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Abstract 
The population balance modeling is regarded as a universally accepted mathematical framework 
for dynamic simulation of various particulate processes, such as crystallization, granulation and 
polymerization. This article is concerned with the application of the method of characteristics 
(MOC) for solving population balance models describing batch crystallization process. The growth 
and nucleation are considered as dominant phenomena, while the breakage and aggregation are 
neglected. The numerical solutions of such PBEs require high order accuracy due to the occur-
rence of steep moving fronts and narrow peaks in the solutions. The MOC has been found to be a 
very effective technique for resolving sharp discontinuities. Different case studies are carried out 
to analyze the accuracy of proposed algorithm. For validation, the results of MOC are compared 
with the available analytical solutions and the results of finite volume schemes. The results of MOC 
were found to be in good agreement with analytical solutions and superior than those obtained by 
finite volume schemes. 
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1. Introduction 
Pharmaceutical, chemical and food industries produce significant amount of materials in crystalline form. Crys-
tallization is an important separation unit in these industries, and has a significant impact on plant operation and 
economics. Crystal size distribution is an important quality aspect of the crystalline product. The industrial 
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crystallization process faces a major challenge for the production of crystals of predefined size distribution. Dy-
namic modeling of crystallization process has received notable consideration in recent time due to its various 
applications [1]. The population balance modeling is a widely accepted mathematical frame work for dynamic 
modeling of this process. Hulbert and Katz [2] are the main architects of population balance modeling. The ap-
proach has capability to simulate the crystallization process and to describe the evolution of each individual 
crystal throughout the process. 

On the other hand, accurate numerical solution of the population balance equation (PBE) is a challenging task 
for several reasons. Numerical diffusion and instability are common problems in the numerical solutions of 
PBEs for seeded batch systems. Incompatibility between the initial and the boundary conditions is one reason of 
the aforementioned problem. The number density distribution of seeds is unlikely to be the same to that gener-
ated by nucleation process. If their values match, the first order derivative of the distribution may not be identic-
al. This can lead to sharp discontinuities that are rapidly broadened by numerical diffusion. Another problem 
that is usually encountered in the solution of PBEs is the occurrence of steep moving fronts, known as source of 
numerical instability. This problem arises from the convective nature of growth-dominated process [1]. Several 
researchers in this filed have tried to develop specified algorithms for tackling these complexities. A verity of 
accurate and efficient numerical techniques were introduced, such as the finite difference methods [3] [4], the 
method of moments [5] [6], the method of weighted residuals [7], the Monte Carlo method [8], and the flux li-
miting high resolution finite volume schemes [9]-[11]. In this article, the method of characteristics (MOC) [1] 
[12]-[14] is applied to solve the PBE for simulating crystallization process. The MOC has capability to avoid 
numerical diffusion and instabilities in the solutions on coarse meshes and has low computational cost. These 
virtues encourage its applicability to industrial processes. The MOC transforms the given PBE into a system of 
ordinary differential equations (ODEs), which are then solved along the path line of the particles (characteristic 
curves). The particles are identified and located at the initial time and the population is trailed with a velocity 
equal to the growth rate. 

This article is organized as follows. In Section 2, the population balance modeling of batch crystallization 
process is briefly introduced. In Section 3, the method of characteristics is derived. This is followed by Section 4 
in which the forgoing numerical technique is applied to four test problems. Finally, the concluding remarks are 
outlined in Section 5. 

2. Batch Crystallization Model 
In the one-dimensional batch crystallization model, the crystal size is defined by a characteristic length l. The 
crystal size distribution (CSD) is depicted by the number density function ( ),N l t  which denotes the number of 
crystals per crystal length at any time t. The crystal growth rate G could be either dependent or independent of 
crystal size. Balancing the number of crystals in an infinitesimal interval of crystal length, a partial differential 
equation is obtained which explains the temporal evolution of CSD [12] [15] 

( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) 2

0 0

, , ,,
, , , .

G l C t T t N l tN l t
B C T t l l l t R

t l
δ +

∂∂
+ = − ∈

∂ ∂
              (1) 

The corresponding initial and boundary conditions are given as 

( ) ( ) ( ) ( )max
0

,
,0 , 0, 0, 0.

N l t
N l N l N t

l
∂

= = =
∂

                        (2) 

The symbol T denotes temperature, 0B  signifies the nucleation rate of particles at minimum crystal size 0l , 
maxl  is the maximum crystal size, and δ  is a Dirac Delta function. The solute concentration in the solution 

obeys the mass balance 

( )2
00

d 3 d , 0 ,
d c
C l GN l C C
t

ρ
∞

= − =∫                             (3) 

where cρ  denotes the density of crystals. The negative sign on the right hand side of Equation (3) explains the 
decrease of solute concentration (mass) in the solution during the process of crystallization. The rate of nuclea-
tion of nuclei of size 0l  is expressed as 
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( ) ( )
( )0 , ,

b
sat

b
sat

C C T
B C T K V

C T
 −

=   
 

                              (4) 

where, bK  and b are regarded as kinetic parameters, V is the total crystals volume in the system, and satC  
describes the saturated solute concentration which is depending on temperature of the solution. The crystal 
growth depending linearly on size may be defined as 

( ) ( ) ( )1 2, , , .
g

GG l C T K S C t a a l= +                               (5) 

In the above equation GK  is growth rate constant. The exponent 1g ≥  is a kinetic parameter and a1 and a2 
are constants. The relative super saturation ( ),S C T , which is a driving force for the crystallization process, is 
expressed as 

( ) ( )
( )

, ,sat

sat

C C T
S C T

C T
 −

=   
 

                                (6) 

where satC  depends on the temperature T of the solution. A quadratic fit to the solubility data gives us 

( ) 2
0 1 2 ,satC T A AT A T+= +                                 (7) 

where, 0 1 2, ,A A A  are regarded as constant parameters. Normally, temperature T is either considered constant 
(isothermal case) or a monotonically decreasing function of time (non-isothermal case). Hence satC  either re-
mains constant or decreases with respect to time but remains positive. 

3. The Method of Characteristics 
To avoid undesirable phenomena of primary nucleation which often adversely influence the crystal size distribu-
tion, seeded batches are operated in industrial batch crystallization. The secondary nucleation only produces in-
finitesimally small crystals in seeded batch runs. Since nuclei are produced at the minimum crystal size, we can 
consider a homogeneous PBE by defining the ratio of nucleation and growth terms as a left boundary condition: 

( ) ( ) ( )( ) ( )( )
( ) 0

1 2

, , ,,
0, 0, .

G l C t T t N l tN l t B
N t

t l G

∂∂
+ = =

∂ ∂
                   (8) 

Note that Equation (8) is a hyperbolic partial differential equation due to the convection term (second term on 
the left hand side) and is equivalent to the Equation (1). 

Before applying the numerical scheme, we discretize the computational domain. As explained before, the 
domain of interest is the crystal length, denoted by l. Suppose M is a large integer, and let 1 2 1 2,i i il l− + Ω =    
signifies the uniform partitioning of the given domain [ ]max0, l . For 1, ,i M=   and interval length  

1 2 1 2,i i il l l− + ∆ =   , Ni indicate the average value of the number density in each cell iΩ , i.e. 1 2

1 2

1 di

i

l
i l

i

N N l
l

+

−
=
∆ ∫ .  

The rate of change by growth of the total number of particles in the i-th size range can be obtained by integrating 
Equation (8) with respect to l. 

( )
d d 0.

i i

GNN l l
t lΩ Ω

∂∂
+ =

∂ ∂∫ ∫                                (9) 

By substituting the growth rate d
d
lG
t

=  in the above equation, we obtain 

dd d 0.
di i

N ll N l
t l tΩ Ω

∂ ∂  + = ∂ ∂  ∫ ∫                              (10) 

This gives 
1 2
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The application of Leibnitz formula for differentiation of integral expressions that have variable limits of in-
tegration, Equation (11) becomes. 

d d 0.
d i

l N l
t Ω

=∫                                     (12) 

This leads to the following semi-discrete equation: 

( )d d 0.
d i i

l N l l
t

∆ =                                    (13) 

According the product rule, the above equation further simplifies to 

( )1 2 1 2
1 2 1 2

d d d
0.

d d d
i i i

i i i

l l N
N l l

t t t
+ −

+ −

 
− + − = 

 
                         (14) 

Thus, we get 

( )1 2 1 2
d

0.
d

i
i i i i

N
G G N l

t+ −− + ∆ =                              (15) 

After simplifying the above equation, it takes the form 

( )1 2 1 2d
.

d
i ii

i

G GN
t l

+ −−
= −

∆
                                (16) 

Moreover, as described above 
2

0

d d, 3 d .
d d

i
c

l CG GNl l
t t

ρ
∞

= = − ∫                             (17) 

Any time-discretization scheme can be used to solve jointly the system in Equations (16) and (17). In our case, 
a simple Euler method is employed. In Equations (16) and (17), there is no convection term which could cause 
much numerical error and instability. Hence the solution obtained by the MOC is very accurate and stable. To 
overcome the nucleation problem, a new mesh of the nuclei size is added at given time levels. The system size 
can be kept constant by deleting the last mesh at the same time levels. As a result, all variables ( iN  and il ) are 
reinitialized at these time levels and the time integrator restarts. 

4. Numerical Test Problems 
In this section, some test problems are presented for the validation of the proposed numerical schemes. The re-
sults of MOC are compared with analytical solutions and results of the finite volume scheme presented in Qamar 
et al. [12]. 

4.1. Test Problem 1 
This test problem is taken from the article of Leonard et al. [16] with slight modifications. The growth rate is 
taken to be 0.1G = . The initial CSD is given as 

( )

( )( )

( )

2

2

1 exp 500 0.1 0.3 # m, 2 m 4 m,
0.32π

1 # m, 6 m 8 m,
,0 1 11 # m, 10 m 12 m,

1 100 0.1 1.5 # m 12 m 14 m,

0 # m, elsewhere.

l l

l
N l l l

l l

 − − µ µ < < µ


µ µ < < µ=  − − µ µ < < µ

 − − µ µ < < µ

 µ

             (18) 

Equation (18) corresponds to four characteristics peaks in the initial crystal size distribution. The first expres-
sion on the right side is a narrow Gaussian, the second and third expressions represent a square step and the last 
expression signifies a semi-ellipse. The last expression is very challenging because it combines sudden and gra-
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dual changes in the gradient. The analytic solution of this problem for the initial profile ( ) ( )0,0N l N l=  is the 
initial profile which is translated by a distance Gt  i.e. ( ) ( )0,N l t N l Gt= − . We divide the crystal length 

max 20 ml = µ  into 100 equal subintervals. Figure 1 compares the results of characteristic method, finite volume 
schemes and the analytical (exact) solution. It can be seen that MOC performed very well in resolving the sharp 
discontinuities of the step function and peak resolution of the Gaussian function. The MOC solution is compara-
ble with the analytical solution and is superior over the solutions of finite volume schemes [12]. 

4.2. Test Problem 2 
Lim et al. [17] considered this problem for analyzing their numerical algorithm. Here, the PBE in Equation (1) 
with nucleation and growth terms is considered. The growth rate is constant and the nucleation rate is indepen-
dent of the solute concentration and, hence, Equation (3) is not needed. Assume that the stiff nucleation occurs 
at the minimum crystal size ( )0 0l =  as a function of time: 

( ) ( )( )26 40, 100 10 exp 10 0.215 .N t t= + − −                          (19) 

The crystal size and time ranges are considered as 0 m 2.0 mlµ ≤ ≤ µ , 0 0.5 st≤ ≤ , and 1 m sG = µ . The 
square step initial condition for the number density is expressed as: 

( )
100 # m, 0.4 m 0.6 m,

,0
0.01 # m, elsewhere.

l
N l

µ µ < < µ
=

µ




                        (20) 

The analytical solution is given as [6] 

( )
( )( )26 4100 10 exp 10 0.215 # m, 0 m m,

, 100 # m, 0.4 m 0.4 m,

0.01 # m, elsewhere.

Gt l l Gt

N l t l Gt

+ − − − µ µ < < µ

= µ µ < −




< µ

µ






          (21) 

Figure 2 illustrates the results. The numerical solutions are denoted by the symbol sign, whereas solid line 
shows the analytical solution. In the solution, a square step discontinuous shock and a narrow wave which is 
originated from nucleation moving along the propagation path line, 0l l Gt= + . This problem is comparably 
harder than previous problems due to the stiff nucleation at the left boundary which produces a sharp peak and a 
profile. The numerical test is carried out on 200 grid points. It is evident that MOC resolves all the profiles of 
the solution in a better way than second order finite volume scheme [13]. 
 

 
Figure 1. The result of test problem 1 for t = 1. 
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Figure 2. The result of test problem 2 at t = 0.5. 

4.3. Test Problem 3 
This test problem is taken from [9] which corresponds to the crystallization of potassium nitrate (KNO3) crystals. 
The nucleation rate is a function of the time-dependent concentration and growth rate is a function of both con-
centration and crystal size. Thus, we have to solve the coupled Equations (1)-(3). The initial size distribution is 
given as. 

( )
4 23.48 10 0.136 13.3 # m, 180.5 m 210.5 m,

,0
0.0 # m, elsewhere.

l l lN l
−− × + − µ µ < < µ

=
µ





            (22) 

Here we consider the crystals have volume 3l . The initial condition for Equation (3) is taken as  

( ) 3

kg0 0.493 .
m

C =
µ

 Also, mesh size is taken as 0.5 mµ . The given domain [ ]0,1100 ml∈ µ  is descritzed into  

2200 cells and the simulation time is 1000 s. For size dependent growth rate, we consider 1 1a =  and 2 0.1a = . 
Moreover, the values of constants in saturated concentration Equation (7) is taken as 4

2 1.721 10A −= × , 1A =  
35.88 10−− × , 0 0.1286A =  and the remaining parameters are given in Table 1. Furthermore, the temperature 

trajectory is given as: 

( ) 0 1860032 4 1 e .
t

T t C
− 

  = − −    
 

                              (23) 

No analytical solution exists in this case, thus the results of MOC and finite volume scheme are compared 
with each other. Figure 3 shows the final crystal size distributions (CSDs). It can be clearly seen that MOC re-
solves the steep gradients in nucleation part much better than the second order finite volume scheme [12]. The 
zoomed plots in Figure 4 clearly indicate that MOC is superior over the finite volume scheme. 

4.4. Test Problem 4 
The purpose of this test problem is to illustrate the applicability MOC for the case of discontinuous crystal 
growth rate. Here, the simulation of potassium sulfate (K2SO4∙H2O) is considered. The initial seed distribution is 
taken as [17] [18] 

( )
7 4 45.472 10 , if 5.0 10 6.0 10 m,

,0
0, elsewhere.

l
N l

− −× × ≤ ≤ ×
=




                    (24) 

The size range of interest is 5 35.0 10 2.0 10 m l− −× ≤ ≤ ×  and the final simulation time is 180 minutes. The 
growth rate, that replaces Equation (5), is described as 
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Table 1. Parametric value for test problem 3. 

Description Symbol Value Units 

Total size of distribution maxl  1100 μm 

Mesh size l∆  0.5 μm 

Simulation time t  1000 s 

Number of grid points N  2200 - 

Growth coefficient GK  21.16 10×  - 

Growth exponent G  1.32 - 

Nucleation coefficient bK  74.64 10−×  1/μm3 

Nucleation exponent B  1.78 - 

Density of crystals cρ  122.11 10−×  g/μm3 

 

 
Figure 3. The result of test problem 3. 

 

  
Figure 4. Zoomed plots of the results in test problem 3. 
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( )
( ) ( ) ( )

( )

2
2 6 43

1 26

4040086.4exp 1 2 10 , if 7.0 10 m,
273.15

,
10700, , elsewhere.

700

S t l l
R T

G l t
lG t

−   
− + × ≤ ×    +   =
 






×
 
 





         (25) 

where, 1 18.314 J K molR − −= ⋅ ⋅  is the universal gas constant and ( )S t  is given by Equation (6). The nuclea-
tion rate, that replaces Equation (4), is given as 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

9 3
3

0

9
3

93001.56 10 exp , if 0.002 0.02 m ,
273.15

93001.56 10 exp 0.02 , elsewhere.
273.15

S t t V t
R T

B t

S t t
R T

µ

µ

 
× − ≤ ≤  + =

 
× −  + 













      (26) 

Here, ( )3 tµ  is given as 

( ) ( )3
3 0

, dc vt l k N l t lµ ρ
∞

= ∫ ,                              (27) 

and 3

kg2660 .
mcρ =  The volume shape factor is defined as 

( )
( )
( )

0.5 4

0.5

0.898exp 168 823 , if 1 10 m,

4.46exp 0.0797 676 , elsewhere.
v

l l l
k l

l l

−− ≤ ×
=

− +





                  (28) 

The saturated concentration quantifying solute mass per gram of solvent is given as 

( ) 6 2 3 26.0 10 2.3 10 6.66 10 .satC T T T− − −= × + × + ×                      (29) 

The temperature profile used to maintain a constant supersaturation ( )0.00732satC C− =  is given as 

( ) ( )0.008356 18070 45e .tT t − −= −                              (30) 

The concentration balance in Equation (3) is replaced by the following equation 

( ) ( ) ( ) ( )2 3
0

d
3 , , d , 0 0.2335 kg m .

d c v

C t
l k G l t N l t l C

t
ρ

∞
= − =∫                 (31) 

The numerical results at 400 grid points are shown in Figure 5. It can be seen that MOC gives better ap-
proximation of the solution and correct positions of the discontinuities as compared to the finite volume scheme  
 

 
Figure 5. The results of test problem 4. 
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[12]. Thus, MOC has better capability to solve such problems. 

5. Conclusion 
This work focused on the application of the method of characteristics (MOC) for solving batch crystallization 
models. The growth and nucleation were considered to be the dominant phenomena and breakage and nucleation 
were neglected. Three test problems were considered for different growth and nucleation rates. The performance 
and accuracy of the MOC was analyzed against the analytical solutions and the numerical solutions of finite vo-
lume schemes. Steep moving fronts or discontinuities appearing in the solutions were well captured by the MOC 
without any spurious oscillations and its results were found to be superior over the finite scheme results. It is 
therefore concluded that attention must be paid to the discretization of growth term (convection term) when de-
vising a numerical algorithm. This could help to obtain a crystal size distribution which agrees well with the ex-
perimental one. 
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