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Abstract

In this paper, a hybrid dividend strategy in the compound Poisson risk model is considered. In the
absence of dividends, the surplus of an insurance company is modelled by a compound Poisson
process. Dividends are paid at a constant rate whenever the modified surplus is in a interval; the
premium income no longer goes into the surplus but is paid out as dividends whenever the mod-
ified surplus exceeds the upper bound of the interval, otherwise no dividends are paid. Integro-
differential equations with boundary conditions satisfied by the expected total discounted divi-
dends until ruin are derived; for example, closed-form solutions are given when claims are expo-
nentially distributed. Accordingly, the moments and moment-generating functions of total dis-
counted dividends until ruin are considered. Finally, the Gerber-Shiu function and Laplace trans-
form of the ruin time are discussed.
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1. Introduction

The dividends problem was first proposed by Finetti [1], who considered a discrete time risk model and found
that the optimal dividend strategy is a barrier strategy, that is, any surplus above a certain level would be paid as
dividend. Nowadays, this problem still attracts a lot of research interest. For example, [2] [3] considered the
compound Poisson risk model. [4] studied the continuous counterpart of Finetti [1], and it is assumed that the
surplus is a Brownian motion with a positive drift. Jeanblanc-Picque and Shiryaev [5] and Asmussen and Taksar

“Corresponding author.

How to cite this paper: Li, P., Yin, C.C. and Zhou, M. (2014) Dividend Payments with a Hybrid Strategy in the Compound
Poisson Risk Model. Applied Mathematics, 5, 1933-1949. http://dx.doi.org/10.4236/am.2014.513187



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.513187
http://dx.doi.org/10.4236/am.2014.513187
http://www.scirp.org/
mailto:lipengruby@gmail.com
mailto:ccyin@mail.qfnu.edu.cn
mailto:mzhou.act@gmail.com
http://creativecommons.org/licenses/by/4.0/

P.Lietal

[6] postulated a modified version of barrier strategy called threshold strategy, that is, dividends are paid at a
constant rate whenever the surplus is above a threshold level; however, when the surplus is below the threshold
level, no dividends are paid. Some calculations for the classical risk model and Brownian motion model are
given in [7] [8]. For recent publications on this topic, see, for example, [9]-[14].

Recently, the multi-layer dividend strategy as an extension of the threshold dividend strategy has drawn many
authors’ attention. Under such a dividend strategy, premiums will be collected at different rates whenever the
surplus is in different layers. The modified surplus process is obtained from the original surplus process by re-
fraction at each threshold level. Within this framework, many authors have studied the Gerber-Shiu expected
discounted penalty function, see, for instance, [15]-[17] and the references therein.

Under such framework, Ng [18] combined barrier strategy and threshold strategy for the first time and then
proposed a hybrid dividend strategy, who considered a dual risk model with phase-type gains under a hybrid
dividend strategy and derived the explicit formula for the expected total discounted dividends until ruin and the
Laplace transform of the time of ruin. In this paper, we consider the hybrid dividend strategy for the classical
risk model. Let b, >b, be two positive constants, under a hybrid strategy, no dividends are paid whenever the
modified surplus is below the level b,; dividends are paid at a constant rate & (« >0) whenever the mod-
ified surplus is in interval (by,b,); the premium income no longer goes into the surplus but is paid out as divi-
dends whenever the modified surplus exceeds the level b,. The modified surplus is obtained from the original
surplus process by refraction at the level b, and reflection at the level b,. The hybrid dividend strategy intro-
duced above is a generalization of a pure barrier strategy and a pure threshold strategy. Apparently the hybrid
strategy is more realistic than a pure barrier strategy, because it is inflexible for companies to use a switching
mechanism of either paying nothing or paying all excess surplus as dividends. In the meantime, it is more prac-
tical than a pure threshold, because it is the ideal for a surplus of a company to be allowed to grow infinitely.

The rest of the paper is organized as follows. In Section 2, we find the integro-differential equations and
boundary conditions for the expected discounted dividend payments until ruin. The integro-differential equa-
tions with boundary conditions satisfied by the moments and the moment-generating function are given in Sec-
tion 3. Section 4 discussed the integro-differential equations with boundary conditions for the Gerber-Shiu func-
tion, and Section 5 presents the integro-differential equations with boundary conditions satisfied by the Laplace
transform of ruin time.

2. The Model

We consider the compound Poisson model of risk theory with initial surplus u > 0. In the absence of dividends,
the surplus process U, attime tis given by

N(t)

U =u+ut—S =u+ut->Y, t=0,

i=1
where 4 is the premium rate, and {S,} representing the aggregate claims up to time t, N(t) is a Poisson
process with intensity A, and Y;,i=1--, independent of {N (t);t >0}, are positive i.i.d. random variables
with distribution function P(y) and density function p(y).

Unlike the dividend strategies in [4] [8], we assume the company will pay dividends to its shareholders ac-
cording to a hybrid dividend strategy with parameters b, >b > 0. The dividends consists of two parts. The first
part of dividends are paid at a constant rate « (0, ) whenever the modified surplus between the level b,
and the level b,. The second part, whenever the modified surplus reaches the level b,, the overflow will be
paid as dividends. For t>0, let D(t)=D,(t)+D,(t) denote the aggregate dividends paid by time t, where
D,(t) and D,(t) caused by the two parts of dividends, respectively. Thus

U, =U,-D(t), (2.1)

is the company’s modified surplus at time t.
Let T be the ruin time of {U,;t>0}, namely

T =inf{t>0]U, <0},

and let 5 >0 be the force of interest for valuation, we denote
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D=[le'dD(t), D, = [ e"dD,(t), D, = [[e"dD, t).
We use the symbols V (u;b;,b, ).V, (u;b;,b,),V, (u;b,b,) to denote the expectations of D,D,,D,, i.e.

V (u;b,b,)=E,[D], V, (u;b,b,)=E,[D,], V, (u;b,b,) = E,[D,].
Define the moment-generating function of D by

M(u,z;bl,bz)zE[eZD

U, :u]z E, [eZD], u>o,
and kth moment by
Vi (u;b,b,) = E[ D*|U, =u, u=0, keN,
with 'V, (u;b;,b,) =1, and the Gerber-Shiu functions by
®(usby,b, ) = E[ e @(Up Uy )1 (T <o), =u ], u>0, 2.2)

where U,_ is the surplus immediately before ruin, |lJT is the deficit at ruin and the penalty w(x,y) is a
nonnegative bounded measurable function of x>0,y >0, and the Laplace transform of ruin time by

L(u;bl,b2)=E[e"’T|U(J :quEu [e’”] u>0. (2.3)

3. Expected Discounted Dividend Payments

In this section, we consider the hybrid dividend strategy for dividend payments in a compound Poisson risk
model. We write

Vy (U;bl,bz)z{vdl((wbl’bz)’ 0<u<b,

Vg, (u;by,b,), b <u<b,.

Then, we have
Ve (usby, by ) =Vy, (u;by,b, ) +V, (usby,b,),  O0<u<b,

V(U;bllbz):{

V,. (usby, by ) =Vy, (U;by, b, ) +V,, (usb, by ), b <u<b,.

In the following, we first derive the integro-differential equations and boundary conditions satisfied by

V, (u;b,b,) and V, (u;b,b,).
Theorem 3.1 Assume that V, (u;b;,b,) is continuously differentiable in uon (0,b,)U(b;,b, ). Then,
V, (u;b,b,) satisfies the following integro-differential equations, when 0<u<b,,

Iuavdl(u;blle)_(

~ A+ 8oy (Uiby,by )+ [V (U= yiby,b,) p(y)dy =0, (3.1)

and, when b <u<hb,,

a+(y—a)w_(ma)vﬂ(u;bl,bz)
! (3.2)
+/1[J';7bj\/dz (u—y;b,b,) p(y)dy+J':7blle(u -y;b.b,) p(y)dy} =0,
with boundary conditions
Vor (B=501,0; ) = Vi, (bi+by,b, ), (33)
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anZ(u;bl’bZ) ZO, (34)
ou v,
Vg, (usby,b,) B ~ Vg, (u;by,b,)
o N =a+(u a)—au N : (3.5)

Proof. When 0<u<b,, consider t>0 such that the modified surplus can not reach level b, by timet, i.e.
U+ ut <by.. In view of the strong Markov property of the surplus process {U,t >0}, we have

Voo (u3,B;) = E, | [l D, (1) | +o(1)
= E, [J'the"g(s“)le (t+ s)] +0o(t)

=e'E, UOTe"’Sle(s)oet]Jro(t) (3.6)

voe e [ ot
=e'E, [vdl(Ut;bl,bz )]+0(t)’

where 6, is the shift operator. By conditioning on the time and amount of the first claim and whether the claim
causes ruin or not, and using (3.6), we get

Vg (usby, by ) =€ (1= At)Vy, (u+ ut;b, bz)+e“5‘/?,t_|'()u+"\/dl (u+ut—y;b,b,)p(y)dy+o(t). (3.7)

By Taylor’s expansion,

oV, (u;b,b
Vor (0 )=V (1, )t e Ee)

+o(t).

Substituting the above expressions into (3.7), and dividing both sides of (3.7) by t and letting t — 0, we can
get (3.1).

When b, <u <b,, we still consider a small time interval [0,t], with t(>0) being sufficiently small so that
the modified su~rplus will not reach b, in the time interval. In view of the strong Markov property of the sur-
plus process {U,,t >0}, we have

Vy, (usby,b,) = at+E, [.[tTe’“le (t)} +o(t)

—at+e'E, [de (Ui, )J+o(t).

By conditioning on the time and amount of the first claim and whether the claim causes ruin or not, and using
(3.8), we get

(3.8)

Vg, (Uiby by ) = at+e™ (1= At)V,, (u+(u-a)t;b,b,)

+e*"‘,1t[j;+(”_a)t_q\/dz (u+(u—a)t-y;b.b,)p(y)dy (3.9)
T =)ty () o0,
By Taylor’s expansion,

Vg, (u;by,by,)

Vg, (U+(u—a)t;b,b, ) =V, (u;by,b, )+ (u—a)t 8u +o(t).
Substituting the above expressions into (3.9), and dividing both sides of (3.9) by t and letting t — 0, we can
get (3.2).

Next we prove the condition (3.3). It follows from
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—(5+2)e

e ” Vd2(bl;bllbz)Svdl(bl_e;bl'bz)gvdz(bl;bl'bz)' O<e<h,

let ed 0, we have
le(bl_;bvbz) :de (bl;bl!bz)'
Similarly,
7({5+/1)€

e “ Vg (b +eb,b,) <V, (b;b,b) <V, (b +eb,b,), 0<e<h,-h,
let ed 0, we obtain

Vao (bbb, ) =V, (b5 by b, ).

So we get (3.3).
Furthermore, when the initial surplus is b,, we can mimic the derivation of (3.9) to obtain

Vy, (byibyb, ) = at+e7 (1-At)V,, (by;by,b,)
+ e 24] [y (b, - ibub, ) p(y)ly (3.10)
# 7 Vau (0, = yiby,b,) p(y)dy [+o(t).
Dividing both sides of (3.10) by t and letting t — 0, we can obtain
(5+/1)de(bz;bl,b2)=a+/1[j;2_b\/d2(b2 —yiby,b,) P(Y)dy+ [ Vi (b, - ¥ibyb,) p(y)dy] (3.12)

Letting u Th, in(3.2) and comparing it to (3.11), we obtain

Ny, (u;by,b,)
ou

u=h, -
When u>Db,, we have
Vy (usby,b, ) =V, (bysby,b, ),
thus,

oV, (u;b;,b,)
ou

=0.

u=hy+

So we get (3.4).

Finally, letting uTh, in (3.1) and ud b in (3.2), we can get (3.5). This completes the proof of Theorem
3.1

Remark 3.1 Letting b, — oo in Theorem 3.1, then (3.1) and (3.2) reduce, respectively, to (5.1) and (5.2) of
[7].

Theorem 3.2 Assume that V, (u;b;,b,) is continuously differentiable in uon (0,b,)U(b;,b, ). Then,
V, (u;b,b,) satisfies the following integro-differential equations, when 0<u<b,,

N, (u
U

—a;bl’bZ) —(l+5)Vrl(u;bl,b2)+ﬂ_[$\/rl(u -y;b,b,) p(y)dy =0, (3.12)

and, when b, <u<h,,

2+6)V,, (it b,)

(,u_a)w_(

(3.13)
A [V (0= 0, (Y)Y + [ Vo (- yiB b, p(y)dy | -0

with boundary conditions
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Vi (B =iy,0,) = Vi, (bbb, ), (3.14)
ov,, (u;b,b
% =1 (3.15)
u .
oV, (u;b,b oV, (u;b,b

i dl(abl 2) Z(ﬂ—(l) dz( bl 2) . (316)

u ou

u=b - u=hy+
Proof. In view of the strong Markov property of the surplus process {L]t > 0} , we have

V, (u;b,b,) = 'E, [V, (Usby by ) [+o(t). (3.17)

When 0<u<b,, we consider a small time interval [0,t], with t>0 being sufficiently small so that the
modified surplus will not reach b in the interval. By conditioning on the time and amount of the first claim

and whether the claim causes ruin or not, and using (3.17), we get
V, (usb,by) =€ (1= 2t)V,, (u+ ut;by,b,)

L eus (3.18)

+e"”/1t.[0 #\/rl (u+pt—y;b,b,)p(y)dy+o(t).

By Taylor’s expansion,
oV, (u;b,b
Vi (s i) =V, (i by ¢t SR oy

Substituting the above expression into (3.18), and dividing both sides of (3.18) by t and letting t — 0, we can
get (12).

When b, <u <b,, we still consider a small time interval [0,t], with t>0 being sufficiently small so that
the modified surplus will not reach b, in the interval. Similar to the derivation of (3.12), we can obtain Equa-
tion (3.13).

The condition (3.14) can be obtained similar to (3.3).

When the initial surplus is b, , we have

V,, (byiby,by)=e™ (1-At)[ (1 —a)t+V,, (byiby,by) |
+e"“/1t[ [, (b, ~ yiby,b, ) p(y)dy (3.19)
+j:2{blvr1(b2 ~¥iby,b,) p(y)dy}ro(t).
Dividing both sides of (3.19) by tand letting t — 0, we can obtain
(8 2)Vep (b3B,5,) = (=) 2| ;7 Voo (B~ yibi,b,) p(¥)dy

+J-bi2,blvrl (bz -Y, blvbz) p(y)dy}

(3.20)

Letting u T b, in (3.13) and comparing it to (3.20), we obtain

V,, (u;b,b,)
ou

u=h, —
When u>b,, we have
V, (u;b,b,)=u—b, +V,, (by:b,b,),
thus,

oV, (u;b;,b,)
au

=1

u=h, +
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So we get (3.15).

Finally, letting uTh, in (3.12) and u b, in (3.13), we can get (3.16). This completes the proof of Theo-
rem 3.2.

According to the definition of V (u; bl,bz) , from Theorems 3.1 and 3.2, we can lead to the integro-differential
equations and the boundary conditions satisfied by V (u;b;,b,).

Theorem 3.3 Assume that V (u;b;,b,) is continuously differentiable in uon (0,b,)U(b,,b,). Then,
V (u;b,b,) satisfies the following integro-differential equations, when 0<u<b,

p oV, (u;by,b, )

(2o (Ui, )+ A[ V. (u=yiby,b, ) p(y)dy =0, (3.21)

and, when b <u<hb,,

ov,, (u;b;,b, u-

a+(y—a)$—(l+5)vﬁ(u;bl,b2)+ﬁ['[0 "V, (u-y:b,,b,) p(y)dy o

Ve (u-yibyby) p(y)dy] =0,

with boundary conditions
Vi, (bi=iby,b, ) =V, (b4, b, ), (3.23)
NV, (u;b,b,) 4 a2
ou b, ' :
Ny (uibby)| LV, (ushyby)

U o N =a+(u a)—au N : (3.25)

Example 3.1. Now we assume that the individual claim amounts are exponentially distributed with mean

1B, ie.
p(y)=pe”, y>o0.
Then, we have
p'(y)+Bp(y)=0. (3.26)

Applying the operator (d/du+ ) on (3.21) and (3.22) respectively, and using (3.26) and rearranging them,
we get

oV, (u;by,b. oV, (u:b,,b
ywﬂﬂu—l—é)ﬁ—ﬂé\/ﬂ(U:b17b2)=0, 3.27)
ou au
for O<u<b ,andfor b <u<hb,
oV (u:b,b ov,, (u:b,,b.
(,u—a)%+[ﬂ(,u—a)—l—5]$—ﬁ&2*(u;bl,b2)+ﬁa:0. (3.28)
u
We can obtain the solutions of Equation (3.27) as follows
Vi (u;by,b,) = Ae™ +Be™, 0<u<h, (3.29)

with the coefficients A and B being independent of u, and r and s being the roots of the characteristic equation
H&* +(pu—2A-68)&—ps=0.

We let r denote the positive root and s the negative root, i.e.

- ~(Bu—r—-8)+(Bu—2-6) +4ups
2u '
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~(Bu—2=8)=\(Bu-A-05) +4ups
2u '
Substituting (3.29) in Equation (3.21) and equating the coefficient of e with 0, we have

A B
w(r+ﬁ+s+ﬂ]=o. (3.30)

S =

From (3.29) and (3.30), we can rewrite
V. (u;by,b,) = y[(r+ﬂ)e“’ —(,B+s)es“], O<u<b, (3.31)

where » dose not depend on u. A particular solution of (3.28) is «/&. Hence, the solutions of Equation
(3.28) are given by

Vz*(u;bl,b2)=%+CeV”+GeW“, b <u<h,, (3.32)
where the coefficients C and G are independent of u, and w<0 and v >0 are the roots of the characteristic
equation

(u—a)&+[B(u—a)-A-5]E-5B=0,
namely,

. —[ﬁ(ﬂ—a)—z—5]+\/[ﬂ(y—a)—z—af +4(u—-a)Bs
- 2(u-a)

_—[ﬂ(,u—a)—/l—5]—\/[ﬁ(,u—a)—/l—5]2+4(/4—a)ﬂ5
B 2(p-a) '

From (3.31) and (3.32), we observe that the convolution integral in Equation (3.22) is

oV (:by,,) p(u=y) ey + [V (v:Bib,) p(u—y)dy

_]/j [r+/3 e” —(s+p)e Sy]/}e Alu- ydy+j ( +CeW+GeWVJﬂe dy

_ e {y [ —eeeom ] % (7 —e™)+ %[ew)u —elrn ] %[e(mw)u _ (s ]}

By setting the coefficient of e to 0, we have

C G
e™ —e™t e +——e", 3.33
7( ) 5,3 B+v B+w (3.33)

From (23) and (24), we have the conditions
y[(r+p)e™ —(s+,8)e5bl]=%+CeV”l +Ge™, (3.34)

and
Cve" +Gwe"” =1. (3.35)
It follows from (33) and (34) that

C='B+V{y[(w—r)e’b1 —(w—s)esq]—a—w}e‘“. (3.36)

W—V op
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_B+w Ce™ (v )™ 1o @Y gwn
G—V_W{y[(v rye™—(v-sje J 5ﬁ}e . (3.37)

Substitution of (3.36) and (3.37) into (3.35), thus we get the closed-form solution of » as follows,

. awv| (B+w)e" ) +(ﬁE+ v)e'® ) |+ 9B (w-v) ’ (3.38)

where

E=p{u(B+v)[(w-r)e® ~(w-s)e Jer )

(3.39)
~w(p+w)[(v-r)e™ —(v-s)e™ ]ew(bz‘bl)}.
We can get C and G by substituting » into (3.36) and (3.37).
Hence
V. (usby, by ) = [ (r+B)e™ —(s+B)e* ], if 0<u<b, (3.40)
and
Va. (U;blvbz)=%+%{7[(w—r)e’bl —(w—s)esﬂ—g—g}e”(““)
(3.41)
+%{y[(v—r)efbi —(v—s)esq]—g—[\;}ew(”“), ifb <u<h,.

Remark 3.2 Let us compare our results with known results.
1) When b, =b,,a =, the hybrid dividend becomes a barrier dividend strategy, the condition (3.25) is the
same as (3.24), from (3.31) and (3.24), we have

1
B+r)re™ —(f+s)se™’

T

which agrees with formula (7.8) in [2].
2) Letting b, — oo, the hybrid dividend strategy becomes a threshold dividend strategy, we get

aw 1

limy=— . 3.42
o’ 5B (w—r)e™ —(w—s)e™ (3.42)
From (3.36), (3.37) and (3.42), we have
M gash
limg = 2BFW)_ re™ —se -un (3.43)
by >0 B (w-r)e™ —(w—s)e™
lim ¢ =0, (3.44)

It follows from (3.40) to (3.44) that

aw (B - (5-5)e”
~ 9B (w—r)e™ —(w—s)e™’

bIimVl,F(u;bl,bz) if 0<u<b,
o —>0

and

by shy
imV. (wb b )% eB+W) re " —se v
bZILTl 2*(Uab1’ 2) 5+ 5B (W_r)erbl—(W—S)eSble

a w(u-— H . w(u- H
:E[l—e( bl)}rblzlglvl*(bl,bl,bz)e( W ifb <u,
which are (6.14) and (6.15) in [7].
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4. The Moment-Generating Function

In this section, we study the moment-generating function M (u, z;bl,bz) which has been discussed in various
models, for example, see [8] [19]. We can analyze the moments of D through M (u,z;b;,b,) . Since
M (u,z;b,,b,) has different paths for 0<u <b, and b <u<b,, we define

M;(u,z;b,b,), O0<u<b,
M, (u,z;b,b,), b <u<h,

We first derive the integro-differential equations and boundary conditions for M (u, z;b,, bz) .
Theorem 4.1 Assume that M (u,z;b;,b,) is continuously differentiable in u on (0,b)U(b;,b,) and in
y>0. Then, M(u,z;bl,bz) satisfies the following integro-differential equations, when O<u<b,,
oM, (u,z;b,,b oM, (u,z;b,,b.
u 1 (.70 2):52 (.28, 2)+/1M1(u,z;bl,b2)
ou oz (4.1)
—i[J:Ml(U—y,z;bl,bz)p(y)dy+1—P(U)],

M (U’Z;bllbz):{

and, when b, <u<h,,

(ﬂ—“)aMZ(ué:bth) =01 aMz(uéi;bhbz)Jr(/i—za)Mz(U,z;bl,bz)
‘ﬂ[f:fbl'v'z(”—y:z?bvbz)p(y)dy 4.2)

+ [ My (u=y,ziby,b,) p(y)dy +1-P(u) |

with boundary conditions

Ml(bl_’Z;bl’bZ): Mz(b1+'Z;bl’b2)’ (4-3)
oM, (u,z;b,,b
% =M, (b, z;b,b,), (4.9)
u=hy—
oM, (u,z;by,hb,) oM, (u,z;by,b,)
u P MESNCYA :(Iu—a)— +ZOCM2(bl,Z;b1,b2)- (45)
u B ou _
u=h - u=h; +
Proof. In view of the strong Markov property of the surplus process {Ut > 0} , we have

M, (u,z;b,b,)= E[Ml(Ut,ze"”;bl,bz)J+o(t), (4.6)

when 0<u<b,, consider t>0 being sufficiently small so that the modified surplus can not reach level b,
by time t. By conditioning on the time and amount of the first claim and whether the claim causes ruin or not,
and using (4.6), we get

M, (u,z:b;,b,) = (1= At)M, (u+ut, ze"";b;,b, )
+/1t[ M, (U -y, ze’(s‘;bl,bz)P(Y)dY} (4.7)
+At[1-P(u+ ut) |+o(t).
By Taylor’s expansion,

oM, (u,z;b,b,)
0z

ozt

Ml(u +ut, ze’”‘;bl,bz): M, (u,z;b;,b, )+ ut aMl(UéLZJ;bpbz)

+0(t).
Substituting the above expression into (4.7), and dividing both sides of (4.7) by t and letting t — 0, we can

get (4.1).
When b, <u <b,, we still consider a small time interval [0,t], with t>0 being sufficiently small so that
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the modified surplus will not reach b, in the interval. In view of the strong Markov property of the surplus
process {U,,t >0}, we have

M, (u,z;b,b,) =e™E, [Mz (U, 2e";b,,b, )]+o(t). (4.8)

By conditioning on the time and amount of the first claim and whether the claim causes ruin or not, and using
(4.8), we yield

M2(u,z;bl,bz)=(1—/1t)e2“tM2(u +(y—a)t,Ze_5t;b1,b2)

et U:*W*“)‘*“MZ (u+(u—a)t-y,ze;b,b, ) p(y)dy

(4.9)
u+(u-alt st
+J.u+(:—a)t—blMl (u +(,u—a)t —y,2e7% b, bz) p()’)dY]

+ Ate™™ [1— P(u +(,u—a)t)] +0(t).
Since
M, (u +(pu-a)t, ze”“;bl,bz)

- MZ(U,Z;bl,b2)+(#_a)t6Mz(Uélzj;blybz)_5ztaM2(Ué§;bl,bz)+

using the similar arguments as above, we get (4.2) from (4.9).

Next we prove the condition (4.3). For 0<u<b, let 7, =inf{t:U, =b,0<U, <b}, and t, is the time
that the modified surplus reaches b, for the first time from 0<u <b, with no claims, i.e. u+ ut, =b,. Then
7, Isastopping time, and by the strong Markov property, we have

M. (u,z;b,b,) = E,[€®1(z, <T)[+E,[e®1 (5, =T)]
= E,[M, (b, ze ™;by,b, )1 (7, <T)I+P (s, =T) (4.10)

< Mz(bl,zef&bl;bl,bz)+ P(rbl 2T).

o(t),

On the other hand, we have
M, (u,zb,b,) > E,[€®1 (7, <T,7, =t,)[+E,[e®1 (5, 2T)]
E, [Mz(bl,ze”ﬁbl;bl,bz)l (7 <To7 =t0)}+ P(r, 2T) (4.11)

2 My (20 30,0 P (T > 1) 4P, 2T),

where T, is the first time that the claim happens. When u Tb,, 7, and t, both go into zero, and
lim,p, P(rbl 2T)= 0, letting u Thb, in (4.10) and (4.11), we obtain

Ml(bl_’Z;bl’bZ):MZ(bPZ;bl’bZ)'
When u =h,, we consider an infinitesimal time interval [O,t] , then
2[lae%1 gty [ _ st
M, (b, z:b, b )= " ) {e MEbl|:M2(bl+(‘Ll—O!)t,Ze 5‘,bl,b2)]
+E, [M (U“Zefat;bl,bz)l(N(t):l,T >t)}}+0(t).
From this formula we get

2[iae™ % Lgetp)S _ _
M, (b,z;b,b,)>e " ¥ 7g “Ebl[Mz(bl+(y—a)t,ze (”;bl,bz)]

and



P.Lietal

M, (b, 20, b, ) < e ™ (6B, [M, (b +(u-a)t,zeby,b,)
+E, [ M (U, 2e73b,b, )1 (N (1) =1,T >t)]}+|o(t)|.
Let tJ 0, we obtain

M, (b+ z;b,b,) =M, (b, z;b;,b,).

So we obtain (4.3).
Furthermore, when the initial surplus is b,, we can mimic the derivation of (4.9) to obtain

M, (by. ziby,b,) = (L At) e e M, (b,, ze ;b b, )

+ Ate™ [ ;rble (b2 -V, ze"";bl,bz) p(y)dy

by

+ bz4}1M1(b2 -y, ze"“;bl,bz) p(Y)dY}
+2te* [1-P(b,) ]+ o(t).

(4.12)

Using
\ oM, (b,, Z;b;,b
Mz(bz,ze‘“;bl,bz):Mz(bz,z;bl,bz)—ﬁzt%Jro(t).
z

Substituting the above expression into (4.12), and dividing both sides of (4.12) by t and letting t — 0, we
can obtain

, M; (b;,zb,,b,)
0z

5 =[(u-a)z+za-1]M,(b,,z;b,b,)

+/1[ fszle(bz—y,z;bl,bz) p(y)dy (4.13)
+ :_blMl(bZ —y,z;b,b,) p(y)dy+1- P(bz)]

Letting u Th, in (4.2) and comparing it to (4.13), we obtain

oM, (u,z;b,,b,)

8u =M, (b,,z;b;,b,).

u=h, -

Finally, letting uTh, in (4.1) and ul b, in (4.2), we can get (4.5). This completes the proof of Theorem
4.1.

Remark 4.1 1) In the case of b, =b,, (4.1) is corresponding to (3.1) of [20] by letting a=0, =0 and
u substitute c there.

2) In the case of b, — 0, (4.1) and (4.2) are corresponding to (2.10) and (2.11) of [21] by letting o =0,
r=0 and u substitute c there.

By the definitions of M (u,z;b,,b,) and V, (u;b;,b,), we obtain

o ok

M(u,z;bl,bz):1+z%vk (u;by,b,). (4.19)

k=1

We denote
Vii(uib,b,), 0<u<b,

V, (u;bl,bz):{
Viz(u;b,b,), b <u<h,.
Substituting (4.14) into (4.1) and (4.2) respectively and comparing the coefficients of z yields the follow-
ing integro-differential equations and corresponding boundary conditions.
Theorem 4.2 For each k >1, we assume that V, (u;b;,b,) is continuously differentiable in u on
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(0,b,)U(b,,b,). Then, V, (u;b,,b,) satisfies the following integro-differential equations:

;b b,
ﬂavk,l(ubl )

2 =(k6+A)Vk,l(u;bl,bz)—/ijg\/k‘l(u—y;bl,bz) p(y)dy, O<u<b,

and

)avk,z (u;bl’bZ)

('u_a ou

:(k5+/1)vkv2(U;bl’bZ)Jraka—l,z(U;bvbz)_;t“-:iblvk,z(U—yibubz) p(y)dy
+.[57b1Vk,1(U—y;bl,b2) p(y)dy}, b <u<b,,
with boundary conditions

Via (bl_;bl’ b, ) =Vi2 (bl+;b1’ bz)-

oV, (U;blybz) =kvk_1z(b2;b1’b2)’ (4.15)
ou 1=y '
V1 (u;by,b,) o V,, (usby,hb,) _
ﬂa—uu:bl_ —(ﬂ a)a—uu:bﬁ‘i'akkal,z (bl'bl'bz)'

Remark 4.2 Letting k =1, we have V,(u;b;,b,)=V (u;b;,b,), Theorem 3.3 can be reduced by Theorem 4.2.
From (4.15).

oVy, (u;by,by)
ou

=1

u=hy—

is an obvious result since V, (b,;b;,b,)=1.

5. The Gerber-Shiu Functions

In the following we will discuss the famous Gerber-Shiu expected discounted penalty function ®(u;b;,b,). We
also write
@, (u;b,b,), 0<u<b,
o (ubb,) = 1 (usby,by) b
@, (u;b,b,), b <u<b,

By a similar derivation to Theorem 4.1, we get the integro-differential equations and boundary conditions for

®(u;by,b,).
Theorem 5.1 Assume that @(u;by,b,) is continuously differentiable in u on (0,b)U(b;,b,). Then,
®(u;b;,b,) satisfies the following integro-differential equations, when 0<u <b,,

ﬂﬁ(bl(g;bl’bZ) :(l+§)cpl(u;bl,b2)—l[j;q)1(u— y;bl,bz) p(y)dy+ A(U):|, (G.1)
and, when b, <u<b,,

(ﬂ—a)%;b“bz):(/1+6)d>2(u;b1,b2)—/1U:bldbz(u— y;b.,b,) p(y)dy

0 (52)
+], @ (u=yibiby ) p(y)dy+ A(u)]
where A(u)= I:Ca)(u, y—u)p(y)dy and with boundary conditions
@, (b—by,b, ) = @, (by+b,b, ), (5.3)
6(1)2(U;b1,b2) :0 (54)
au . ’ '
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o, (u;by,b,)
ou

oD, (u;b,,b.
u=h - u=hy +

Proof. We can mimic the derivation of (4.1), (4.2), (4.3) and (4.5) to obtain (5.1), (5.2), (5.3) and (5.5).

Next we prove the condition (5.4). In view of the strong Markov property of the surplus process {Ut,t > 0} ,

we have

U

®(u;by,b,) =e"E,[@(U;;by,b,) . (5.6)
When the initial surplus is b, ,
- - by by
®, (by:by,b,) = (1~ At)e 'd, (b,:b,.b, ) +e Mt[ ", (b, - yiby.b,) p(y)dy
b2 Y 0
+ brblcbl(bz—y,ze %, b, ) p(y)dy+Jb2w(bz.y—b2)p(y)dy]
dividing t on both sides of the above expression, letting t — 0, we can obtain
by by b
(8+2), (b,;5,5,) = 2| [} "0, (b, = yibub,) p(y)dy+[[7 @, (b, ~ y,ziBy.b,) p(y)cly -
+[, (b, y-b,) y)dy}

Letting u Th, in (5.2) and comparing it to (5.7), we obtain

oD, (u;by,b, )
ou

u=h, —
When u>b,, we have
®(u;by,b,) = @, (b,;b,b, ),
thus,

o (u;by,b,)
ou

=0.

u=hy+

So we get (5.4).
This completes the proof of Theorem 5.1.
Remark 5.1 1) In the case of b =h,, (5.1) is corresponding to (2.6) of [3] by letting 4, A(u) substitute

¢.¢(u).
2) Letting b, — o, (5.1) and (5.2) are corresponding to (3.1) of [9] by letting 4, A(u) substitute c,,¢ (u).
6. Explicit Expressions of the Laplace Transform of Ruin Time

In this section, we give the closed form expression for the Laplace transform of ruin time when claim size has
exponential distribution with mean 1/3,i.e. p(y)=pe”’,y>0.We also write

u;b,b,), 0<uc<hb,
L(U;bllbz): Li( bl 2) bl
L, (u;b,by), b <u<h,
By setting (x,y)=1 in (5.1) and (5.2) and letting L (u;b;,b,) substitute @ (u;b,b,), we obtain the inte-

gro-differential equations and the boundary conditions satisfied by L(u;b;,b,) from Theorem 5.1.
Theorem 6.1 L(u;by,b,) satisfies the following integro-differential equations, when 0<u<b,,

u P EBB) ) ) -2 0 vibby) p(y) +1-P(w)], 6.)

and, when b <u<hb,,
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) ,bz u-

(ﬂ_a)%:(,1+5)L2(u;b1,b2)—/1[j0 "L, (u=y;by,b, ) p(y)dy 62)
+ﬁiblL1(u—y;bl,b2)p(y)dy+1—P(u)},
with boundary conditions

L (b=by,b, ) = L, (b +by,b, ), (6.3)
aI‘Z("’I’bl'bZ) =O (64)

au b, ’

oL (uibuby)| oL, (uibyby)

ﬂTu:q__(ﬂ a)—au . (6.5)

Remark 6.1 In the case of b, — o0, (6.1) and (6.2) are corresponding to equations (10.2) and (10.3) in [7].
Applying (d/du+ ) to (6.1) and (6.2) in the case of p(y):ﬁe‘ﬁy, y >0 respectively, and using (3.26)
and rearranging them, we have that for 0 <u <D,

ﬂéLf(U:bl,bz) (

oL, (u;by,b,)
—A-0)———==—- 6L, (u;b,,b,) =0, 6.6
7t (Bu— A= 8) = oL (uiby by (6.6)

and for b <u<hb,
o2 (u;b,b (u;b,b

(y—a)%{ﬂ(y—a - 5} bl 2) - 3L, (u;by,b,) =0. (6.7)

We can obtain the solutions of Equation (6.6) and (6.7) as follows
L (u;b,b,)=Cee™ +Ce®, 0<u<h, (6.8)
L, (u;b,b,) =Gye™ +Ge™, b <u<hb,, (6.9)

with the coefficients C;, C,, G, and G, being independent of u,and r, s, w and v are the same as
in Example 3.1. Substituting (5.8) in Equation (5.1) and equating the coefficient of e with 0, we have

Ig[&JrL] -1 (6.10)
r+p s+p
Substitute (5.8) and (5.9) in Equation (5.2) and equating the coefficient of e with 0, we have
by sby why vy
c,* ¢t -6t LG . (6.11)

‘r+p 's+pB  CB+w ' B+v

From (5.3) and (5.4), we have the conditions

C,e™ +Ce™ =G,e"™ +Ge™, (6.12)
and
G,we" +Gve™ =0. (6.13)
It follows from (6.11) and (6.12) that
C, :_ﬂ”(ew oG, e G je'bl, (6.14)
r-s p+w p+v

Clzﬂ[ewqueo+em V=T g e, (6.15)

S—r p+w p+v

and from (6.13), we get
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G, = —(v/w)e" G,

Substituting (6.14), (6.15) into (6.10) and then using (6.16), the constants G, and G, can be given by

o, T=SVBEWBY)

B [

G oSf w(B+w)(B+V)
= P | )

where
I =(B+ w)w[(v— rje”™ —(v-s)e™ ]e“’l
+(B+ v)v[(w— s)e™ —(w-r)e™™ ]eWb”(V’W)bz :
Substituting (6.17) and (6.18) into (6.14) and (6.15), the constants C, and C, can be given by

o= L [ulpev)(w=s)e™ % —u(pw)v-5)e® Je

C, = %[—v(ﬂ+v)(w— r)e"™ % L w(g+w)(v—r)e™ ]e‘Sbl.
From (6.17)-(6.21), we have

L (uiby2) = 2 Tu(B v (wos)e % _w(paw) (v—s)e™ e

Bl
Jr%[—v(ﬂJrv)(w—r)eWb“(VW)bz +W(ﬂ+w)(v—r)evﬂes(“’bl), if 0<u<b,
Lz(u;bl,el):S—V_Vrﬂlv(,B+w)(,B+v)eW‘”(V’W)b2 +%(ﬂ+w)(ﬂ+v)e"“, if b <u<h,.
Remark 6.2 Letting b, — oo, from (6.17) to (6.21), we have
_B+r (w—s)e™
A Co = B (w-s)e™ —(w-r)e™’
_Brs_ (r-w)e™
am G = B (w-s)e™ —(w-r)e™’
. _r-s p+w —why
blzlglG B (w-s)e™ —(w-r)e™
limG, =0
Thus,
. _ _1(p+ r)(w—s)e® ™ +(B+s)(r—w)e™™
blzlmoLi(u’bl’bZ)_ ﬂ (W—S)eSbl —(W—I’)erbl ! O<u Sbl’
L+wW

_ r-s
Jim L, (u;by,b, ) = B (w—s)e™ —(w-r)e™™

which are (10.17) and (10.19) of [7].
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