Applied Mathematics, 2014, 5, 2318-2333 #%%* Scientific
Published Online August 2014 in SciRes. http://www.scirp.org/journal/am ’02:0 Research
http://dx.doi.org/10.4236/am.2014.515226

The Cauchy Problem for the Heat Equation
with a Random Right Part from the Space
Sub,, (Q2)

Yuriy Kozachenko, Anna Slyvka-Tylyshchak

Department of Probability Theory, Statistics and Actuarial Mathematics, The Faculty of Mechanics and
Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Email: yvk@univ.kiev.ua, aslyvka@ukr.net

Received 16 May 2014; revised 24 June 2014; accepted 7 July 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The influence of random factors should often be taken into account in solving problems of ma-
thematical physics. The heat equation with random factors is a classical problem of the parabolic
type of mathematical physics. In this paper, the heat equation with random right side is ex-
amined. In particular, we give conditions of existence with probability, one classical solutions in
the case when the right side is a random field, sample continuous with probability one from the
space Sub, (Q) Estimation for the distribution of the supremum of solutions of such equations is

founded.
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1. Introduction

The subject of this work is at the intersection of two branches of mathematics: mathematical physics and sto-
chastic processes.

The physical formulation of problems of mathematical physics with random factors was studied by Kampe de
Feriet [1]. In the works [2] and [3], a new approach studying the solutions of partial differential equations with
random initial conditions was proposed. The authors investigate the convergence in probability of the se-
quence of function spaces of partial sums approximating the solution of a problem. The mentioned approach
was used in the works [4]-[7]. In the paper [3], the application of the Fourier method for the homogeneous
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hyperbolic equation with Gaussian initial conditions is justified. The conditions of the existence of the clas-
sical solution of this equation in terms of correlation functions are also studied. Homogeneous hyperbolic eg-
uation with random initial conditions from the space Sub, (©) is considered in [8]-[11]. The model of a so-
lution of a hyperbolic type equation with random initial conditions was investigated in the papers [12] [13].
There is a study on a boundary-value problem of mathematical physics for the inhomogeneous hyperbolic
equation with ¢ -subgaussian in right part [8] [14]. The parabolic type equations of Mathematical Physics
with random factors of Orlicz spaces have been studied in the papers [15] [16]. Further references can be
found in [8] [17]-[21].

We consider a Cauchy problem for the heat equations with a random right part. We study the inhomogeneous
heat equation on a line with a random right part. We consider the right part as a random function of the space
Sub, (Q2) . The Gaussian stochastic process with zero mean belongs to  Sub, (€2) [22]. The conditions of exis-
tence with probability one of the classical solution of this problem are investigated. For such a problem has been
got the estimation for the distribution of the supremum solution.

The paper consists of the introduction and three parts. Section 2 contains necessary definitions and results of
the theory of the Sub, () space. In Section 3, we consider heat equations with random right-hand side. For
such problem conditions of existence, with probability one, of classical solution with random right-hand side
from the space L, (©) are found. The estimation for distribution of supremum of this problem has been got
in Section 4.

2. Random Processes from Sub, (Q) Space

Definition 1. [23] An even continuous convex function u(x), xeR" such that u(0)=0 and u(x)> 0

for x#0 and Iingmzo, IimM:oo is called an N -function.
X—>! X X—o0 X
Definition 2. [21] We say an N-function u satisfies the (-condition if there exist constants z, >0,
k>0, A>0 suchthat u(x)u(y)<Au(kxy) forall x>z, y>z,.
Lemma 1. [21] Let u(x) bean N-function. Then

1. u(ax)<au(x) for 0<a<1 and XeR;

2. u(ax)=au(x) for a>1 and XeR;

3. u(|x|+|y])<u(x)+u(y) for x,yeR;

4. The function u(x)/x_is non decreasing for x>0.

Lemma 2. [21] Let u(’l)(x) be the inverse to an N-function u(x) for x>0. Then u(’l)(x) is a con-
vex increasing function such that

u™(ax)<au'™(x) for 0<a<land xeR;

N

u(’l)(ax)Zau(’l)(x) for ¢ >1 and xeR;
u('l)(|x|+|y|)SU('l)(x)+u('1)(y) for x,yeR;

4. the function u(x)/x is nonincreasing for x>0.
Definition 3. [23] Let u(x) bean N-function. The function u’(x) =sup(xy—u(y)) is called the Young-
yeR

w

Fenchel transform of the function u (x) . The function u” (X) isan N-function as well.
Let {Q,3, P} be astandard probability space.
Definition 4. [21] Let ¢(x) be an N-function for which there exist constants x, >0 and ¢>0 such

that ¢(x)=cx’ for |X| < X, . The set of random variables &(@), @ € R, is called the space Sub, () gen-

erated by the N-function ¢(x) if ES=0 and there exists a constant a. such that

Eexp{i&} < exp{(p(laé )} forall AeR'.

_ _ o' (InEexp{1¢})
The space Sub, (Q) isaBanach space with respect to the norm [21] 7, =sup |/1|
A#0
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Definition 5. [23] The stochastic process X :{X (t),tT} belongs to space Sub, (), (X € Subw(Q)) if

X (t)eSub,(Q) forall teT.
Remark 1. [24] The Gaussian stochastic process X (t) with zero mean belongs to Sub, (<), where

#(x)=x/2 and =(x (1)) =(E(x () ) "

A Family of Strongly Sub,(Q) Random Variables and a Family Strongly Sub, (Q)
Stochastic Processes

Lemma 3. [21] If & e Sub, (), then there exists a constant C >0 such that (E(aj)2 )]/2 <Cr,(&).

Definition 6. [21] The random variable & e Sub,(Q) is called strongly Sub, (), (SSubq, (Q)) random

variable if 7, (£)=(E&*)".

Properties and applications of SSub, (Q) random variables and stochastic processes from SSub, (Q) can
be found in [21].
Definition 7. [7] A family A of random variables & of the space Sub, (€2) iscalled SSub,(€2) family if

(ZMHE[Z“)T

forall 4 eR',where | isatmostcountableand & e, iel.

Theorem 1. [7] Let A be a strongly Sub{p(Q) family of random variables. Then the linear closure A of
the family A inthe space L,(€2) and inthe mean square sense is a strongly Sub, (Q) family.

Definition 8. [21] The stochastic process X; :{ X (t), teT, ie I} is called an SSub, (Q) process if the
family of random variables X, ={ X, (t), teT, iel} isan SSub,(<).
Theorem 2. [7] Let X, ={ X, (t) teT, ie I} be a family of jointly strongly Subq)(Q) stochastic pro-

cesses. Then (T,6,u) is a measurable space. If {qﬁk (t) iel, k =1,To} is a family of measurable functions in

(T,6,u) and the integral & = j¢k (t)X; (t)du(t) is well defined in the mean square sense, than the family of
T

random variables Aéz{fki,iel,kzl,_oo} isan Sub, () family.
Theorem 3. [9] Let R* bethe k -dimensional space,
d(t,s)=maxlt -s|, T={0<t<T,i=12-k}, T,>0. X,={X,(t),teT}eSub,(Q). Assume that

1<i<k !

the process X, (t) is separable and

sup 7,(X,(t)=X,(s))<o(h) where o(h) is a monotone increasing continuous function such that
d(t,s)<h

¢(* ) (U)

is the inverse function to U(g). If the processes X, (t) converge in probability to the process X (t) for all

and o (¢)

0+

o(h)—>0 as h—0. We also assume that j.t//(lno_(%(g)}ig@o,where w(u)=

teT , then X, (t) converge in probability in the space C(T).
Theorem 4. [9] Let T :{ai <x <h, i =1,---,m} and let .»;(x), X €T, be a separable random field such
that &(X)eSSub, (). Put By, (X,Y)=EE(X)E(Y) and assume that the partial derivatives
*B(X.Y)
Xy,

BiOiO(X!Y): , i=1---m and



Y. Kozachenko, A. Slyvka-Tylyshchak

B_k_k(xiy)zm’ i=1---m, k=21---,m
- OX;0Y; 0%, OYy,

exist. Let there exist a monotone increasing continuous functiono, (h)>0, h>0, such that o,(h)—>0 as
h—0 for z=(0,0,0,0), z=(i,0,i,0), i=1--,m and z=(i,k,ik), i,k=1---,m.Assume that

s (B, (X, X)+B,(Y,Y)-2B,(X,Y))" <o, (h)

If jw[ln[m}]du <o for all z and for sufficiently small &>0 where y(u)= , then
0

u
¢(fl) (u)

X) 0%(X) . .
with probability one the partial derivatives ai( ) , aég ) , 1,J=1---,m, exist and are continuous.
X X.0X.
i

3. The Heat Equations with Random Right Part
We consider the Cauchy problem for the heat equation
au(x,t) ,d%u(xt)
=a +<&(x,t), 1
ot Ox? £(xY) @)
—0 < X <40, t >0, subject to the initial condition

u(x,0)=0, —oo< X<+, 2
Let the function &(x,t)= {g(x,t), XR,t > 0} is a random field sample continuity with probability one from
the space Sub, (Q2), such that E£(x,t) =0, E(g(x,t))2 <+ . Letusdenote B(x,t,z,5)=E&(xt)E(z,s). Let

B(x,t,z,5) be acontinuous function. Problem when the function &(x,t) nonrandom has been seen in [25].
Lemma 4. Let §(x,t) is a random field, sample continuity for each t>0 with probability one, there is a

. . 0E(xt . .
continuous derivative ég ) for x e R and satisfy condition
X

[VE(& (x1))dx < oo ©)

R

Then for the function &(x,t) foreach t>0 the integral Fourier transform

E(y,‘r)=%fcosyx§(x,r)dx

A 1 +o0 =
exist and T)=—= , .
E(x,7) m:[ocosyxf(x 7 )dy
Proof. Since, by Fubini’s theorem, [E|&(x,t)|dx < [,/E(&%(x,1)), we deduce that the integral
[Efexjace [ ()

[]&(x.t)|dx <oo exist with probability one, and therefore the integral [ cosyx(x,z)dx, and therefore it im-
R -0

plies from [26] that the integral Fourier transform

E(YJ) = \/;— jccosyxg(x,r)dx

exist, and the inverse integral Fourier transform

)
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E(x,7) \/_ J' cosyxé (x, 7 )dx

exist.
Theorem 5. Let the conditions of Lemma 4 be satisfied and

G(y.t)= \/_je IE(y,7)dr,

- 1 +o0
ff(ylf)=ELcosyx§(x,r)dx
and

= T cosyxG (y,t)dy Q)

—0

If the following integrals exist

[ ysinyxG(y,t)dy, [ y°cosyxG(y,t)dy,

s=0,2
and for all A>0 and T >0 there exists a sequence a,, a, > for n— o0, such that the sequence of
integrals
_[ ysinyxG (y,t)dy, 5)
[ yecosyxG(y,t)dy, s=0,2. (6)

—ap

converges in probability, uniformly for |x| <A, 0<t<T , then u(x,t) is the classical solution to the problem
(1) and (2).

Proof. Since the integrals (5) and (6) converges in probability uniformly for |x| <A, 0<t<T, thereexists a
subsequence b, b, —>c as n— o, such that

+by, +by,
[ ysinyxG (y,t)dy, [ y*cosyxG(y,t)dy, s=0,2,
b, b,

converges with probability one to
[ ysinyxG (y,t)dy, | y°cosyxG(y,t)dy, s=0,2,

uniformly for |x<A, 0<t<T, Let
+by,

u, (x.t)= I cosyxG ( y, t)dy. )

,bn
By deriving (7) with respectto x and t, we easily see that

o%u, (x,t)

p —a? f y*cosyxG ( y, t)dy+r j cosyxé (y,7)dy,

o%u, (x,t)

=— [ y?cosyxG(y,t)dy,
o= [ yeospe ()

@)
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ou, (x.t) , 0°Uy (xt) 1 % g
n —_ , d )
p a’ v \/Z-'[n cosyxé (y,7)dy
ou, (xt 0* t u(x,
t>0,xeR. Since for n— M converges to au(x,t)’ and M converges to 0 U(X )
ot ox? ox?
uniformly for |x| <A, 0<t<T with probability one, we conclude that u(x,t) satisfies Equation (1). [
uxy) —a’ | yzcosny(y,t)dy+L [ cosyx(y.r)dy
Indeed, g (x1)
o°u(x,t
= aZT+§(x,t).

Lemma 5. [9] Let &(x,t) be arandom field, sample continuity from the space Sub, (Q2). Let B(x,t,v,s)
be the correlation function of the field &(x,t). Forall t>0, s>0 assume that:
d“B(x.t,v,s)

po v k=0,---,4, l+m=k exist;
X

1. The derivatives

+oo+ook
2 “’ud xdv < B(k,I,m)<oo, k=0,--4, +m=k

—00 —0

9“B(x,t,v,s)
ox'ov™
Then Lebesgue integrals

3. —0, k=0,---,4, +m=k,at X—>o or Voo,
[ ysinyxG (y,t)dy, [ y°cosyxG(y,t)dy, s=0,2

exist with probability one.
Proof. We shall prove the existence of the integral

T y?cosyxG (y,t)dy
For existence of this integral with probabilityizne it is enough to prove that there exists following integral
T vEB(vt)ay
There is an inequality
T Y2E|G(y.t)|dy < T yﬂ/E(G(y,t))zdy

Consider

E(G(y.1))’

= %j{[j{[eazyz(”)eazyz('s)E (E(y 7)&(y, s))drds

+00 400

=E(E(y.0)E(y. ):—J' [ cosyxcosyv-£(x,7)& (v, s ) dxdv

= I [ cosyxcosyvB(x,7,v, s )dxav.

—0000

Integrating by parts and using the conditions of the lemma, we obtain for y # 0

)
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+00 400

(v7)E(y ) I Icosyxcosyv o*B(xt,v, S)dxdv.

(5 R X2V
_ . 0 40 1 xtv s
1 1
<E y— B(4,2,2)
Then
(E(e(y0)
(1Y 1 £t (e
(55 etz ffe e s
1V 1 a2y )\
:[Zj 'a4_WB(4'2’2)(1_e “) :
Therefore

[y |y

B(4,2,2) (1—e’azy2‘)
) 2na’ y? ol

for y=0. The latter integral converges under Y € R. The existence of integrals j ysinyxG (y,t)dy,

—o0

j cosyxG(y,t)dy can be proved similarly. [

—o0

Lemma 6. [15] Let a function X (4,u), 4>0 and u>0 be such that:
1. sup |X /1u|<B

0<u<+o,
0<A<+0

2. |X(A,u)=X(4,v)|<CAlu-v| for all u>0, v>0. Let w(/l), A>0 be a continuous increasing
function such that ¢(4)>0 forall 1>0, and the functlon A/@ is increasing for A >v,, and for some

constant v, >0.
P(A+Y,)

EY
(P |U—V| 0
forall A>20 and v>0.

Corollary 1. Let in the conditions of Lemma 6 the function ¢ (1) = (In (1+ /1))6 , A>0, 6>0.Then
(In(/1+e‘s))5

Cr=!

A/p(2) increases with v, =e’ —1. Therefore in Lemma 6 taking function ¢(A)=(In(1+i))5

Then |X (4,u)—-X(4,v)|<max(C,2B)

X (,u)= X (2,v)| < max(C,2B)

forall 6>0.
Proof. Indeed, it is easy to show that the function

0 >0, we obtain the inequality 8. [
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Corollary 2.

e,azyz(Hl) _1‘ < max(l, az) (In(yz +e5)) ) o

iy +e°)]

=
In(1+e5]
[x=x]
forsome 6>0.

Remark 2. If in the conditions of Corollary 2 [t—t,|<h, |x—x|<h, then for sufficiently small h inequa-
lity (9) and (10) will have the form

|cosyx —cosyx, | <

(10)

5
o () _1‘ < max (1, 2 (In(yz +e’ )) |

In(|h|+e5)§
In(y+e’))
|cosyx — cosyx, | < M.
‘In(|h|+e5)‘
Let u() T cosyxG (y,t)dy, u;ln)(x,t):?n ysinyxG (y,t)dy, ugi)(x,t):?n y*cosyxG (y,t)dy,

Theorem 6. Let §(x,t) be a random field, sample continuous with probability one from the Sub, (Q) and
the conditions of Lemma 4 and Lemma 5 hold,
sup 7, (ul (x,t)~u (x,)) <07 (h)

x-x[<h,
t-ty<h

For k=0,1,2, where o, (h) is a monotone increasing continuous function such that o (h)—>0 as

h — 0, moreover,
[w In% £<o0, (11)
0+ Ok (5)

where (u)= and o\ V(&) is the inverse function to o, (). Then the function u(x,t) which is

_u
¢(71) (u) '
represented in the form (4) is a classical solution to the problems (1) and (2).
Proof. This theorem follows from Theorems 5 and 3. [J

Example 1. Let (p(x) be a function such that (p(x):|x|p, for some p>1 and all |x|>1. Then

-1

w(x)=x Pfor x>1 and condition (11) holds forall &>0

"
i(lnm} de <o (12)

Condition (12) holds if o, ( for 6>1-1/p,

b,
|'|||

)
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C,>0, k=0,12. In this case, the condition of Theorem 6 is satisfied if for k=0,1,2 there exist constants
C, >0 such that
(e

For §>1-1/p all n=12,---, and sufficiently small |h|.
Theorem 7. Let ej(x,t) be a random field, sample continuous with probability one from the space

Cy
injnl”

12
o )l () | <

(13)

SSub, (), where @(x) is a function such that ¢(x)=|x|" for some p>1 and all |x|>1 and the con-

2\¥2
0c(x.7) J dx< 8,

OX
12
] dx <@, forsome ¢>0, 6, >0, 6,>0. Then the function u(x,t) which is represent-

ditions of Lemma 4 and Lemma 5 hold and T(E|§(X,T)|2)de <0 T[E

ile

ed in the form (4) is classical solution to the problems (1) and (2).
Proof. It follows from Lemma 5 that there exist integrals with probability one

(%)
ox?

[ ysinyxG(y,t)dy, [ ycosyxG(y.t)dy, s=0,2.

According to Theorem 5 to make the function u(x,t) be the solution of problems (1) and (2) it is sufficient
to prove that integrals (5) and (6) converge uniformly in probability in |x| <A, 0<t<T totheintegrals

[ ysinyxG(y,t)dy, [ ycosyxG(y.t)dy, s=0,2,

forany A>0, T> 9 According to Theorem 6, using the Example (1), to make integral (5) and (6) converge
in probability in C(T) the following conditions must hold

12
(Ep o) Ot | <

~|npnf
k=012

Using generalized Minkovskoho inequality we obtain

(E ugg>(x,t)—u§?(x1.t1)\2jw

=| E| [ cosyxG(y,t)dy— | cosyxG(y.t, Jdy

~an ~an

2}”2
2\Y2
J (14)

= E af[(cosyx—cosyxl)G(y,t1)+(G(y,t)—G(y,tl))COSyX]dy‘zJuz

—a,

=|E f[cosny(y,t)—cosyle(y,tl)]dy

—a,

< +JiI|cosyx—cosyx1|(E|G(y,tl)|2)]/2 +(E|G(y,t)—G(y,t1)|2)w}dy

Let |x—x|<h and for sufficiently small |h|, using the inequality (10), we have
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(In(y+e5))§

|cosyx —cosyx, | < - (15)
In(|h|+e")é
Consider
2\v2 1 4 —ay2(t-r) [ | 2 2\¥2
(|G(y,t1)|) _Ege (E|§(y,r)|) dr.
V2 v 2\
(E|§(ylf)|2) =%{E :[Ocosyxf(x,r)dx J
It follows from Lemma 4 that f( (x7 | ) " dx
l
—0.
< T
Therefore
Y2 1% 0 1 22
(E|G(y,tl)|) szlee dr<EW1—e v (16)
Let t <t then
12
(Els(v.-s(vt.))
1 (]t t e
2,2 ~ 2.2 -
_ L e fe ™ E(y ) dr - [e 0y,
T !e E(y,r)dr J;e E(y,rr J
1 t t 2\¥2
-~ |E |: —azyz(t—r) —azyz(t—r) _ —a y :|”’ ’ d —azyz(t—r)”' ’ d
N {e e E(y,7) r+£e E(y,r)dr
‘1 3 y t 3 y
<t j[eazyz(”) _e ) (E|§(y,r)|2) Z}dﬁjeazyz(tf)(E|§(y,r)|2) 2dz-].
2n % 4y
Let |t — t,|<h and for sufficiently small |h|, using the inequality (9), we have
2 5 d
o2 (1) _ a2 (t-1)| _ g-aty (1) | g-a®y2 (u) _].‘Se—azyz(tl—r)max(ll az)(ln(y +e )) .
lin(h)’
Therefore
2\¥2
(Ele(v0)-e(nt.)]
)
t Infy+e
<L J'e’azyz(‘l”)max(l,a )( (v )) 9dr+J'e e Hdr} (17)
2| o linfn|” y
In(y“+e t
:i max(l,az)( (y )) ) 212 _e_azyztl +Ie_a2y2(t_r)dr .
2n infa” &% u

Thus we obtain from (14), (15), (16) and (17) that

)
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) 5
0 +o0 (ln(y+e )) 1 a2y ) (ln(y2+e§)) 1 g .
<EL{ [In|n| aryel * " max(te) [in|h[’ @yt " {e i a oy
) 5
0= (In(y+e5)) 1 2 , (In(y2+e5)) 1 i
_Y _amatyy 1, i . _ aady?y a%y?( d d
n! " &Y’ o emax{La) infal” @y’ i Ile 1
) \\O
oL (In(y+e5)) 1 o , (In(y2+ea)> 1
(4 . s 1 : _e ]y [e @ (g (g
n!{ ] 7y e +max(1,a* ) |In|h||5 o e Ie 7 |dy
5 )
0+ (In(y+e5)) 1 Iy (In(y2+e5)) 1 .
= e 1% S |y [ (g |d
+n1[ Inf[” 2%y’ max(La°) infa” a%y* {e 1
21, +1,).
Consider
1 (In(y+e5))(s 1 \ s (In(y2+e‘5))§ 1
. = . 1— -a‘yy 1, 2 . _ —aytl ay d d
' l{ i)’ a’y’ #max(La’) 1L - i {e il
)
1 1(In<y+e5)) ‘ Ly max(l,a) (In(y +e° ) { ]
- g ‘1 g Mgz |d
T T Y L VAR
1 max(la )
_a2|ln|h||5 a’in|h’ bt
Since ‘1—@’azytl <a’y’t, <a’y’T, we have
1(In(y+e 6
'11=Jy—‘1 eV dy<a2TJ(In(y+e )) dy =a’TC,,.
0
in(y? +¢’))
Ilz:j(n(yy+e ‘1 eV dy<a2TI(In(y +e )) dy = a’TC,,.
0

Using that e ¥V

So we have

) <1, t—t, <h,thenthe §>0 and for sufficiently small h, we have
1(t
=[] [e i
o\

—=—(TC,, + max(1,a°)TC,, +1).

dy<

o‘—.»—\

i hl'

|'”| I
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. (In(y+e‘5))§ 1

. _ e*azyzh
5 2.2

2 (ln(y2+e‘5))5 1 —azyzt ; —azyz(t—r)
+max(1,a” ) |In|h||5 .azyz 1-e Y +£e dr [dy

max (1,a*) (In(y +6°

1-e 2V ud @ty
+a2|ln|h|| J; y* ‘ ° y+!({[e Tde

5
1 w(ln(y+e5)) ‘1_efa2y2t1 d

a1 Y
1 . max(l a )
Sa@finfl " @i’ et

T('n(w))d‘ I('n(yﬁ)f e

(In(y +e ))
y?

21 21"

In +e°
4 ‘1 CR

dy <I dy=C,,.

I(
ffeen ja:izfiz R, 111 TS0 DL T

C
a?|in|h|’ a|injn”

4

Therefore 1, < (C21 +max(1,a*)(C,, +C23)). Then for §>1-1/p, we have

a* in |h||
(E

2\V2 C
o () -u (st <
where

O o
|In|h||é

C, = H(TCMerax(l a®)TC,, +1+— L (C21+max(1 a )(C22+C23))) , C;i=12,j=123 are some con-
n a’

2}1/2

2}1/2

a, 2 \Y/2
E J' y[(sinyx—sinyxl)G(y,tl)+(G(y,t)—G(y,tl))sinyx]dy‘ )

—ay

stants.
Consider

(E\ug?(x,t)—ui?(xl,tl)\zjm [

I ysinyxG (y,t)dy I ysinyx,G (y,.t; )dy

—ay —ap

E .[y[smny (y.t)—sinyx,G(y,.t,) Jdy

y[|smyx smyX1|( IG(y.t, | )]/2+(E|G(y,t)—G(y.t1)|2)m}dy

N
8'—r‘§ 8'—'8

[|S|nyx S|nyx1|(y E[G(y.t,) | )M+(y2E|G(y,t)—G(y,t1)|2)w}dy.

(yet) )w SEQBazyzuT)(VZEIE(y.r)r)%df_

From Lemma 4, we obtain
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(y2E|§(y,r)|2)]/2 _

<_—_
NP
2\¥2
1 el _|og(x7)| 1
s\/ﬂj[ﬂ ~ |] dx<—me1.
) C,
L

where C, = H(Tcll+max(1 a?)TCy, +1+— L (C21+max(1 a’)(C,, +C23))j , C;i=12,j=123 are some
n a’

2\¥2
(E [ yeosyxé (x,7)dx J

]

ul? ()~ (%,

Similarly [E

constants.
Consider

y2
ul® (x,t)-u? (Xltl)‘z)

(E
=| E| [ y*cosyxG(y,t)dy— [ y’cosyxG(y.t,)dy

2\¥2
S }
2 ]1/ 2

=|E ? y2 [(cosyx—cosyxl)G(y,g)+(G(y,t)—G(y,g))COSyX]dy‘z)J/z

-a,

=|E fny2[costG(y,t)—cosyle(y,tl)}dy

-a,

<t[ y2[|cosyx cosyx1|( |G (y.t,) ) ( |G (y.t)- Ytl)| )M}dy

:L[|cosyx—cosyx1|(y4E|G ) (y EG(y.t)-G(y, t1)| ) }dy.

12 ,\Y2
<

(y4|G(y,tl)|2) _ﬁieazyz(tr)(ythg(y,rﬂ) dr.

From Lemma 4 we obtain
2 Jl/z

(y4E|§(y,T)|2)]/2 _

[ y?cosyxé(x,7)dx
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12
Then (Eugi)(x,t)—ugi)(xi,tl)m < <

il

where C, = %(TCll + max (1, a’ )TC22 +1+ aiz(c21 + max (1, a’ )(sz +C23)>] C;ji=12j=123 are some
constants.

4. Estimates of the Distribution of the Supremum of a Solution

Theorem 8. [9] Let R* be the k-dimensional space, d(t'3)='12§>k<|ti -s|, T={0<t;<T,, n=12,k},
T, >0. Assume that X ={X (t), tT} isseparableand X eSub,(Q).If d(stg)ghr¢ (X(t)=X(s))<o(h),

where o (h) isa monotone increasing continuous function such that o (h) >0 as h—, and

J'l//[ln%()}ig<oo, where l//(u):u/¢(’1)(u) and o' (&) is the inverse function to o (). Then
(e} &

0+

- 21 (6.
P{sup|x(t)|>u}32A(u,9),foraII 0<f<1 and u> o gO),where
teT 9(1—0)

Au,0) =exp{—¢* [ﬂu(l—e)_gg (ego)m,

Theorem 9. Let the conditions of Theorem 6 hold

u(xt)= [ cosyxG(y,t)dy.

—0

where

1 ¢ _a?y2(t-7) =
G(y,t):?je yA(t )§(y,r)dr,
0

e

- cosyx¢& (x, 7 )dx

dvo=

(X,t) eD, D= [—A, A]X[O,T]. Then

p{(sup |u(x,t)|>u}sz/x(u,a),

x,l)eD

21 (B¢
forall 0<6<1 and u> o go),where
0(1-6

A(u,0) = exp{—(o* (ﬂu(l-e)_g ’ (ego)D},
e
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&, = sup (E|u(x,t)|2)]/2,

(X,t)eD

f¢ (05,)) = j;'ow{ln(%(;w+1}+ln(a(+@)+lﬁdg,

where 0'(8) is @ monotone increasing continuous function such that 0(5) —0 as ¢—0,and a(’l)(g) is
the inverse function to 0'(8) .
Proof. This theorem follows from Theorem 8.
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