
Applied Mathematics, 2014, 5, 2311-2317 
Published Online August 2014 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2014.515225  

How to cite this paper: Bouchemella, A. and Benmostefa, F.Z. (2014) Composite Likelihood for Bilinear GARCH Model. Ap-
plied Mathematics, 5, 2311-2317. http://dx.doi.org/10.4236/am.2014.515225  

 
 

Composite Likelihood for Bilinear  
GARCH Model 
Abdelhalim Bouchemella1, Fatima Zahra Benmostefa2 
1University of 08 May 1945, Guelma, Algeria 
2University of Badji Mokhtar, Annaba, Algeria 
Email: abdelhalimgbs@yahoo.fr, benmostefafatima@yahoo.fr  
 
Received 10 June 2014; revised 12 July 2014; accepted 20 July 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this study, we focus on the class of BL-GARCH models, which is initially introduced by Storti & 
Vitale [1] in order to handle leverage effects and volatility clustering. First we illustrate some 
properties of BL-GARCH (1, 2) model, like the positivity, stationarity and marginal distribution; 
then we study the statistical inference, apply the composite likelihood on panel of BL-GARCH (1, 2) 
model, and study the asymptotic behavior of the estimators, like the consistency property and the 
asymptotic normality. 
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1. Introduction 
Classical modelling of time series is not usually appropriate for financial data. Such as ARMA models do not 
allow the variability in volatility over time, are not able to capture asymmetries in the conditional variance of 
financial time series, and fail to generate the squared autocorrelations. In front of these monetary and financial 
problems, Engle [2] proposed a new class of autoregressive conditionally heteroscedastic models (ARCH), 
followed by generalized ARCH or GARCH suggested by Bollerslev [3]. Storti and Vitale [1] proposed an 
innovative approach to modelling leverage effects in financial time series based on the Bilinear GARCH noted 
by BL-GARCH models which are considered as a generalization of GARCH models. 

In this present paper we study the BL-GARCH models, specifically BL-GARCH (1, 2) that is widely used 
and proved its performance for the volatility analysis of financial time series. We focus on studies of Storti & 
Vitale [1] and Diongue & Guégan and Wolff [4], which they have well discussed and treated this class of 
models. 
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In recent years, several authors have been interested in composite maximum likelihood methods, that are 
widely used in parametric statistical inference, because of the good asymptotic properties of the estimators. The 
aim of composite likelihood is to reduce and simplify the computational complexity to cope with large datasets 
and presence of complex interdependencies. 

The term pseudo-likelihood was originally proposed by Besag [5]. Lindsay [6] used the term composite 
likelihood for justify his choice to describe the method of construction considered. There are many research and 
studies in various fields, which have applied this method, for example in statistical genetics: Larribe and 
Fearnhead [7]; in time series: Richard, Davis and Chun Yip Yau [8] and Pakel, Shephard and Sheppard [9]; in 
longitudinal data: Molenberghs and Verbeke [10]. 

We organize this work as follows. In Section 2 we study the important properties of BL-GARCH (1, 2) 
concerning conditions for the positivity of conditional variance, conditions of stationarity and we conclude this 
section by the properties of marginal distribution. In Section 3 we introduce the BL-GARCH (1, 2) panel model, 
then we illustrate the good performance of estimators of composite likelihood applied to this model. 

2. Properties of BL-GARCH (1, 2) 
We consider the asset log-returns ty  at time t , assuming that 

( )1 where t t t t t ty u E yµ µ −= + = Ω                           (2.1) 

t t tu h ε=                                      (2.2) 
2 2 2 2

0 1 1 1 1 2 2 1 1 1t t t t t th a a u b h b h c u h− − − − −= + + + +                        (2.3) 

where 1t−Ω  is the historical information set up to time 1t − . 

2.1. Positivity of Conditional Variance 
We can write the model (2.3) in matrix form as: 
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                 (2.4) 

Proposition 1. A sufficient set of conditions for positivity of conditional variance 2
th  is 

2
0 1 1 2 1 1 10;   0;   0;   0;   4a a b b c a b> > > > >                         (2.5) 

Proof. We note that 2 0th >  if and only if A is a positive definite matrix, and this implies that all eigenvalues 
of A  are strictly positive. 

Set of these eigenvalues are: 

( ) ( )2 2 2 2 2 2
0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1;  ;  2 ;  2
2 2

a b a b a a b b c a b a a b b c + − − + + + + − + + 
 

 ■ 

2.2. Stationarity 
We can rewrite the BL-GARCH (1, 2) as: 

2
22

2
1111

2
110

2 )(= −−−− ++++ ttttt hbhcbaah εε  
2

21
2

111
2 )()()(= −−−−− ++ tttttt hdhcgh εεε  

which is a random coefficient autoregressive model of second order [RCAR(2)]. 
We put: 2

t th X= ;  ( )1t tg eε − = ;  ( )1 1tc ε φ− =  and ( )1 2td ε φ− = , we have 

1 1 2 2t t t tX X X eφ φ− −= + +                                (2.6) 
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                            (2.7) 

with ( )t tE X V= , ( )E Φ = Ψ , and B  is backward operator. This implies that its eigenvalues are in the unit 
cercle. 

So in order to the process be second order stationariry if and only if all eigenvalues are within unit cercle. 
We can also rewrite the BL-GARCH (1, 2): 

1t tttZ b A Z −= +                                  (2.8) 
2 2 2 2 2 2
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0 1 1 2 1 1
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      = +      
      
           

                 (2.9) 

Remark 2. 1) tA  is ( ) ( )p q r p q r+ + × + +  matrix and ( )min ,r p q=  in general case of BL-GARCH 
( ),p q  model. 

2) Equation (2.8) is random coefficient VAR(1). 
3) ( ) 1t tZ

≥
 is a Markov process.  

Theorem 3. (strict stationarity) 
In order to exist a strict stationary solution of Equation (2.8) it is necessary and sufficient that 

0γ <                                         (2.10) 

where 1 1
1 loglim t t tA A A
t

γ →+∞ −=  , is the largest Lyapunov exponent of the model (2.8). 

If this solution exists, then it is unique strictly stationary,non anticipative and ergodic.  
Proof. See [11]. ■ 
Example 4. For the BL-GARCH (1, 2) we consider the matrix 

2 2 2 2
1 1 2 1
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a b b c
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 
  

 

for some values attributed to the coefficients 1a , 1b , 2b , 1c , we can simulate γ̂  and ( )0,1t Nε ∼  or 
t ntε ∼ . 
Estimation of γ  from 1000  simulations of size 1000t = .  
This simulation does know us the region of stationarity of BL-GARCH (1, 2). 
If 1 1 2 1a b b+ + = , there is no stationary solution (strict or 2nd order), while there is a strictly stationary 

solution of an IGARCH model under general conditions. 

2.3. Marginal Distribution 
From (2.8) and by recursive, we have: 

1 1
1

t t t t kt t k
k

Z b A A A b
+∞

− − + −
=

= +∑   

we put, for 0k > , 

,, 1 1 , and t kt k t t t k t k t kA A A A Z A b− − + −= =  

we denote ⊗  the Kronecker product and ⋅  matrix norm, then 
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( ) ( )
, , 1 1

m m m mmm m m m
t k t k t t t kt k t kE Z E A b E A A A b A b⊗ ⊗⊗ ⊗ ⊗ ⊗

− − +− −= = =  

using product matricies independence 1 1t t t k t kA A A b− − + − , because ( )tε  are iid , we have 

( )( ) ( )
11 1

,
0 0

mm mkm mm
t t t km m

k k
Z E Z Z A b

∞ ∞

= =

   = = ≤      
∑ ∑  

If the spectral radius ( )( ) 1mAρ <  of the matrix ( )mA , then ( )( ) 0
kmA →  as k → +∞ , thus tt mmu Z≤ . 

So ( )( ) 1mAρ <  is sufficient condition for the exisrence of ( )2m
tE u . For more details, it is recommended to 

refer to [11]. 
Theorem 5. Suppose that ( )2m

tE ε  and ( )( ) 1mAρ < , then for each tε , ( )t tZ  defined by (2.8) converge 

in mL  and the process ( )2
t t

u  defined as the first component of tZ  is 2m -order strictly stationary solution.  

We make a simulation given some values of coefficients and a distribution of tε  in order to calculate 
( )( )mAρ , ( )2m

tE ε , and ( )2m
tE u . 

3. The BL-GARCH Panel 
We assumed that we have panel of asset returns, with T  observations and N  assets. The return on asset i  at 
time t  is ity , where 1, ,i N=   and 1, ,t T=  , given by: 

( )2 2 2 2
0 1 1 2 1 1 1 1 2 2 1 1 11

it it it

it it it

it i it it it it it

y u
u h

h a a b b a u b h b h c u h

µ
ε

− − − − −

= +

=

= − − − + + + +

               (3.1) 

where 0 0ia > , 1 1 2 1a b b+ + <  and 1a , 1b , [ [2 0,1b ∈  with 1 1 12c a b> . 
We consider 0ia  as a nuisance parameters, and ( )1 1 2 1, , ,a b b cθ =  as a vector of interest parameters. Using 

the covariance tracking, suggested by Engle and Mezrich [12], we have: 

( )2
0it iE y a=                                    (3.2) 

then we can use the method of moment to estimate the nuisance parameter. Assuming a stochastic independence 
over i  and t , then the maximum likelihood estimator of θ  is typically inconsistent for finite T , and 
N →∞ . In order to overcome this problem and get a consistent estimator Engle, Shephard and Sheppard [13]  
allowed that T  to be large, and N  relates to T  and reduce the rate of convergence to T  not NT ,  
noted in [13], followed by the same study and consideration of Pakel, Shephard and Sheppard [9]. 

3.1. Composite Maximum Likelihood 
In this subsection we apply composite maximum likelihood method, that is widely used in time series in place of 
full likelihood when for example we want to reduce the computational complexity, or make inference about 
parameters of interest without making assumptions on the whole joint distribution of the data. 

Given the data ( )1 2, , , Ty y y y=   where ( )1 2, , ,t t t Nty y y y=   and let ( ), 1it i tf y −Ω  be the conditional 

density for ity , we put ( )0 ,i iaφ θ=  and ( ) ( )1 2, , , NNφ φ φ φ=  . Our estimation procedure focuses on two-step.  

We begin by application of moment method to estimate nuisance parameters using (3.2), then we apply com- 
posite likelihood to estimate θ  which is defined by: 

( )( ) ( ), 1
=1 =1

1 1, log ;
T N

it i t iN
t i

CL y f y
T N

φ φ−
 = Ω  

∑ ∑                         (3.3) 

In our situation we use the variation-free as Engle, Shephard and Sheppard [13] and Engle, Hendry and 
Richard [14], then we obtain the composite maximum likelihood estimator by solving 
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( ), 1 0
1 1

1 1ˆ ˆarg log ; ,max
T N

CL it i t i
t i

f y a
T Nθ

θ θ−
= =

= Ω∑ ∑                        (3.4) 

where 0ˆia  for each i  is obtained by solving 

( )0
1

ˆ, 0
T

it i
t

Q aθ
=

=∑  

From (3.2) we have 

( ) ( )( )2
0 0 0, ;   , 0it i it i it iQ a y a E Q aθ θ ∗= − =                        (3.5) 

( )0
1

1 ˆ, 0
T

it i
t

Q a
T

θ
=

=∑                                (3.6) 

where 0ia∗  is the true value of 0ia  for each i . Stacking (3.5) for 1, ,i N=  , we have 

( ) ( )( ) ( ) ( )( )( )
2
1 01

2
0

, , 0
t

t tN N N N

Nt N

y a
Q y E Q y

y a
φ φ∗

 −
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= ⇒ = 
 − 

                     (3.7) 

On the other hand, for the interest parameter θ , we use composite likelihood, considering the following three 
typical distributions: 

1) The score function for the normal density composite likelihood function is: 

( )( )
2

2
1 2

1 1

1 1 1, , log
2 2

N N
it

t itN
i i it

u
W y h

N h
θ φ

θ = =

 ∂
= − − 
∂  

∑ ∑                         (3.8) 

2) The score function for the cauchy density composite likelihood function is: 

( )( ) ( )2 2
2

1 1
, , logπ log log

N N

t it it itN
i i

W y N h h uθ φ
θ = =

∂  = − + − + ∂  
∑ ∑                    (3.9) 

3) The score function for the student density composite likelihood function is: 

( )( )
2

2
3 2

1

1 1, , log log
2 2 2

N
it

t itN
i it

u
W y N h

h
ν νθ φ

θ =

 ∂ +   = Γ − Γ − −    ∂     
∑                 (3.10) 

For 1, 2,3i =  we put: 

( )( )ˆ, , 0i t NW y θ φ =                                 (3.11) 

where ( )
ˆ

Nφ  is a moment estimator.  

The sample moment conditions for each of (3.8), (3.9) and (3.10) are given by: 

( )( )
1

1 ˆ ˆ, , 0;  for 1, 2,3
T

i t N
t

W y i
T

θ φ
=

= =∑                          (3.12) 

We put: 

( )( ) ( ) ( )( )
( )( )

,
, ,

, ,

tN N

i t N

i t N

Q y
K y

W y

φ
θ φ

θ φ

∗

∗ ∗

∗ ∗

 
 =  
  

 

then we imply that: 

( )( ) ( )( )
1

1 ˆ ˆ, , 0  and  , , 0;   for  1, 2,3
T

i t i tN N
t

E K y K y i
T

θ φ θ φ∗ ∗

=

  = = =  ∑  

(3.6) and (3.11) are the first order condition for the maximisation problem of (3.4).  
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3.2. Asymptotic Behavior 
In this subsection we attempt to obtain the asymptotic properties of composite likelihood estimator, based on a 
reasonable initial moment estimator for nuisance parameters. We show under which initial conditions to have a 
consistent estimator and asymptotic normality with the standard root— T  convergence rate and N  can poten- 
tially increase with T . 

Engle, Shephard and Sheppard [13] have obtained consistency property and central limit theorem for ĈLθ  
under some regularity conditions, and also Billy Wu, Qiwei Yao and Shiwu Zhu [15]. Through the following two 
fundamental theorems, we will show the consistency and central limit theorem for ĈLθ  when T →∞  while 
N  can potentially increase with T . 

Theorem 6. We consider the following assumptions:  
1) The condition (3.5) holds.  
2) We assume that the parameters spaces are compacts.  
3) Suppose that 

( ), 1 0
1 1

1argmax log ; , ,
T N

it i t i
t i

f y a p
TN

θ θ∗ ∗
−

= =

Ω∑∑


 

4) ( ), 1 0log ; ,it i t if y a θ∗
−Ω  is continuously differentiable in 0ia .  

5) Assume that the following sum satisfies a weak law large number as T →∞  

( )
0

, 1 0

,1 1 0

log ; ,1 1 ,sup
i

T N
it i t i

at i i

f y a
T N aθ

θ−

= =

∂ Ω

∂∑ ∑  

6) Assume that 

{ }
0 0

1, ,
ˆ 0,sup max i i

i N
a a p

θ ∈
−





 

then there exists a solution of the likelihood Equation (3.11), for which ˆ .pθ θ ∗


 
Proof. See [13]. ■ 
Theorem 7. For any consistent solution of the likelihood Equation (3.11), we assume that: 
1) ( )0,it iQ aθ  is once continuously differentiable. 

2) ( )0 ,ia θ∗ ∗  is an interior point of ( )iΛ ×Θ . 

3) We put 

( ) ( ) ( )

( ) ( )

2
, 1 0 , 1 0

, 0
1 1 0

2 2 2
, 1 0 , 1 0

, ,
1 1 10

log ; , log ; ,1 1 ,

log ; , log ; , ,1 1 1

N T
it i t i it i t i

t T it i
i t i

T T T
it i t i it i t i it

i T
t t ti

f y a f y a
Y Q a

N T a

f y a f y a Q
D

T T a Tθθ

θ θ
θ

θ θ

θ θ θ
θ θ θ

− −

= =

− −

= = =

  ∂ Ω ∂ Ω
  = −

 ′∂ ∂ ∂   
   ∂ Ω ∂ Ω ∂
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∑ ∑

∑ ∑ ∑
( )0

, , ,
1

1 .
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T i T
i

a

D D
Nθθ θθ

θ

=

 
 ′∂  

= ∑

 

4) We assume that ( ),t TY  obeys a central limit theorem i.e. 

( ),
1

1 0,
T

t T
t

Y dN I
T θθ

=
∑ 

 

where Iθθ  is assumed that has diagonal elements definite positive. 
5) That as ,; > 0TT D dDθθ θθ→ ∞



, where Dθθ  is invertible. 
then 

( ) ( )1 1ˆ 0, .T dN D I Dθθ θθ θθθ θ − −−


 

Proof. The demonstration is well detailed in [13]. ■ 
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4. Conclusion 
Through this work, we have tried to study, in the first part the fundamental probabilistic properties of BL- 
GARCH (1, 2), basing on studies of Abdou Kâ Diongue, D. Guégan and R. C. Wolff [4] and G. Storti & Vitale 
[1], that have been made in this class of models. In the second part, we have studied the statistical inference, 
extended the model on panel data structure, and used one of efficient method well called composite likelihood 
that was introduced by Lindsay [6]. This method has good properties under some general regularity conditions 
as the consistency property and the asymptotic normality of estimators. 
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