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Abstract 
This paper presents the theory and applications of a new computational technique referred to as 
Differential Transform Method (DTM) for solving second order linear ordinary differential equa-
tions, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the 
method, four examples are considered. The results indicate that the DTM is reliable and accurate 
when compared to the exact solutions of the solved problems. 
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1. Introduction 
Most of the problems encountered in applied sciences, management and economics take the forms of second 
order linear ordinary differential equations. Sometimes, obtaining exact solutions through the direct methods 
(analytical methods) for these systems seems difficult even if the exact solutions exist, hence the need for nu- 
merical techniques for approximate solutions. Some of these numerical methods involve linearization, disscreti- 
zation and perturbation, and they only permit the solutions to a given ODE at a certain interval. In addition, they 
are intensive in terms of computation and as such, lead to the situations where some basic phenomena are tech- 
nically avoided. 

The notion of DTM was first introduced by Zhou [1] while solving linear and nonlinear initial value problems 
in electric circuit analysis. The Method provides an analytical approximate solution to linear and nonlinear 
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systems of differential equations. This involves the construction of a semi-analytical technique with the aid of a 
Taylor series expansion for the solutions in polynomial forms. The DTM has been proven by many researchers 
[1]-[7] to be very effective and efficient in handling differential equations with point boundary value problems, 
kvd and mkdv differential-algebraic equations, and so on. It also reduces the size of computational work while 
maintaining high accuracy even with a fast convergence rate compared to the theoritical solutions [8].  

Some other analytical methods like the variational iterative method and the Adomian decomposition method 
witness difficulties in handling functions involving complicated integrals; since successive component using 
those methods depends on the previous component [9]-[13] but DTM overcomes this by solving an algebraic re- 
cursive equation. 

2. The Differential Transform Method 
This section introduces the basic concepts and theorems of DTM needed for applications in the remaining 
sections. 

Definition 1. Let ( )f x be a given function of one variabe defined at a point 0x x= , then the one-dimen- 
sional thk  differential transform of the ( )f x  defined as ( )F k  is given as: 

( ) ( )

0

d1
! d

k

k

x x

f x
F k

k x
=

 
=   

 
                                   (1) 

Equation (1) is the transformed function of ( )f x . 
Definition 2. The differential inverse transform of ( )F k  is a Taylor series expansion of the function ( )f x  

about 0 0x x= = , defined as : 

( ) ( )
0

k

k
f x F k x

∞

=

= ∑                                         (2) 

Combining (1) and (2) yields: 

( ) ( )
0

d
!d

k k

k
k

f x xf x
kx=

∞  
=   

 
∑                                     (3) 

2.1. Some Basic Theorems of the Differential Transform Method 
The following theorems and properties of the DTM are stated below for the sake of applications, their proofs can 
be found in [14] and [15]. 

Let ( )1f x , ( )2f x  and ( )f x∗  be differentiable functions with differential transforms ( )1F k , ( )2F k  and 
( )F k∗  respectively, with, α ∈  and δ  a Kronecker delta, then the following theorems hold: 
Theorem 2.1 If ( ) ( )1 2y f x f x= ±  then ( ) ( ) ( )1 2Y k F k F k= ±  
Theorem 2.2 If ( )*y f xα=  then ( ) ( )*Y k F kα=  
Theorem 2.3 If ny x=  then ( ) ( )Y k k nδ= −  such that: 

( ) ( )
1,   
0,   otherwise

k n
Y k k nδ

=
= − = 


 

Theorem 2.4 If e xy α=  then ( )
!

k

Y k
k
α

= , where α is a constant. 

Theorem 2.5 If ( )*
d
d

n

ny f x
x

=     then ( ) ( ) ( )*

!
!

k n
Y k F k n

n
+

= + . 

In particular, we have: 

(a) If ( )*
d
d

y f x
x

=     then ( ) ( ) ( )*1 1Y k k F k= + +  

(b) If ( )
2

*2

d
d

y f x
x

=     then ( ) ( )( ) ( )*1 k 2 k 2Y k k F= + + +  
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2.2. The DTM and the Second order Linear Ordinary Differential Equations (ODEs) 
In this section, we present clearly how a second order linear ODE with constant coefficients is transformed us-
ing the DTM. 

The corresponding ODE is of the form: 

( ) ( ) ( ) ( ) ,   0ay x by x cy x f x a′′ ′+ + = ≠                           (4) 

with initial conditions ( ) 10y α=  and ( ) 20y α′ =  
Equation (4) is re-expressed in the form of  

( ) ( ) ( )( ), ,y x g x y x y x′′ ′=                                     (5) 

Thus, (4) becomes 

( ) ( ) ( ) ( )1y x f x cy x by x
a

′′ ′= − −                                (6) 

We will take the differential transform (DT) of (6) by applying theorems (2.1-2.6) as follows: 

( ) ( ) ( ) ( )1DT y x f x by x cy x
a

 ′′ ′= − −    
                                   (7) 

( )( ) ( ) ( ) ( ) ( ) ( )11 2 2  1 1k k Y k F x b k Y k cY k
a

+ + + = − + + −                     (8) 

( ) ( )( ) ( ) ( ) ( ) ( )12 1 1
1 2

Y k F x b k Y k cY k
a k k

+ = − + + −  + +
                   (9) 

subject to the initial conditions ( ) ( ) ( )0 1 20  and 0 1Y Y Y Yα α′= = = = . 
Equation (9) is a recursive formula for the computation of coefficient terms in the series solution of the pro- 

blem. Therefore, using (2) and (9) gives the approximate solution of (4) as: 

( ) ( )
0

k

k
y x Y k x

∞

=

= ∑                                   (10) 

3. Applications and Numerical Results 
In this section, we will apply the discussed DTM to solve some problems whose results will be compared with 
the theoretical (exact) solutions. Two cases with two examples each are considered. Case I and Case II for ho-
mogeneous and nonhomogeneous respectively. 

Case I Example 1: Consider the ODE 

( ) ( ) ( )4 3 0y x y x y x′′ ′− + =                                (11) 

subject to ( )0 1y = , ( )0 1y′ =  with a theoretical solution 

( ) exy x =                                        (12) 
Procedure  
We rewrite (11) in a standard form and take the differential transform (DT) as follows: 

( ) ( ) ( )4 3DT y x y x y x′′ ′= −                                          (13) 

( )( ) ( ) ( ) ( ) ( ) 1 2 2 4 1 1 3k k Y k k Y k Y k⇒ + + + = + + −                     (14) 

( ) ( )( ) ( ) ( ) ( )1 2 4 1 1 3
1 2

Y k k Y k Y k
k k

∴ + = + + −  + +
                   (15) 

with the initial conditions ( ) ( )0 1, 1 1Y Y= = . 
By using the recursive relation in (15) with 0k ≥ , we obtain values for ( ) ( ) ( )2 , 3 , 4 ,Y Y Y  , as showed 

below: 
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For ( ) 10, 2
2!

k Y= = ; for ( ) 11, 3
3!

k Y= = ; for ( ) 12, 4
4!

k Y= = ; for ( ) 13, 5
5!

k Y= = , ; for  

( ) 1,
!

k n Y n
n

= =  

But from (10), 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0

2 3 4

2 3 4 5

0 1 2 3 4

        1 e
2! 3! 4! 5!

k

k

x

y x Y k x

y x Y Y x Y x Y x Y x

x x x xx

∞

=

=

= + + + + +

= + + + + + + =

∑





                   (16) 

Equation (16) is the same with the theoretical solution in (12). 
Case I Example 2: Consider the ODE  

( ) ( ) 0y x y x′′ + =                                    (17) 
subject to ( ) ( )0 1 and 0 0y y′= = , with a theoretical solution 

( ) cosy x x=                                       (18) 
Procedure 
We re-write (16) in a standard form and take the differential transform as follows: 

( ) ( )
( )( ) ( ) ( )

( ) ( )
( )( )

  1 2 2

  2
1 2

DT y x y x

k k Y k Y k

Y k
Y k

k k

′′ = −  
∴ + + + = −

−
⇒ + =

+ +

                           (19) 

with the initial conditions ( ) ( )0 1, 1 0Y Y= = . 
Computing ( ) ( ) ( )2 , 3 , 4 , ,  for 0Y Y Y k ≥  using (19) gives the following: 

For ( ) 10, 2
2!

k Y −
= = ; for ( )1, 3 0k Y= = ; for ( ) 12, 4

4!
k Y= = ; for ( )3, 5 0k Y= = , for ( ) 14, 6

6!
k Y −
= = ,

 ; for ( ) ( )
( )

1
, 2 2

2 2 !

n

k n Y n
n
−

= + =
+

 

We observed that ( ) ( ) ( ) ( )1 3 5 2 1 0 for 0Y Y Y Y n k= = = = + = ≥ . Hence, the solution of (17) by (10) is 
reformed as: 

( ) ( ) ( ) ( ) ( ) ( )2 2 4 6

0
2 4 6

2 0 2 4 6

        1 cos
2! 4! 6!

k

k
y x Y k x Y Y x Y x Y x

x x x x

∞

=

= = + + +

= − + − + =

∑ 



                (20) 

Equation (20) agrees with the theoritical solution in (18). 
Case II Example 1: Consider the ODE 

( ) ( )y x y x x′′ − =                                    (21) 

subject to ( ) ( )0 1 and 0 0y y′= = , with a theoretical solution: 

( ) exy x x= −                                      (22) 
Procedure  
Equation (21) by the differential transform method becomes; 

( ) ( )

( ) ( )( ) ( ) ( )1  2 1
1 2

DT y x y x x

Y k Y k k
k k

δ

′′ = +  

⇒ + = + −  + +

                     (23) 
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with the initial conditions ( ) ( )0 1, 1 0Y Y= = . 
Thus, for 0k ≥ , the values of ( ) ( ) ( )2 , 3 , 4 ,Y Y Y  , obtained using (23) are given below: 

For ( ) 10, 2
2!

k Y= = ; for ( ) 11, 3
3!

k Y= = ; for ( ) 12, 4
4!

k Y= = ; for ( ) 13, 5
5!

k Y= = , for ( ) 14, 6
6!

k Y= =

 ; for ( ) 1,
!

k n Y n
n

= = . 

As such, from (10), the solution of (21) is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4

0
2 3 4 5

0

0 1 2 3 4

        1 0 1
2! 3! 4! 5! !

k

k
n

n

y x Y k x Y Y x Y x Y x Y x

x x x x x
n

∞

=

∞

=

= = + + + + +

= + + + + + + = +

∑

∑





                  (24) 

Since 

0 0 1

v
n n n

n n n v
β β β

∞ ∞

= = = +

= +∑ ∑ ∑                                 (25) 

( )
2

  1 en x

n
y x x x

∞

=

∴ = + = − +∑                             (26) 

Equation (26) is the same with the theoretical solution in (22). 
Case II Example 2: Consider the ODE  

( ) ( ) ( )3 2 exy x y x y x′′ ′− + =                              (27) 

subject to ( ) ( )0 1 and 0 0y y′= = , with a theoretical solution: 

( ) ( )1 exy x x= −                                       (28) 
Procedure 
Equation (27) by the differential transform method becomes; 

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

3 2 e

1 1  2 3 1 1 2
1 2 !

xDT y x y x y x

Y k k Y k Y k
k k k

 ′′ ′− + = 
 ⇒ + = + + − + + +  

                (29) 

subject to the initials ( ) ( )0 1, 1 0Y Y= = . 
Thus, for 0k ≥ , the values of ( ) ( ) ( )2 , 3 , 4 ,Y Y Y  , obtained using (29) are given below: 

For ( ) 10, 2
2!

k Y −
= = ; for ( ) 21, 3

3!
k Y −
= = ; for ( ) 32, 4

4!
k Y −
= = ; for ( ) 43, 5

5!
k Y −
= = , for  

( ) 14, 6
6!

k Y= = ; … ; for ( ) ( )
( )

1 1 1,
! ! 1 !

n
k n Y n

n n n
− −

= = = −
−

. 

Hence, from (10), the solution of (27) is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( )
( )

2 3 4

0
2 3 4 5 5

2
1

0 0 1

0 0

0 1 2 3 4

2 3 4 5        1 0 1 1
2! 3! 4! 5! 6! !

        1
! ! 1 !

        ,  for 1
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  e e

k

k
n

n
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y x x
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∞

=

−∞ ∞ ∞

= = =

∞ ∞

= =

= = + + + + +

= + − − − − − = − −

= − − = −
−

= − = −

∴ = −

∑

∑
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



             (30) 
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Equation (30) corresponds with the theoretical solution in (28). 
Remark 3.1: 
We present numerical comparisons between the exact, and the numerical solutions based on a 5-iterate DTM 

using the coefficient terms from Table 1, Table 2, Table 3, and Table 4 as shown in Table 5, Table 6, Table 7, 
and Table 8 respectively. 

4. Discussion of Results and Conclusion 
In this paper, we have presented a semi-analytical method (DTM) for solving a certain class of ODEs. The DTM 
has advantages over other numerical techniques as it does not involve linearization, discretization or perturba-
tion of a given problem; hence it has no effect of computational round off error. The DTM also provides a 
closed-form solution; therefore, it is very powerful and effective in finding both analytical and numerical solu-
tions of second order linear ODEs with constant coefficients. 
 
Table 1. Coefficient terms from Equation (15).                                                                

k  0  1  2  3  4    n  

( )2Y k +  ( ) 12
2!

Y =  ( ) 13
3!

Y =  ( ) 14
4!

Y =  ( ) 15
5!

Y =  ( ) 16
6!

Y =  
  ( ) 1

!
Y n

n
=  

 
Table 2. Coefficient terms from Equation (19).                                                                

k  0  1  2  3  4    n  

( )2Y k +  ( ) 12
2!

Y −
=  ( )3 0Y =  ( ) 14

4!
Y =  ( )5 0Y =  ( ) 16

6!
Y −

=  
  ( ) ( )

( )
1

2 2
2 2 !

n

Y n
n
−

+ =
+

 

 
Table 3. Coefficient terms from Equation (23).                                                                

k  0  1  2  3  4    n  

( )2Y k +  ( ) 12
2!

Y =  ( ) 13
3!

Y =  ( ) 14
4!

Y =  ( ) 15
5!

Y =  ( ) 16
6!

Y =   
  ( ) 1

!
Y n

n
=  

 
Table 4. Coefficient terms from Equation (29).                                                                

k  0  1  2  3  4    n  

( )2Y k +  ( ) 12
2!

Y −
=  ( ) 23

3!
Y −

=  ( ) 34
4!

Y −
=  ( ) 45

5!
Y −

=  ( ) 16
6!

Y =    ( ) ( )1
!

n
Y n

n
− −

=  

 
Table 5. Numerical comparisons for Case I Example 1.                                                         

x  Exact solution 5-Iterate DTM Absolute Error 

0.0 1.000000000 1.000000000 0.000000000 

0.1 1.105170918 1.105170917 1.40898E−09 

0.2 1.221402758 1.221402667 9.14935E−08 

0.3 1.349858808 1.349857750 1.05758E−06 

0.4 1.491824698 1.491818667 6.03097E−06 

0.5 1.648721271 1.648697917 2.3354E−05 

0.6 1.822118800 1.822048000 7.08004E−05 

0.7 2.013752707 2.013571417 0.000181291 

0.8 2.225540928 2.225130667 0.000410262 

0.9 2.459603111 2.458758250 0.000844861 

1.0 2.718281828 2.716666667 0.001615162 
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Table 6. Numerical comparisons for Case I Example 2.                                                         

x  Exact solution 5-Iterate DTM Absolute Error 

0.0 1.000000000 1.00000000 0.00000000 

0.1 0.995004165 0.99500418 1.52775E−08 

0.2 0.980066578 0.98006711 5.3327E−07 

0.3 0.955336489 0.95534088 4.38587E−06 

0.4 0.921060994 0.92108089 1.98949E−05 

0.5 0.877582562 0.87764757 6.50076E−05 

0.6 0.825335615 0.82550800 0.000172385 

0.7 0.764842187 0.76523760 0.000395410 

0.8 0.696706709 0.69752178 0.000815068 

0.9 0.621609968 0.62315763 0.001547657 

1.0 0.540302306 0.54305556 0.002753250 

 
Table 7. Numerical comparisons for Case II Example 1.                                                         

x  Exact solution 5-Iterate DTM Absolute Error 

0.0 1.000000000 1.000000000 0.000000000 

0.1 1.005170918 1.005170917 1.40898E-09 

0.2 1.021402758 1.021402667 9.14935E-08 

0.3 1.049858808 1.049857750 1.05758E-06 

0.4 1.091824698 1.091818667 6.03097E-06 

0.5 1.148721271 1.148697917 2.3354E-05 

0.6 1.222118800 1.222048000 7.08004E-05 

0.7 1.313752707 1.313571417 0.000181291 

0.8 1.425540928 1.425130667 0.000410262 

0.9 1.559603111 1.558758250 0.000844861 

1.0 1.718281828 1.716666667 0.001615162 

 
Table 8. Numerical comparisons for Case II Example 2.                                                         

x  Exact solution 5-Iterate DTM Absolute Error 

0.0 1.000000000 1.000000000 0.000000000 

0.1 0.994653826 0.994653840 1.40097E-08 

0.2 0.977122207 0.977123111 9.04583E-07 

0.3 0.944901165 0.944911563 1.03972E-05 

0.4 0.895094819 0.895153778 5.89592E-05 

0.5 0.824360635 0.824587674 0.000227038 

0.6 0.728847520 0.729532000 0.000684480 

0.7 0.604125812 0.605868840 0.001743028 

0.8 0.445108186 0.449031111 0.003922925 

0.9 0.245960311 0.253995063 0.008034751 

1.0 0.000000000 0.015277778 0.015277778 
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