1
2

 Γ 
 

 for 50 frequencies (solid line, 100N = ) and 20 frequen-  

cies (dashed line, 40N = ). With the exception of the region very close to the origin, the true density and ap-
proximated density are not significantly different for even 20 frequencies, and with 50 frequencies the difference 
between the true density and the approximating density is not discernible with the exception of the origin which 
does not present a difficulty since the density to known to be zero there. 

The quality of the approximation is again due to the fact that the cumulative distribution function of the 
Gamma density converges exponentially to zero as x →∞ . Typical values for the coefficient of mean reversion 
(say, 3.0κ = ), the mean volatility (say 0.02γ = ) and the volatility of volatility (say 0.2σ = ) in Heston’s 
model of stochastic volatility lead to a stationary distribution of volatility described by a Gamma density with 
shape parameter 22 3.0α κγ σ= = . A second example with 3α =  and 1β =  is illustrated in Figure 3. 

The important observation from both of these experiments is that distributions with exponentially decaying 
tail density can also be well described by a relatively small range of frequencies. 
 

 
Figure 1. Comparison of the true Gaussian density and its 
approximation based on 40 frequencies (solid line, N = 80) 
and 4 frequencies (dashed line, N = 8). 
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Figure 2. Comparison of the Gamma density ( )3 2,1Γ  and 
its approximations based on 50 frequencies (solid line, N = 
100) and 20 frequencies (dashed line, N = 40). 

 

 
Figure 3. Comparison of the Gamma density ( )3,1Γ  (solid 
line) and its approximations based on 10 frequencies (dashed 
line, N = 20). 

3.3. Cauchy Density 
The Cauchy density with median µ  and scale parameter α  has probability density function and characteris-
tic function give by the respective formulae 
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The approximating density is again Expression (8) with 20b a− = . The task is now to reconstruct the 
Cauchy probability density function from ( )χ ω , and for this purpose let 2µ = , 1α =  and suppose that 
( )f x  is treated as a function of compact support over the interval [ ] [ ], 8,12a b = − . The cumulative dis- 

tribution function of the Cauchy density is 
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which in this case converges algebraically to zero as x → −∞  and algebraically to unity as x →∞ . Figure 4 
illustrates the impact of this inferior rate of decay for the approximation based on 10 frequencies. 
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Figure 4. Comparison of the Cauchy density with parameters 

2µ =  and 1α =  (solid line) and the approximating Fourier 
series based on 10 frequencies (dashed line, N = 20). 

 
While some erratic behaviour is evident in the tails of the approximating density, nevertheless the quality of 

the approximation is remarkably good considering the small number of frequencies in use. 
In general, the approximate representations of the Gaussian, Gamma and Cauchy probability density functions 

all share the common fact that ( ) ( )1F a F b+ −  provides an upper bound for the error in the representation of 
density, where ( )F x  is the conventional cumulative distribution function of the underlying probability density 
function ( )f x . In reality the error is significantly less than this upper bound due to cancellations resulting from 
the fact that the integrand in each of the Gaussian, Gamma and Cauchy densities is the product of a slowly va-
rying probability density function decaying to zero and an independent rapidly oscillating function (in this case 
trigonometric functions represented in exponential form). However, the presence of this cancellation cannot 
change the character of the error which is entirely determined by the properties of ( )F x  as x → −∞  and as 
x →∞ . 

3.4. Comparison of True and Approximating Densities 
While the illustrations of Figures 1-4 suggest that the Fourier series approximation of density is effective, it 
would be useful to quantify just how well density is approximated by the various Fourier methods. Instinctively 
it would seem that one possible way to achieve this objective is to use the Kullback-Leibler (KL) divergence 
criterion 

( ) ( )
( )

log d
p x

D p x x
q x

= ∫                               (11) 

to measure the “distance” or departure of the probability density function ( )q x  from that of ( )p x , which in 
the formulation of Equation (11) is taken to be the true probability density function. The measure appeals to the 
fact that 0D ≥  with equality if and only if the density functions ( )p x  and ( )q x  are identical. However, 
the KL criterion is simply an application of Jensen’s inequality for the concave function log x , and the proper-
ties of the criterion rely critically on the fact that ( )p x  and ( )q x  are probability densities, i.e. they are 
non-negative functions which integrate to unity. 

The central idea of each Fourier approximation is to replace the true probability density function by a function 
of compact support, that is, ( ) 0q x ≡  outside its interval of support. Consequently using measure (11) to com-
pute the departure of the approximating density ( )q x  from the true density ( )p x  will typically require divi-
sion by zero thereby rendering inappropriate the application of the KL criterion when used with ( )p x  as the 
true probability density. However, inverting the problem, one can use the KL criterion to measure the distance 
between the approximating density ( )q x  and the true density ( )p x , that is, one may compute the value of 
D  in Expression (11) taking ( )p x  to be the approximating density and ( )q x  to be the true density. In this 
case the integrand of expression (11) is well defined for all values of x , and therefore in order to proceed in 
this direction it remains to ensure that the approximating density integrates to unity. Approximations of density 
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based on either the half range Fourier cosine series or the full range Fourier series are guaranteed to have this 
property, whereas an approximation based on the half range Fourier sine series need not share this property and 
therefore is inappropriate for analysis using the KL criterion. Tables 1-3 show values for the KL criterion for the 
Gaussian distribution with mean value one and unit standard deviation, the Gamma distribution with shape pa-
rameter 3 and scale parameter one, and the Cauchy distribution with median two and scale parameter one. 

As might be anticipated, the Gaussian distribution is most efficiently approximated by Fourier methods fol-
lowed by the Gamma distribution and finally the Cauchy distribution. However, it is clear that all of these dis-
tributions are well approximated by the half range Fourier cosine and full range Fourier series for sufficiently 
large intervals of support and an adequate number of frequencies. The results in these tables also reinforce the 

 
Table 1. Values of the KL measure (Dc for the half range Fourier cosine series and Df for the full Fourier series) are given 
for the Gaussian density with unit mean and unit standard deviation. Values measure the deviation of the true density 
deviates from the approximating density for intervals of length 6, 8, 10, 12 and 14 standard deviations centred about the 
mean of the Gaussian distribution using 5, 10, 25, 50, 100 and 200 frequencies. 

Interval KL  Number of frequencies used in Fourier sums 

Length Measure 5 10 25 50 100 200 

6 Dc 0.0038 0.0031 0.0031 0.0031 0.0031 0.0031 

 Df 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 

8 Dc 0.0498 0.0001 0.0001 0.0001 0.0001 0.0001 

 Df 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

10 Dc 0.4284 0.0005 0.0000 0.0000 0.0000 0.0000 

 Df 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 

12 Dc 1.2491 0.0181 0.0000 0.0000 0.0000 0.0000 

 Df 0.0181 0.0000 0.0000 0.0000 0.0000 0.0000 

14 Dc 2.4615 0.1301 0.0000 0.0000 0.0000 0.0000 

 Df 0.1301 0.0000 0.0000 0.0000 0.0000 0.0000 

 
Table 2. Values of the KL measure (Dc for the half range Fourier cosine series and Df for the full Fourier series) are given 
for the Gamma density with shape parameter 3 and unit scale factor. Values measure the deviation of the true density 
deviates from the approximating density for intervals [0, L] of length 6, 8, 10, 12 and 14 scale factors using 5, 10, 25, 50, 100 
and 200 frequencies. 

Interval KL  Number of frequencies used in Fourier sums 

Length Measure 5 10 25 50 100 200 

6 Dc 0.0793 0.0720 0.0715 0.0715 0.0715 0.0715 

 Df 0.0890 0.0874 0.0871 0.0871 0.0871 0.0871 

8 Dc 0.0396 0.0174 0.0158 0.0158 0.0158 0.0158 

 Df 0.0196 0.0173 0.0168 0.0168 0.0167 0.0167 

10 Dc 0.0669 0.0076 0.0033 0.0032 0.0032 0.0032 

 Df 0.0105 0.0039 0.0031 0.0031 0.0031 0.0031 

12 Dc 0.1532 0.0142 0.0008 0.0006 0.0006 0.0006 

 Df 0.0290 0.0038 0.0007 0.0006 0.0005 0.0005 

14 Dc 0.2944 0.0391 0.0006 0.0001 0.0001 0.0001 

 Df 0.0745 0.0111 0.0006 0.0001 0.0001 0.0001 
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Table 3. Values of the KL measure (Dc for the half range Fourier cosine series and Df for the full Fourier series) are given 
for the Cauchy density with median two and unit scale factor. Values measure the deviation of the true density deviates from 
the approximating density for intervals of length 14, 20, 26, 32 and 38 scale factors centred about the median of the Cauchy 
distribution using 5, 10, 25, 50, 100 and 200 frequencies. 

Interval KL  Number of frequencies used in Fourier sums 

Length Measure 5 10 25 50 100 200 

14 Dc 0.2425 0.1148 0.1076 0.1075 0.1075 0.1075 

 Df 0.1148 0.1076 0.1075 0.1075 0.1075 0.1075 

20 Dc 0.4117 0.1296 0.0760 0.0753 0.0753 0.0753 

 Df 0.1296 0.0775 0.0753 0.0753 0.0753 0.0753 

26 Dc 0.6356 0.2188 0.0630 0.0580 0.0580 0.0580 

 Df 0.2188 0.0713 0.0580 0.0580 0.0580 0.0580 

32 Dc 0.8602 0.3391 0.0670 0.0472 0.0471 0.0471 

 Df 0.3391 0.0932 0.0472 0.0471 0.0471 0.0471 

38 Dc 1.0715 0.4885 0.0937 0.0403 0.0397 0.0397 

 Df 0.4885 0.1423 0.0403 0.0397 0.0397 0.0397 
 
idea that the number of frequencies used in the approximation is of secondary importance to the size of the in-
terval of support once sufficient frequencies are in use. This observation accords with intuition in the respect 
that larger intervals of support capture more of the true density and reduce the distortion in the approximating 
density, which as has already been commented, will always integrate to one. It would seem that approximations 
based on 50 frequencies are adequate in all of these examples. The results suggest that using more frequencies 
provides no meaningful improvement in accuracy. Moreover, for practical purposes there is little to choose be-
tween approximation based on the half range Fourier cosine and the full range Fourier series, although the latter 
has a slight edge for sufficiently large intervals and an adequate number of frequencies. 

4. Pricing European Options 
The successfully pricing of European option contracts for affine models of stochastic volatility requires know-
ledge of the marginal density of the asset price under the risk-neutral measure. The difficulty, however, is that 
no closed-form expression for this density is available for even the simplest of the multivariate affine models 
used in finance, although it is well known that such models have characteristic function, ( ),tχ ω , of generic 
form 

( ) ( ) ( )0 1
2

exp , , , ,
M

k k
k

Y Xβ τ ω β τ ω β τ ω
=

 + +  
∑                     (12) 

where T  is the maturity of the option, T tτ = −  is the backward variable and ω  is the characteristic varia-
ble associated with the non-dimensional variable Y , here defined to be the logarithm of the ratio of asset price 
to strike price. The state variables ( )2 , , MX X=X   in Expression (12) denote the values of the latent states of 
the system at time t . Typically the functions 0 , , Mβ β  are the solution of a system of ( )1M +  ordinary 
differential Equations with initial conditions ( )1 0, iβ ω ω=  and ( ) ( ) ( )0 20, 0, 0, 0Mβ ω β ω β ω= = = = . In 
overview, there is a well trodden procedure that starts with the specification of the multivariate affine model and 
ends with the construction of ( ),tχ ω . 

4.1. European Call Option 
In the case of a European call option with strike price K  and maturity T  on an asset with spot price 0S , the 
price of the option is 

( ) ( )Q 0 2e , , ; d ,rT
MK

S K f S X X T S Sθ
∞− −∫ 

  

where ( )Q 0 2, , ;Mf S X X T S θ

  is the marginal density of the asset price at the maturity of the option when 
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0S  is the spot price of the asset and ( )2 , , MX X  are the spot values of the latent states. When expressed in 
terms of ( )logy S K= , the price of the option, say C , becomes 

( ) ( )Q 20
e e 1 , , ; d ,rT y

MK f X X T y yξ θ
∞− −∫                          (13) 

where ( )0log S Kξ = . The value of this integral is now approximated under the assumption that  
( )Q 2, , ;Mf X X T yξ θ  is well approximated by a function of compact support over the interval [ ],a b . Of 

course, the specific form taken by this approximation will depend of the choice of Expressions (a), (b) or (c) in 
Equations (1), but in each case the approximation of ( )Q 2, , ;Mf X X T yξ θ  by a function of compact support 
in [ ],a b  necessarily changes the interval of integration in Expression (13) from [ )0,∞  to [ ]0,b . Thereafter 
it follows that the costs, C , of a call option on the basis of approximations (a) and (b) are respectively 

( ) ( ) ( )
( )

( ) ( )( ) ( )

0
2

1

1
2

1

e 1 cos sin
a e e 1 ,

2 1

sin cos e 1
b e e 1 1 ,

1

kb
k k k krT b

k
k k k

kb
k k k krT bk

k k k

a aa
C K b a

a ab
C K

ω ω ω ω

ω ω

ω ω ω
ω ω

∞
−

=

∞
−−

=

 − − −
 = − − +
 + 

 − + −
= − − + 

+  

∑

∑

          (14) 

where ( )πk k b aω = − . Based on approximation (c) the price of a call option is 

( ) ( ) ( )
0

2
1

2

e cos sinc e e 1
2 1

sin cos e1 e ,
1

b
rT b k k k k

k
k k k

b
bk k k k

k k

a a aC K b a

b a a

λ λ λ λ
λ λ

λ λ λ
λ λ

∞
−

=

 − −= − − +
 +

 − +
+ − +  +  

∑
                 (15) 

where ( )2 πk k b aλ = − . The primary computational load in the computation of Expressions (a), (b) and (c) re-
sides in the calculation of trigonometric functions, and consequently individual terms of Expression (c) require 
more arithmetical effort than the equivalent terms of either Expression (a) or (b). However the difference in 
computational load is minor when the more rapid convergence of summation (c) is compared with that of sum-
mations (a) and (b) simply because the frequencies used in approximation (c) are exactly double those used in 
approximations (a) and (b). 

4.2. Binary Option 
The price of a binary (call) option with strike price K  and maturity T  on an asset with spot price 0S  is 

( )Q 0 2e , , ; d ,rT
MK

f S X X T S Sθ
∞− ∫    

where ( )Q 0 2, , ;Mf S X X T S θ

  is the marginal density of the asset price at the maturity of the option when the 
asset has spot price 0S  and ( )2 , , MX X  are the spot values of the latent states. When expressed in terms of 

( )logy S K= , the price of the binary becomes 

( )Q 20
e , , ; d ,rT

MD f X X T y yξ θ
∞−= ∫                           (16) 

where ( )0log S Kξ = . The value of this integral is now approximated under the assumption that 
( )Q 2, , ;Mf X X T yξ θ  is well represented by the procedures proposed in Section 2. Specifically, the price of 

a binary option computed from the half-range Fourier cosine and sine series are respectively 

( )

( )
( )( )

0

1

1

sin
a e ,

2

cos 1
b e ,

rT k
k

k k

k
k krT

k k

a a
D b a

b a
D

ω
ω

ω

ω

∞
−

=

∞
−

=

 
= + 

 

− −
=

∑

∑

                         (17) 
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where ( )πk k b aω = − . The price of the binary option based on the full-range Fourier series (c) is 

( ) ( )0
1 1

sin
c e cos 1 ,rT k k

k k
k kk k

a b
D a b a a

λ
λ

λ λ

∞ ∞
−

= =

 
= + + − 

 
∑ ∑                  (18) 

where ( )2 πk k b aλ = − . As is the case with the pricing of a call option, the frequencies used in approximation 
(c) are double those used in approximations (a) and (b) suggesting that calculations based on Expression (c) can 
be expected to converge more rapidly than those based on Expressions (a) and (b). 

5. The Heston Model of Stochastic Volatility 
Heston’s [12] risk-neutral model of stochastic volatility has expression 

( ) ( )
( )

2
1 2

2

d 2 d 1 d d ,

d d d ,

Y r q V t V W W

V V t V W

ρ ρ

κ γ σ

= − − + − +

= − + 

                   (19) 

where logY S K= , V  is the diffusion of asset price, r  is the risk-free rate of interest, q  is the dividend 
rate, κ  is the risk-neutral rate of mean reversion of volatility to the risk-neutral long run value of γ , σ  
scales the volatility of diffusion, ρ  is the local correlation between returns and volatility and 1 2d ,dW W  are 
increments in the independent Brownian motions 1W  and 2W . 

Suppose that ( ), , , ,f Y V t y v T  is the probability density function of Equations (19) expressed in terms of the 
backward state ( ),Y V  and the forward state ( ),y v , then the backward Kolmogorov Equation satisfied by the 
transitional probability density function of Equations (19) is 

( ) ( )
2 2 2

2
2 22 2 0.

2
f f f V f f fr q V V
t Y V Y VY V

κ γ ρσ σ
 ∂ ∂ ∂ ∂ ∂ ∂

+ − − + − + + + = ∂ ∂ ∂ ∂ ∂∂ ∂ 
         (20) 

Let ( ), , , ,Y VY V tχ ω ω  be the characteristic function of ( ), , , ,f Y V t y v T  with respect to the forward va-
riables, that is, 

( ) ( ) ( )
2, , , , , , , , e d d .Y Vi y v

Y VY V t f Y V t y v T y vω ωχ ω ω += ∫                   (21) 

By taking the Fourier transform of Equation (20) with respect to the backward variables, the characteristic 
function ( ), , , ,Y VY V tχ ω ω  is seen to satisfy the partial differential Equation 

( ) ( )
2 2 2

2
2 22 2 0.

2
Vr q V V

t Y V Y VY V
χ χ χ χ χ χκ γ ρσ σ

 ∂ ∂ ∂ ∂ ∂ ∂
+ − − + − + + + = ∂ ∂ ∂ ∂ ∂∂ ∂ 

         (22) 

with terminal condition 

( ) ( ), , , , exp .Y V Y VY V T i Y Vχ ω ω ω ω = +   

Thereafter, it is straightforward to show that the anzatz 

( ) ( ) ( ) ( )0 1 2, , , , e Y V
Y VY V t β τ β τ β τχ ω ω + +=                            (23) 

with T tτ = −  is a solution of Equation (22) provided the coefficient functions ( )0β τ , ( )1β τ  and ( )2β τ  
satisfy the ordinary differential equations 

( )

( )

0
1 2

1

2 2 22 1
2 1 1 2 2

d
,

d
d

0,
d
d 1 2 .
d 2 2

r q
β

β κ γ β
τ
β
τ
β β

κ β β ρσβ β σ β
τ

= − +

=

= − − + + +

 



                      (24) 
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The characteristic function of the marginal density of the terminal value of ( )log Ty S K=  requires the so-
lution of Equations (24) with initial conditions ( )0 0 0β = , ( )1 0 Yiβ ω=  and ( )2 0 0β =  for the particular val-
ues of Yω  needed to construct the half-range and full-range Fourier series approximations of transitional prob-
ability density. 

On a practical note, the fact that the characteristic function of ( )log S K  embeds the difference between the 
risk-free rate of interest and the dividend rate suggest at first sight that the coefficients 0 , , Mβ β  must be 
computed whenever the risk-free rate or dividend rate changes, potentially each day, and not just when the pa-
rameters of the model are changed. The key to avoiding this difficulty is to note that the difference ( )r q−  
enters the calculation of 0β  alone, and that the behaviours of 1, , Mβ β  are independent of the behaviour of 

0β . Consequently, the resolution of this practical dilemma is to divide the calculation of 0β  into two stages 
with the first stage treating only those calculations that involve the difference ( )r q−  and the second stage 
treating everything that is independent of the value of ( )r q− . Both stages are brought together each day in the 
calculation of the expected payoff, but only the first stage of calculation needs be done on a day-to-day basis. In 
particular, this calculation is very easy as it amounts to adding ( ) nr q Tω−  to the second stage calculation of 

0β  in the computation of ( )nχ ω . 

6. Error Analysis 
Let ( )f y  denote the marginal density of ( )logY S K= , where K  denotes the strike price of an asset. The 
purpose of this section is to demonstrate that the error in estimating the price of a call option using only that part 
of the density ( )f y  in the finite interval [ ],a b  can be made arbitrarily small by choosing a suitably large 
interval. The function ( )f y , when truncated to the interval [ ],a b , is assumed to satisfy the Dirichlet condi-
tions and therefore is guaranteed to have a convergent Fourier series on [ ],a b . The approximation procedure 
introduces three different errors which are now described. 

6.1. Truncation Error 
Truncation error occurs when the semi-infinite interval in Expression (13) or (16) is replaced by an integral over 
a finite interval, say [ ]0,b  in these expressions. With this approximation in place, the price of the call option is 
approximated by the expression 

( ) ( )
0

e e 1 d
brT yK f y y− −∫                                 (25) 

resulting in an error due to the loss of the contribution to the price from values of y  in [ ],b ∞ . A straightfor-
ward analysis indicates that the error in replacing the true cost of the call option by Expression (25) is 

( ) ( ) ( ) ( )
0 0

e e 1 d e 1 d
brT y yK f y y f y y

∞−  − − −  ∫ ∫   

which in turn simplifies to give 

( ) ( )( ) ( )( )e e 1 1 e 1 d ,rT b y
b

K F b F y y
∞−  = − − + −  ∫                       (26) 

where ( )F y  is the cumulative function of y . Evidently the truncation error in pricing a call option is the 
sum of two positive contributions, both of which are driven by the extent to which the restriction of the marginal 
density of Y  to the interval [ ],a b  fails to capture density in the upper tail of the distribution of Y. Thus Ex-
pression (25) with a numerically accurate representation of the true marginal density of Y  will always underes-
timate the true value of a call option, although the error can be made arbitrarily small by taking [ ],a b  to be a 
suitably large interval. 

The inference from this observation is that approximations of ( )f y  which place unit density in [ ],a b  
may potentially compensate for some of the error incurred in using the truncation procedure to price a call op-
tion. The half-range Fourier cosine and full-range Fourier series approximations of transitional probability den-
sity both fall into this category, which in turn suggests that the use of the truncation procedure with these ap-
proximations of marginal density may well provide rather smaller pricing errors than might casually be antic-
ipated. By contrast, the half-range Fourier sine series approximation of marginal density does not capture unit 



A. S. Hurn et al. 
 

 
2798 

density in the interval [ ],a b , and the corresponding conjecture is that this approximation of marginal density 
will perform less well than the half-range Fourier cosine and full-range Fourier series approximations with re-
gard to the pricing of a call option. Table 4 indicates that this conjecture is borne out in practice. 

6.2. Approximation Errors 
Suppose now that the transitional density ( )f y  in the interval [ ],a b  is replaced by the Fourier series 

( ) ( ) ( )0

1 1
cos sin ,

2 k k k k
k k

a
f y a y a b y aω ω

∞ ∞

= =

= + − + −∑ ∑                (27) 

where the choice of frequencies kω  and the values of ka , kb  depend on the choice of Fourier representation. 
Two errors arise in the calculation of Expression (25). First, the plan is to replace the coefficients ,k ka b  in Eq-
uation (27) by the misspecified coefficients ,k kA B  computed directly from the characteristic function ( )kχ ω  
of ( )f y  via the formula 

 
Table 4. Percentage errors recorded by the half-range cosine series, half-range sine series and full-range Fourier series of 
pricing a European call option and a binary option with strike K = 1200 and maturities one month (panel (a)), three months 
(panel (b)) and six months (panel (c)). The factor refers to the multiple of Tσ  used to establish the interval over which to 
compute the numerical approximation. 

(a) 

Factor 
Call Strike = 1200 T = 0.083 Binary Strike = 1200 T = 0.083 

Cos Sin Full Cos Sin Full 

5.00 −4.160746 −17.315659 −7.719366 −0.031036 −4.731845 −1.295507 

6.00 −0.000537 −0.129887 −0.052720 0.000369 −0.017647 −0.005300 

7.00 0.008273 0.018872 0.001766 −0.002995 −0.000040 −0.000010 

8.00 0.058873 0.019228 0.002259 0.000286 −0.000010 0.000003 

9.00 0.015106 0.018981 0.002546 −0.000038 0.009813 0.000007 

(b) 

Factor 
Call Strike = 1200 T = 0.083 Binary Strike = 1200 T = 0.083 

Cos Sin Full Cos Sin Full 

5.00 −0.006890 −0.084497 −0.035497 0.000000 −0.010412 −0.003842 

6.00 −0.000014 −0.000471 −0.000204 0.000000 −0.000041 −0.000015 

7.00 0.000000 0.000004 −0.000001 0.000000 −0.000000 0.000001 

8.00 0.000000 0.000005 −0.000001 0.000000 −0.000000 0.000000 

9.00 0.000000 0.000005 −0.000001 0.000000 0.000000 0.000000 

(c) 

Factor 
Call Strike = 1200 T = 0.500 Binary Strike = 1200 T = 0.500 

Cos Sin Full Cos Sin Full 

5.00 −0.001412 −0.020338 −0.009446 0.000000 −0.002338 −0.000993 

6.00 −0.000005 −0.000115 −0.000055 0.000000 −0.000010 −0.000004 

7.00 0.000000 −0.000000 −0.000000 0.000000 0.000000 −0.000000 

8.00 0.000000 −0.000000 −0.000000 0.000000 0.000000 −0.000000 

9.00 0.000000 −0.000000 −0.000000 0.000000 0.000000 −0.000000 
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( )2e .
ki a

k k kA iB
b a

ω

χ ω
−

+ =
−

                               (28) 

Consequently a misspecification error arises in the Fourier coefficients. Second, the truncation of the Fourier 
series (27) to a finite number of terms, say N  terms, introduces another approximation error. Therefore the 
price of a call option based on this strategy is 

( ) ( ) ( )

( ) ( )

0
0 0

1

0
1

e e 1 d e 1 cos d
2

e 1 sin d

Nb brT y y
k k

k

N b y
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k
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K y A y a y

B y a y

ω

ω

−

=

=

 − + − −
+ − − 

∑∫ ∫

∑ ∫
                   (29) 

in which ( )f y  in Expression (25) has been replaced by the first ( )1N +  terms of the Fourier series (27) 
with misspecified coefficients kA  and kB . The error introduced by this approximation is 

( ) ( )
0

e e 1 d
brT yK f y y C− − −∫                               (30) 

which has explicit expression 

( ) ( ) ( ) ( ) ( )
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∫

            (31) 

The misspecification error in the coefficients ka  and kb  due to the use of the coefficients kA  and kB  
respectively is determined from the identity 

( ) ( )

( ) ( )

2 e d

e2 e d e d .

k

k
k k

b i y a
k k a

i a
a i y i y

k k b

a ib f y y
b a

A iB f y y f y y
b a

ω

ω
ω ω

−

−
∞
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+ =
−

 = + − +  −

∫

∫ ∫



 

 

Standard properties of integral Calculus guarantee that 

( ) ( ) ( ) ( ) 1
2 e d e d ,k k

a i y i y
k k k k b

a ib A iB f y y f y y
b a

ω ω ε
∞

−∞
+ − + = + ≤

− ∫ ∫   

where 

( ) ( ) ( ) ( )1
2 2d d 1 .

a

b
f y y f y y F a F b

b a b a
ε

∞

−∞
 = + = + −    − −∫ ∫                   (32) 

It therefore follows directly that 

1 1, ,k k k ka A b Bε ε− ≤ − ≤                               (33) 

for all values of k . Thus the misspecification error in the Fourier coefficients is driven entirely by the choice of 
interval [ ],a b  via the magnitude of the cumulative function ( )F y  at y a=  and y b= . In practice this 
error will be significantly smaller than the maximum bound given in Equation (33) as a result of arithmetical 
cancellation due to the oscillatory nature of the integrand, but as commented previously, the decay of this error 
as [ ],a b →   will be determined by the behaviour of ( )F y  as y → −∞  and as y →∞ . 

In conclusion, the total error in pricing a call option, namely 
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( ) ( )
0

e e 1 d ,rT yK f y y C
∞− − −∫                                (34) 

is formed by connecting together Equation (26) for the error arising in the truncation of the density ( )f y  to 
the finite interval [ ],a b , Equation (29) for the value of the option in terms of the misspecified Fourier coeffi-
cients ,k kA B , and Equation (31) for the size of the resulting misspecification error in the option price. The re-
sult is that the error is 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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          (35) 

Each integral is replaced by its value and the triangle inequality is used to deduce that 
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           (36) 

The contributions to the error from the first, second, third and fourth terms on the right hand side of inequality 
(36) are dominated by the behaviour of ( )F a  and ( )1 F b−  . By choosing the interval [ ],a b  suitably large, 

( )F a  and ( )1 F b−   can be made arbitrarily small. The behaviour of the fifth and sixth terms on the right 
hand side of inequality (36) depends on the choice of N . Bearing in mind that ( )k O kω = , then it straightfor-
ward to show that there are positive constants 1C  and 2C  such that 
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( ) ( )
( )

1
2 22 2

2
2

2 2 2

sin cos e cos e 1 ,
11 1

e 1 1e cos sin cos cos
.

1 1 1

b b
k k k k

kk k k k

bb
kk k k k k

k k k k k

a a b a C
k

b a a a b a C
k

ω ω ω ω
ωω ω ω ω

ωω ω ω ω ω
ω ω ω ω ω

+ − +
− ≤ ≤

++ +
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The well known result that if ( )f y  is a continuous function3 of y , then ka K k<  and kb K k<  in-
dicates that the fourth and fifth terms of inequality (36) are ( )3O k −  and ( )2O k −  respectively. Thus the fifth 
and sixth terms on the right hand side of inequality (36) can also be made arbitrarily small by a suitably large 

 

 

3Sharper results can be obtained if ( ) [ ],pf y C a b∈  for 1p > . However the function represented by the half-range Fourier cosine series 
is not generally differentiable at x a= , and so the convergence argument is based on the weakest condition satisfied by Fourier coeffi-
cients. 
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choice of N . 
In conclusion, the error in pricing a call option can be made arbitrarily small by restricting the marginal prob-

ability density to a finite interval [ ],a b  and approximating the density in that interval by a misspecified Fourier 
series constructed from the characteristic function at the appropriate frequencies. 

7. Performance under Simulation 
A series of simulation experiments was undertaken in order to examine the efficacy of the half-range Fourier 
cosine series, half-range Fourier sine series and full-range Fourier series in respect of how accurately these ap-
proximations price European call options and binary options. The first experiment prices options in a Black- 
Scholes world so that a closed-form solution may be used to assess the pricing error, whereas the second expe-
riment prices the same options using Heston’s model of stochastic volatility. 

7.1. Black-Scholes Pricing 
Assume that the asset price, S , follows a geometric Brownian motion 

( )d d dS S r t Wσ= +  

in which dW  is the increment of a Wiener process. The advantage of using this specification is that, following 
the seminal work of Black and Scholes [13], exact prices are known for each type of option for all combinations 
of spot price 0S , strike price K , and maturity T . It follows, therefore, that the relative percentage pricing er-
ror incurred using numerical methods based on Fourier series for a variety of different strike prices and maturi-
ties can be identified exactly. 

Three major experiments are performed. In each of these experiments 0.05r = , 0.15σ =  per year, 
0 1000S =  and the strikes K  are taken to be 1200, 1000 and 800 respectively so as to examine the perfor-

mance of the algorithms when the options are out-of-the-money, at-the-money and in-the-money. In each simu-
lation the accuracy of the various approximations of transitional density is assessed for prescribed values of a  
and b  in which the size of the interval [ ],a b  is expressed as a multiple of Tσ  ranging from 5 to 9. The 
results of these exercises are reported in Tables 4-6 with each table reporting the results for maturities of one 
month (panel (a)), three months (panel (b)) and six months (panel (c)). 

Two very clear general conclusions emerge from these results. 
1) For options that are deep in-the-money (Table 6) in which 0 1000S =  and 800K = , or at-the-money 

(Table 5) in which 0 1000S =  and K = 1000, it matters little (if at all) which of these three pricing algorithms are 
chosen irrespective of the maturity of the option. Indeed the relative pricing error is zero for all practical purposes. 

2) For options that are deep out-of-the-money (Table 4) in which 0 1000S =  and 1200K = , the choice of 
algorithm is more important. The results may be summarized succinctly as follows. 

a) The half-range Fourier sine series does not perform as well as the other two approximations and its use is 
therefore not recommended. This finding accords well with our previous intuition based on a consideration of 
the contribution to the price of a call option lost as a result of truncating marginal density. 

b) The half-range Fourier cosine series and the full-range Fourier series both perform relatively well. When 
the size of the interval of approximation is a relatively small multiple of Tσ , namely either 5 or 6, then the 
half-range Fourier cosine series performs better that the full-range Fourier series. As the multiple of Tσ  in-
creases and the size of the interval of approximation becomes larger, the full-range Fourier series begins to do-
minate. When the interval of approximation has size 10 Tσ , then the full-range Fourier series is unambi-
guously superior to the half-range Fourier cosine series, particularly for options of short maturity. 

On the basis of this analysis and on accuracy grounds, it is hard to ignore the claim that the full-range Fourier 
series is the algorithm of choice when using Fourier methods to price options. Moreover, the full-range Fourier 
series converges faster than either the half-range sine or cosine series and is therefore likely to price options 
more rapidly. These themes are explored in more detail in the pricing of call options under Heston’s model of 
stochastic volatility. 

7.2. Heston’s Model 
A total of approximately 40,000 options over ten years were generated by simulation of Heston’s model. Sixteen  
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Table 5. Percentage errors recorded by the half-range cosine series, half-range sine series and full-range Fourier series of 
pricing a European call option and a binary option with strike K = 1000 and maturities one month (panel (a)), three months 
(panel (b)) and six months (panel (c)). The factor refers to the multiple of Tσ  used to establish the interval over which to 
compute the numerical approximation. 

(a) 

Factor 
Call Strike = 1000 T = 0.083 Binary Strike = 1000 T = 0.083 

Cos Sin Full Cos Sin Full 

5.00 −0.000044 −0.000313 −0.001045 0.000000 −0.000159 −0.000043 

6.00 −0.000000 −0.000002 −0.000005 0.000000 −0.000001 −0.000000 

7.00 0.000000 0.000000 0.000000 0.000000 −0.000000 −0.000000 

8.00 −0.000000 0.000000 0.000000 0.000000 −0.000000 −0.000000 

9.00 −0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

(b) 

Factor 
Call Strike = 1000 T = 0.250 Binary Strike = 1000 T = 0.250 

Cos Sin Full Cos Sin Full 

5.00 −0.000063 −0.001375 −0.000547 0.000000 −0.000202 −0.000074 

6.00 −0.000000 −0.000007 −0.000003 0.000000 −0.000001 −0.000000 

7.00 0.000000 −0.000000 −0.000000 0.000000 −0.000000 −0.000000 

8.00 −0.000000 −0.000000 −0.000000 0.000000 −0.000000 −0.000000 

9.00 −0.000000 −0.000000 −0.000000 0.000000 0.000000 0.000000 

(c) 

Factor 
Call Strike = 1000 T = 0.500 Binary Strike = 1000 T = 0.500 

Cos Sin Full Cos Sin Full 

5.00 −0.000116 −0.002208 −0.001059 −0.000000 −0.000254 −0.000108 

6.00 −0.000000 −0.000012 −0.000006 −0.000000 −0.000001 −0.000000 

7.00 0.000000 −0.000000 −0.000000 −0.000000 −0.000000 −0.000000 

8.00 0.000000 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 

9.00 0.000000 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 

 
options were generated each day spread over 4 maturities ranging from 92 to 5 days and 4 strikes two of which 
are initialised at 20% out of and into the money and two of which are initialised at 7% out of and into the money. 
The half-range Fourier cosine series and the full-range Fourier series are then used to price call options and bi-
nary options with these strikes. In this instance no exact solutions are available, and so the accuracy of each me-
thod in respect of each type of option is gauged by comparison against values calculated using a large interval. 
The left hand and middle columns of Table 7 show respectively the 2L  and 1L  relative pricing errors for 
out-of-the-money call options calculated using the half-range Fourier cosine series and the full-range Fourier se-
ries. The right hand column of Table 7 shows the CPU time (secs) needed to perform the calculations. The left 
hand column specifies the length of the interval [ ],a b  in multiples of Y DTσ γ=  , the unconditional stan-
dard deviation of the distribution of Y  about ( )0log S K  after an interval of duration DT , taken to be a 
trading day in the simulation study, i.e. 1 252DT = . 

A clear finding from Table 7 is that the half-range Fourier cosine series performs well in respect of the 2L  
measure for shorter intervals and in the 1L  measure for almost all choices of interval length. By contrast the 
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Table 6. Percentage errors recorded by the half-range cosine series, half-range sine series and full-range Fourier series of 
pricing a European call option and a binary option with strike K = 800 and maturities one month (panel (a)), three months 
(panel (b)) and six months (panel (c)). The factor refers to the multiple of Tσ  used to establish the interval over which 
the numerical approximation is computed. 

(a) 

Factor 
Call Strike = 800 T = 0.083 Binary Strike = 800 T = 0.083 

Cos Sin Full Cos Sin Full 

5.00 −0.000003 −0.000184 −0.000049 −0.000043 −0.000127 −0.000068 

6.00 −0.000000 −0.000001 −0.000000 −0.000000 −0.000000 −0.000000 

7.00 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 0.000000 

8.00 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 0.000000 

9.00 −0.000000 0.000000 0.000000 −0.000000 −0.000010 0.000000 

(b) 

Factor 
Call Strike = 800 T = 0.250 Binary Strike = 800 T = 0.250 

Cos Sin Full Cos Sin Full 

5.00 −0.000011 −0.000343 −0.000133 −0.000000 −0.000111 −0.000041 

6.00 −0.000000 −0.000002 −0.000001 −0.000000 −0.000000 −0.000000 

7.00 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 0.000000 

8.00 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 0.000000 

9.00 −0.000000 0.000000 0.000000 −0.000000 −0.000000 0.000000 

(c) 

Factor 
Call Strike = 800 T = 0.500 Binary Strike = 800 T = 0.500 

Cos Sin Full Cos Sin Full 

5.00 −0.000022 −0.000580 −0.000259 −0.000008 −0.000147 −0.000063 

6.00 −0.000000 −0.000003 −0.000001 −0.000000 −0.000001 −0.000000 

7.00 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 0.000000 

8.00 −0.000000 0.000000 −0.000000 −0.000000 −0.000000 0.000000 

9.00 −0.000000 0.000000 0.000000 −0.000000 −0.000000 0.000000 

 
performance of the full-range Fourier series is poor with regard to both measures for shorter intervals. However, 
the quality of approximation provided by the half-range cosine series is erratic as the size of the Fourier window 
increases whereas that provided by the full-range Fourier series improves systematically to the extent that its 
performance surpasses that of the half-range Fourier cosine series for intervals of length 24 standard deviations 
or more. Furthermore, this level of accuracy is achieved by the full-range Fourier series in approximately 25% 
quicker than that required by the half-range Fourier cosine series. 

Fang and Oosterlee [10] suggest choosing intervals of length 20 standard deviations. In this problem, it is 
evident that the half-range Fourier cosine series still enjoys an advantage over the full-range Fourier series for 
intervals of this length. The suggestion of this investigation is that 20 standard deviations should be regarded as 
a minimum length of interval. Table 8 shows the 2L  and 1L  relative pricing errors calculated from the half- 
range Fourier cosine series and the full-range Fourier series in respect of in-the-money call options based on 
Heston’s model. 
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Table 7. The L2 and L1 relative pricing errors calculated from the half-range Fourier cosine series and the full-range Fourier 
series for out-of-the-money call options based on Heston’s model. The timings refer to the times (seconds) needed to price 
12 daily call options over 10 years with maturities ranging from 5 to 92 days. The factor refers to the multiple of σY used to 
establish the interval over which the numerical approximation is computed. 

Factor 

Out-of-the-money call Out-of-the-money call Timings (sec) 

(L2 Error) (L2 Error) (L1 Error) (L1 Error)   

Cos Series Full Series Cos Series Full Series Cosine Full 

10 0.000228 0.172011 0.000289 0.208449 0.140 0.109 

12 0.000523 0.056627 0.000045 0.063078 0.156 0.109 

14 0.000053 0.016726 0.000029 0.018403 0.187 0.141 

16 0.000242 0.004654 0.000030 0.005235 0.203 0.172 

18 0.000374 0.001251 0.000030 0.001468 0.234 0.171 

20 0.000190 0.000330 0.000035 0.000417 0.265 0.187 

22 0.000064 0.000086 0.000028 0.000129 0.281 0.218 

24 0.000460 0.000023 0.000030 0.000052 0.296 0.218 

26 0.000058 0.000010 0.000027 0.000031 0.328 0.249 

28 0.000315 0.000008 0.000029 0.000025 0.343 0.265 

30 0.000219 0.000007 0.000035 0.000021 0.359 0.280 

 
Table 8. The L2 and L1 relative pricing errors calculated from the half-range cosine series and the full-range Fourier series 
for in-the-money call options based on Heston’s model. The timings refer to the times (seconds) needed to price 12 daily call 
options over 10 years with maturities ranging from 5 to 92 days. The factor refers to the multiple of σY used to establish the 
interval over which the numerical approximation is computed. 

Factor 

In-the-money call In-the-money call Timings (sec) 

(L2 Error) (L2 Error) (L1 Error) (L1 Error)  

Cos Series Full Series Cos Series Full Series Cosine Full 

10 0.000027 0.002421 0.000362 0.215297 0.140 0.109 

12 0.000008 0.000845 0.000063 0.061658 0.156 0.109 

14 0.000008 0.000281 0.000043 0.017301 0.187 0.141 

16 0.000008 0.000090 0.000043 0.004790 0.203 0.172 

18 0.000008 0.000029 0.000043 0.001326 0.234 0.171 

20 0.000024 0.000011 0.000052 0.000382 0.265 0.187 

22 0.000008 0.000008 0.000041 0.000130 0.281 0.218 

24 0.000008 0.000008 0.000043 0.000062 0.296 0.218 

26 0.000007 0.000007 0.000041 0.000044 0.328 0.249 

28 0.000008 0.000007 0.000042 0.000038 0.343 0.265 

30 0.000025 0.000007 0.000053 0.000034 0.359 0.280 
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The results reported in Table 8 exhibit a similar pattern of behaviour to those reported in Table 7, namely 
that for intervals of short length the half-range Fourier cosine series outperforms the full-range Fourier series 
with respect to both the 2L  and 1L  measures of accuracy, but that this dominance vanishes when the length of 
the interval of approximation is 24 standard deviations or more. In particular, both approaches generate noticea-
bly smaller relative errors for in-the-money options than for out-of-the-money options. Because in-the-money 
call options carry a higher price, one inference of this observed reduction in relative error is that the absolute 
pricing error in using each Fourier representation is insensitive to the moneyness of the option. Table 8 and Table 
9 report the performance of the half-range Fourier cosine series and the full-range Fourier series when used to 
price binary options. 

The results presented in Table 9 and Table 10 demonstrate that both the half-range Fourier cosine series and 
the full-range Fourier series both generate good estimates of the price of binary options with the former per-
forming better than the latter for intervals of short length, but with this advantage disappearing when the length 
of the interval is increased. 

 
Table 9. The L2 and L1 relative pricing errors calculated from the half-range cosine series and the full-range Fourier series 
for out-of-the-money binary options based on Heston’s model. The timings refer to the times (seconds) needed to price 12 
daily call options over 10 years with maturities ranging from 5 to 92 days. The factor refers to the multiple of σY used to 
establish the interval over which the numerical approximation is computed. 

Factor 

Binary out-of-the-money Binary out-of-the-money Timings (sec) 

(L2 Error) (L2 Error) (L1 Error) (L1 Error)  

Cos Series Full Series Cos Series Full Series Cosine Full 

10 0.000020 0.005846 0.000000 0.000328 0.172 0.094 

12 0.000006 0.001753 0.000000 0.000081 0.203 0.125 

14 0.000020 0.000504 0.000000 0.000020 0.234 0.125 

16 0.000007 0.000141 0.000000 0.000005 0.265 0.141 

18 0.000028 0.000047 0.000000 0.000001 0.281 0.156 

20 0.000004 0.000022 0.000000 0.000000 0.312 0.172 

22 0.000020 0.000020 0.000000 0.000000 0.343 0.187 

26 0.000020 0.000020 0.000000 0.000000 0.390 0.203 

30 0.000022 0.000020 0.000000 0.000000 0.437 0.250 

 
Table 10. The L2 and L1 relative pricing errors calculated from the half-range cosine series and the full-range Fourier series 
for in-the-money binary options based on Heston’s model. The timings refer to the times (seconds) needed to price 12 daily 
call options over 10 years with maturities ranging from 5 to 92 days. The factor refers to the multiple of σY used to establish 
the interval over which the numerical approximation is computed. 

Factor 

Binary in-the-money Binary in-the-money Timings (sec) 

(L2 Error) (L2 Error) (L1 Error) (L1 Error)   

Cos Series Full Series Cos Series Full Series Cosine Full 

10 0.000025 0.000678 0.000004 0.000186 0.172 0.109 

12 0.000007 0.000193 0.000000 0.000044 0.203 0.125 

14 0.000007 0.000054 0.000000 0.000011 0.234 0.125 

16 0.000007 0.000016 0.000000 0.000003 0.265 0.156 

18 0.000007 0.000008 0.000000 0.000001 0.281 0.156 

20 0.000006 0.000007 0.000000 0.000000 0.312 0.171 

22 0.000009 0.000007 0.000000 0.000000 0.343 0.187 

26 0.000016 0.000007 0.000000 0.000000 0.390 0.219 

30 0.000012 0.000007 0.000000 0.000000 0.437 0.234 
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The results reported in Tables 7-10 are characterised by two common denominators. First, the computational 
time required by the half-range Fourier cosine series is uniformly longer than that required by the full-range 
Fourier series for an interval of fixed length. The simple explanation for this observation is that the full-range 
Fourier series uses larger frequencies for a given length of interval, and therefore the full-range Fourier series 
converges more rapidly. Second, the pricing of call options and binary options using the half-range Fourier co-
sine series representation of transitional density is noticeably better than the corresponding pricing using the 
full-range Fourier series for short intervals [ ],a b , but this advantage vanishes in the case of the binary option 
when the interval becomes suitably large and is reversed in the case of a call option. The primary explanation for 
this behaviour lies in the realisation that tail density is characterised by long wavelengths, or equivalently by the 
presence of low frequency terms, whereas peaky density is characterised by short wavelengths, or equivalently 
high frequency terms. 

For an interval of given length, the frequencies present in the half-range Fourier cosine expansion are smaller 
that the frequencies present in the full-range Fourier series, and therefore when the length of the interval [ ],a b  
is small, the half-range Fourier cosine series better captures tail behaviour. Increasing the length of the interval 
lowers the range of frequencies admitted to the full-range Fourier series expansion, which in turn improves its 
ability to handle tail density. However, the same increase in length will benefit the half-range Fourier cosine se-
ries representation of transitional density only provided there remains significant tail density to be characterised 
by these new frequencies. On the other hand, the half-range Fourier cosine series will always suffer from the 
drawback that the (periodic) function it represents has gradient zero at x a=  and x b=  (because the series is 
not generally differentiable at these points). Consequently, the half-range Fourier cosine series approximation 
will always misrepresent the gradient of the true density function at x a=  and x b=  in contrast to the beha-
viour of the approximation provided by the full-range Fourier series. 

8. Conclusion 
One clear conclusion from these calculations is that the half-range Fourier cosine series and the full-range 
Fourier series perform uniformly better than the half-range Fourier sine series. The half-range Fourier cosine se-
ries and the full-range Fourier series both perform with credit. When the length of the interval [ ],a b  is rela-
tively small, say ten or so standard deviations, it is clear that the half-range Fourier cosine series outperforms the 
full-range Fourier series over the same interval. On the other hand for intervals of larger length the full-range 
Fourier series is at least as good as the half-range Fourier cosine series, and outperforms the latter in pricing 
out-of-the-money call options, in particular, with maturities of three months or less. In general the full-range 
Fourier series outperforms the half-range Fourier cosine series in all circumstances provided that the interval 
[ ],a b  is suitably large, although the effect is so small as not to be significant in practice. The explanation for 
this behaviour lies in the fact that the half-range Fourier cosine series, although not representing a differentiable 
function, always uses a lower spectrum of frequencies than the full-range Fourier series and therefore enjoys an 
initial advantage in describing tail density. As the interval length is increased, this advantage vanishes. On the 
other hand the larger spectrum of the full-range Fourier series guarantees more rapid convergence. Of course, 
timing issues may not be important if small numbers of model call prices are to be calculated, but when facing 
calibration problems or estimation problems as described in the introductory remarks, timing issues are indeed 
significant once adequate numerical accuracy is assured. 
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