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Abstract 
Objectives: The purpose of this paper is to describe a technique for computing the local fractal di- 
mension of the human cerebral cortex as extracted from high-resolution magnetic resonance im- 
aging scans. Methods: 3D models of the human cerebral cortex were extracted from high resolu- 
tion magnetic resonance images of 10 healthy adult volunteers using FreeSurfer. The local fractal 
dimension of the cortex was computed using a custom-written cube-counting algorithm. The effect 
of constraining the maximum region size on the measured value of local fractal dimension was 
examined. A proof of principle was demonstrated by comparing an individual with Alzheimer’s 
disease to a healthy individual. Results: Local values of cortical fractal dimension can be obtained 
by constraining the size of the region over which the cube counting is performed. Cubic regions of 
intermediate size (30 × 30 × 30 mm) yielded a profile that demonstrated greater regional varia- 
bility compared to smaller (15 × 15 × 15 mm) or larger (60 × 60 × 60 mm) region sizes. Conclu- 
sions: Local fractal dimension of the cerebral cortex is a novel measure that may yield additional, 
quantitative insight into the clinical meaning of cortical shape changes. 
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1. Introduction 
Fractal dimension analysis was first made popular by a series of works by Benoit Mandelbrot in the late 1970s 
and early 1980s [1] [2]. Mathematically created fractal objects, such as Cantor dust or the Sierpinski gasket, ex- 
hibit a property called “self-similarity”, which means that magnification of smaller scale features exactly dupli- 
cates a larger scale structure. In nature, many objects such as plants (ferns, cauliflower), clouds, mountains, and 
rivers also exhibit a property of statistical self-similarity. While mathematical objects have an infinite range to 
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their self-similarity, biological objects only exhibit this property over a limited spatial range. The analytic tech- 
niques using this principle can model very complicated structures using relatively simple computational algo- 
rithms. 

Fractal analysis has been applied to many fields of natural science including botany, geology, and medicine, 
to name a few. One particular application that has been advanced in the past decade is the use of fractal dimen-
sion as a measure of the complexity of the human cerebral cortex. Studies using anatomical data from either tis-
sue specimens or magnetic resonance images have demonstrated that the human cerebral cortex exhibits fractal 
properties which arise secondary to cerebral folding [3]-[8]. Fractal analysis has been used to study several neu-
rological conditions, including schizophrenia [9]-[12], multi-systems atrophy [13], epilepsy [14], stroke [15], 
cortical development [16] [17], and Alzheimer’s disease [18] [19]. 

When applied to the cerebral cortex, the information obtained by the analysis of fractal dimension is related to, 
but different from, information obtained using standard volumetric approaches (such as measures of brain vol-
ume, surface area, cortical thickness, or gyrification index). Fractal analysis measures integrate information over 
a range of spatial scales (two orders of magnitude from 0.5 mm to ~30 mm). This unique approach to shaping 
analysis can integrate several aspects of structural change associated with disease (i.e. both subtle changes in 
cortical thickness associated with synaptic and neuronal loss as well as larger scale changes in the width and 
depth of sulci). 

Most studies of the fractal properties of the cerebral cortex have focused on computing whole-brain measures 
(i.e. generating one number which summarizes the entire hemisphere). While quantification of whole-brain com- 
plexity is useful, it is well established that the brain is not uniformly affected by either aging or by progressive 
neurodegenerative diseases such as Alzheimer’s disease [20]-[22]. Consequently, performing a local (or regional) 
analysis may allow for more specific and sensitive cortical complexity changes to be identified that represent the 
structural influence of non-uniformly distributed cerebral pathology. The purpose of this paper is to describe a 
technique for computing the local fractal dimension of the human cerebral cortex as extracted from high-resolu- 
tion magnetic resonance imaging scans.  

Having a measure of local fractal dimension could serve a number of very useful clinical purposes. First, the 
measure would provide a reliable quantification to the otherwise subjective and qualitative assessment of corti-
cal shape. Currently used terms for assessing the integrity of the cerebral cortex, such as “mild age-appropriate 
atrophy”, can be augmented with a quantitative, statistically based measure. Furthermore, the local fractal di-
mension measure is ideal for identifying subtle changes in brain shape that could be difficult to identify visually. 
Finally, subtle changes in brain complexity may herald the onset of neurological disease. As such, using the 
fractal analysis technique to identify structural changes in cortical complexity has potential for clinical use as a 
neuroimaging biomarker. 

2. Methods 
2.1. Source Data 
The raw data used in this study were extracted from high-resolution, high-contrast magnetic resonance images 
(MP-RAGE sequence, resolution of 1 × 1 × 1.25 mm, TR = 9.7 ms, TE = 4 ms, flip angle = 10 degrees, T1 = 20 
ms, and TD = 200 ms). The images were obtained from the clinical database of magnetic resonance images at 
the University of Utah. All images were de-identified according to Institutional Review Board protocol. For the 
analysis of region size, 10 age-matched healthy adult subjects were selected. For demonstration of the potential 
clinical application, one healthy adult subject and one subject with clinically diagnosed Alzheimer’s disease 
were selected. 

2.2. Image Pre-Processing 
In brief, we generate three-dimensional models of the cerebral cortex from high-contrast magnetic resonance 
images using a well-accepted image segmentation program called FreeSurfer. The methods for model genera-
tion have been well documented in other publications [23]-[27]. After the original images undergo motion cor-
rection and intensity normalization, the extracerebral voxels (or 3D pixels) are removed using a “skull-strip- 
ping” procedure. The 3D surfaces are generated based on the intensity values and geometric structure of the 
cortex (Figure 1(A)). The resulting surface has sub-millimeter accuracy [23] [25]. Each 3D surface is composed 
of tessellated triangles (~200,000 per hemisphere). 
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Figure 1. Image pre-processing. 3D models of the cortical surface were generated 
from high-contrast magnetic resonance images (MP-RAGE sequence) using the 
FreeSurfer pipeline. A. Original image (in coronal orientation); B. Skull-stripped 
image with neck removed and intensities normalized; C. 2D projection of the pial 
and grey/white surface; D. 3D view of the right hemisphere pial surface with a 
zoom-in on the frontal lobe to illustrate the triangular mesh.                   

2.3. Computing Local Fractal Dimension Using Cube Counting 
The 3D Fractal Dimension (f3D) of the cortical surfaces is computed using a 3D cube-counting algorithm. This 
algorithm has been found to be a robust and accurate method of computing cortical complexity [6] [8] [14] [18] 
[19] [28]-[31]. This approach is derived from the Minkowski-Bouligand dimension with an extrapolation using 
3D cubes instead of 2D boxes. Note that f3D is a unit-less measure. Initially, the 3D surface is tiled with cubes of 
a uniform size. The cube size is then changed, and the intersection computation is repeated. f3D is computed as 
the change in the log of the cube count divided by the change in the log of the cube size. See Equation (1).  

( )
( )3

log cube count
log cube sizeDf

∆
= −

∆
                                     (1) 

The range of cube sizes depends upon the resolution of the original data (1 mm for the images used in this 
paper) and the upper size limit of the object to be measured. The human brain is around 150 mm long. The brain 
has self-similar fractal properties over a limited scale, which for this paper ranged 0.5 mm to 30 mm [19]. The 
best fit of any tiling could be established by repeating the tiling calculation multiple times with a slight random 
jitter of the relative position of the tiling cubes to the tessellated mesh.  

Cube counting in this implementation requires the user to compute the intersection between a tiling grid of 
fractal counting cubes and the tessellated triangular mesh of the cortical surface. An algorithm for performing an 
intersection computation between one side of a counting cube and one side of an individual triangular mesh 
element is shown in Figure 2. This process would need to be repeated for each side of the mesh element and 
each side of the cube to determine successful intersection or not. Each intersecting box should be identified only 
once.  

The entire algorithm for computing the local fractal dimension of a cortical surface model is shown in the 
flowchart in Figure 3. Note that the process in Figure 2 is contained in a single box in the bottom right corner 
of Figure 3. The resolution of the final image depends upon the number of center points used to compute the 
local fractal dimension. For the purpose of this project, it was reasonable to create an image at the same resolu-
tion as the original MR image. Every voxel that was labeled as belonging to the cerebral cortex during the image 
segmentation process described above was used as a center point for this analysis. This generates approximately 
600,000 data points per hemisphere. 
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Figure 2. Flowchart for computing the intersection of side (edge of a triangular mesh element) with a face of a cube. 
The intersection is identified using standard geometry. Possible intersections for each triangular mesh side (3 edges) 
and each cube face (6 faces) are computed.                                                              

 

 
Figure 3. Flowchart for computing the local fractal dimension of the cerebral cortical surface. The flowchart for 
the cube-edge algorithm is shown in Figure 2. An example of a complete local fractal dimension computation is 
shown on the bottom left with local fractal values color-coded using the “heat” color scale.                        

2.4. Determining the Effect of Region Size 
The size of the region to be analyzed will likely have a significant effect on the calculated regional variability. If 
the region size is very large (>0.5 the size of the whole brain), then the regional variation will be averaged 
across a large swath of cortex, and local values will converge to global values. If the region size is very small 
(<2× the image resolution), then there is insufficient data to compute the cube count to cube size ratio, and the 
resulting values will be unstable and non-anatomical (i.e. complexity values may be >3.0 or <1.0). Cubic re-
gions with side lengths of 15, 30, and 60 mm were selected for this study. 

3. Results 
3.1. Effects of Selecting a Region Size 
The local fractal dimension values for a representative individual brain using 3 different cubic region sizes (15, 
30, and 60 mm side lengths) are shown in Figure 4. All 10 images produced similar results. When the smaller  
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Figure 4. Local fractal values of a cortical surface as a function of re-
gion size. A tessellated mesh was tiled with 1 mm cubes, each of 
which was used as a center point for computing the local fractal di-
mension. The region size side length varied from 15 mm to 60 mm 
(right column blue boxes). A lateral view of the right hemisphere is 
shown in the second column tiled with cubes colored according to the 
computed local fractal dimension (heat color scale). The scale bar for 
the local fractal dimension (unit-less) is shown on the right. To visual-
ize the internal structure, slices of the cortex are shown for a 
mid-thalamic coronal view, an axial view through the genu of the in-
ternal capsule, and a sagittal slice 2 mm to the right of midline. The 30 
mm region size demonstrates the greatest variability in local fractal 
dimension.                                                  

 
region size (15 mm) is selected, the local fractal values largely reflect cortical density within the region. Using 
the heat color scale, regions centered close to the inner or outer edges appear cooler, while regions in the center 
of the cortex are warmer. When measuring at this relatively small scale, there is not much regional variability 
across the cortex. When using the larger region size (60 mm), the local regions again show relatively little varia-
tion as the fractal values converges towards the global value (2.72 in this case). The intermediate region size (30 
mm) shows the most local variation of the three region sizes. 

3.2. Clinical Application  
To demonstrate the ability of this local fractal dimension tool to identify regional variation in brain structure, 
cortical fractal dimension values were calculated for two adult subjects (30 mm region size). The results are 
shown in Figure 5. One of these subjects has been diagnosed clinically with a progressive neurodegenerative 
condition (Alzheimer’s disease, which is rated as mild in severity) and has known structural deficits identified 
on his magnetic resonance images. A healthy adult subject is shown for comparison. For the healthy adult sub-
ject, there is some regional variability again noted, but no local complexity values fall below 2.5. For the subject 
with Alzheimer’s disease, there is a generalized loss of complexity noted (color scale shifted towards the red di-
rection on the heat scale) and there are prominent areas of marked decreased complexity in the bilateral parietal 
lobes and medial temporal lobes. 

4. Discussion 
This paper has demonstrated a method for computing the local fractal dimension of the human cerebral cortex as 
extracted from high resolution magnetic resonance images. The value of local fractal dimension depends upon 
the region size that is used. An intermediate region size (30 mm in this example) yields results that capture the 
variation in local complexity. Using an intermediate region size, the local variation in cortical fractal dimension 
reflects clinically significant structural factors. For example, cerebral atrophy associated with neurodegenerative 
conditions, such as Alzheimer’s disease, causes decreases in the calculated value of the local fractal dimension. 
Moreover, the heterogeneous spatial patterns of cerebral atrophy associated with a neurodegenerative disease are 
also reflected in the pattern of local fractal dimension change. This proof of concept demonstrates potential use  
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Figure 5. Local fractal values of the cortex decrease with Alzheimer’s 
disease. Shown are coronal, axial, and sagittal images of the brain with 
the local fractal dimension of the cortex superimposed. The scale bar 
for the local fractal dimension (unit-less) is shown on the right. The 
first row comes from a healthy adult subject, and the second row is a 
subject with a clinical diagnosis of Alzheimer’s disease. Both subjects 
are 75 years old. The fractal dimension values of the Alzheimer’s sub-
ject are lower than the healthy adult, with a predominance noted in the 
medial temporal lobes and bilateral parietal lobes.                         

 
of local fractal dimension as a biomarker for changes in cortical structure. 

Statistical analysis of this local fractal data will require implementation of an alignment algorithm in order to 
compare analogous regions of multiple brains. Using affine alignment techniques is unlikely to result in an ac-
curate image (e.g. the local fractal surfaces are too irregular compared to each other). One method would be to 
use a spherical mapping approach, such as the one implemented by FreeSurfer. 

In addition, the values for local fractal dimension need to be normalized against a background of normal ag-
ing to determine the normal range of local values for any given age group. This critical calibration then allows 
the data for an individual to be compared to an age-matched population to determine the statistical significance 
of the local variability. This step will also be critical to determine which local variations are common in the 
population (and thus without clinical significance) and which variations are associated with neuropathology. 
Ideally such changes could be identified early in the course of the disease and could identify those at risk for fu-
ture symptomatic progression.  

Local fractal dimension is one of many measures which can be used to quantify the integrity of the cerebral 
cortex. The technique has the advantage of quantifying measures of cortical shape, which is complementary to 
volumetric measures. With further development and testing, this tool may allow new and clinically useful as-
sessments of neuroimaging data to help physicians better diagnose and manage neurodegenerative disease.  

Acknowledgements 
This work was generously supported by grants from the Robert Wood Johnson Foundation, the American Fed-
eration for Aging Research, the Hartford Foundation, and the National Institute on Aging (K23-AG038356). 
Additional support has come from the Center for Alzheimer’s Care, Imaging and Research and the Department 
of Neurology at the University of Utah. The author would like to thank Mr. Sourav Kole for his assistance in 
proofreading this paper. Additional gratitude is extended to collaborators and members of my mentoring team, 
including Drs. Norman Foster, Mark Supiano, Sarang Joshi, P. Thomas Fletcher, Denise Park, Kristen Kennedy, 
Karen Rodrigue, and Angela Wang. The author would also like to acknowledge technical assistance in software 
development from Mr. Benjamin Tyler and Mr. Michael Hwang. 

References 
[1] Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. W.H. Freeman, San Francisco.   
[2] Mandelbrot, B.B. (1977) Fractals: Form, Chance, and Dimension. W. H. Freeman, San Francisco.  



R. D. King 
 

 
1739 

[3] Bullmore, E., Brammer, M., Harvey, I., et al. (1994) Fractal Analysis of the Boundary between White Matter and 
Cerebral Cortex in Magnetic Resonance Images: A Controlled Study of Schizophrenic and Manic-Depressive Patients. 
Psychological Medicine, 24, 771-781. http://dx.doi.org/10.1017/S0033291700027926 

[4] Free, S.L., Sisodiya, S.M., Cook, M.J., Fish, D.R. and Shorvon, S.D. (1996) Three-Dimensional Fractal Analysis of the 
White Matter Surface from Magnetic Resonance Images of the Human Brain. Cereb Cortex, 6, 830-836.  
http://dx.doi.org/10.1093/cercor/6.6.830 

[5] Hofman, M.A. (1991) The Fractal Geometry of Convoluted Brains. Journal für Hirnforschung, 32, 103-111.  
[6] Im, K., Lee, J.M., Yoon, U., et al. (2006) Fractal Dimension in Human Cortical Surface: Multiple Regression Analysis 

with Cortical Thickness, Sulcal Depth, and Folding Area. Human Brain Mapping, 27, 994-1003.  
http://dx.doi.org/10.1002/hbm.20238 

[7] Kiselev, V.G., Hahn, K.R. and Auer, D.P. (2003) Is the Brain Cortex a Fractal? Neuroimage, 20, 1765-1774.  
http://dx.doi.org/10.1016/S1053-8119(03)00380-X 

[8] Majumdar, S. and Prasad, R.R. (1988) The Fractal Dimension of Cerebral Surfaces Using Magnetic Resonance Imag-
ing. Computers in Physics, 2, 69-73. http://dx.doi.org/10.1063/1.168314 

[9] Ha, T.H., Yoon, U., Lee, K.J., et al. (2005) Fractal Dimension of Cerebral Cortical Surface in Schizophrenia and Ob-
sessive-Compulsive Disorder. Neuroscience Letters, 384, 172-176. http://dx.doi.org/10.1016/j.neulet.2005.04.078 

[10] Sandu, A.L., Rasmussen Jr., I.A., Lundervold, A., et al. (2008) Fractal Dimension Analysis of MR Images Reveals 
Grey Matter Structure Irregularities in Schizophrenia. Computerized Medical Imaging and Graphics, 32, 150-158.  

[11] Casanova, M.F., Daniel, D.G., Goldberg, T.E., Suddath, R.L. and Weinberger, D.R. (1989) Shape Analysis of the 
Middle Cranial Fossa of Schizophrenic Patients. A Computerized Tomographic Study. Schizophrenia Research, 2, 
333-338. http://dx.doi.org/10.1016/0920-9964(89)90024-8 

[12] Casanova, M.F., Goldberg, T.E., Suddath, R.L., et al. (1990) Quantitative Shape Analysis of the Temporal and Pre-
frontal Lobes of Schizophrenic Patients: A Magnetic Resonance Image Study. The Journal of Neuropsychiatry and 
Clinical Neurosciences, 2, 363-372.  

[13] Wu, Y.T., Shyu, K.K., Jao, C.W., et al. (2010) Fractal Dimension Analysis for Quantifying Cerebellar Morphological 
Change of Multiple System Atrophy of the Cerebellar Type (MSA-C). Neuroimage, 49, 539-551.  

[14] Cook, M.J., Free, S.L., Manford, M.R., et al. (1995) Fractal Description of Cerebral Cortical Patterns in Frontal Lobe 
Epilepsy. European Neurology, 35, 327-335. http://dx.doi.org/10.1159/000117155 

[15] Pirici, D., Mogoanta, L., Margaritescu, O., et al. (2009) Fractal Analysis of Astrocytes in Stroke and Dementia. Roma-
nian Journal of Morphology and Embryology, 50, 381-390.  

[16] Thompson, P.M., Lee, A.D., Dutton, R.A., Geaga, J.A., Hayashi, K.M., Eckert, M.A., et al. (2005) Abnormal Cortical 
Complexity and Thickness Profiles Mapped in Williams Syndrome. The Journal of Neuroscience, 25, 4146-4158.  
http://dx.doi.org/10.1523/JNEUROSCI.0165-05.2005 

[17] Wu, Y.T., Shyu, K.K., Chen, T.R. and Guo, W.Y. (2009) Using Three-Dimensional Fractal Dimension to Analyze the 
Complexity of Fetal Cortical Surface from Magnetic Resonance Images. Nonlinear Dynamics, 58, 745-752.  
http://dx.doi.org/10.1007/s11071-009-9515-y 

[18] King, R.D., George, A.T., Jeon, T., Hynan, L.S., Youn, T.S., Kennedy, D.N., et al. (2009) Characterization of Atrophic 
Changes in the Cerebral Cortex Using Fractal Dimensional Analysis. Brain Imaging and Behavior, 3, 154-166.  
http://dx.doi.org/10.1007/s11682-008-9057-9. 

[19] King, R.D., Brown, B., Hwang, M., Jeon, T. and George, A.T. (2010) Fractal Dimension Analysis of the Cortical Rib-
bon in Mild Alzheimer’s Disease. Neuroimage, 53, 471-479. 

[20] Walhovd, K.B., Westlye, L.T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., et al. (2011) Consistent Neuroanatomi-
cal Age-Related Volume Differences across Multiple Samples. Neurobiology of Aging, 32, 916-932. 

[21] Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D., Williamson, A., et al. (2005) Regional Brain 
Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cereb Cortex, 15, 1676- 
1689.  

[22] Raz, N., Ghisletta, P., Rodrigue, K.M., Kennedy, K.M. and Lindenberger, U. (2010) Trajectories of Brain Aging in Mi- 
ddle-Aged and Older Adults: Regional and Individual Differences. Neuroimage, 51, 501-511.  

[23] Dale, A.M., Fischl, B. and Sereno, M.I. (1999) Cortical Surface-Based Analysis. I. Segmentation and Surface Recon-
struction. Neuroimage, 9, 179-194. http://dx.doi.org/10.1006/nimg.1998.0395 

[24] Fischl, B., Sereno, M.I. and Dale, A.M. (1999) Cortical Surface-Based Analysis. II: Inflation, Flattening, and a Sur-
face-Based Coordinate System. Neuroimage, 9, 195-207. http://dx.doi.org/10.1006/nimg.1998.0396 

[25] Fischl, B. and Dale, A.M. (2000) Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance 
Images. Proceedings of the National Academy of Sciences of the United States of America, 97, 11050-11055.  

http://dx.doi.org/10.1017/S0033291700027926
http://dx.doi.org/10.1093/cercor/6.6.830
http://dx.doi.org/10.1002/hbm.20238
http://dx.doi.org/10.1016/S1053-8119(03)00380-X
http://dx.doi.org/10.1063/1.168314
http://dx.doi.org/10.1016/j.neulet.2005.04.078
http://dx.doi.org/10.1016/0920-9964(89)90024-8
http://dx.doi.org/10.1159/000117155
http://dx.doi.org/10.1523/JNEUROSCI.0165-05.2005
http://dx.doi.org/10.1007/s11071-009-9515-y
http://dx.doi.org/10.1007/s11682-008-9057-9
http://www.researchgate.net/journal/1558-1497_Neurobiology_of_aging
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1006/nimg.1998.0396


R. D. King 
 

 
1740 

http://dx.doi.org/10.1073/pnas.200033797 
[26] Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., et al. (2004) Automatically Parcel-

lating the Human Cerebral Cortex. Cereb Cortex, 14, 11-22. http://dx.doi.org/10.1093/cercor/bhg087 
[27] Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006) Reliability of MRI-Derived 

Measurements of Human Cerebral Cortical Thickness: The Effects of Field Strength, Scanner Upgrade and Manufactu- 
rer. Neuroimage, 32, 180-194.  

[28] Esteban, F.J., Sepulcre, J., de Mendizabal, N.V., Goñi, J., Navas, J., de Miras, J.R., et al. (2007) Fractal Dimension and 
White Matter Changes in Multiple Sclerosis. Neuroimage, 36, 543-549.  

[29] Lee, J.M., Yoon, U., Kim, J.J., Kim, I.Y., Lee, D.S., Kwon, J.S., et al. (2004) Analysis of the Hemispheric Asymmetry 
Using Fractal Dimension of a Skeletonized Cerebral Surface. IEEE Transactions on Biomedical Engineering, 51, 
1494- 1498. http://dx.doi.org/10.1109/TBME.2004.831543 

[30] Zhang, L., Dean, D., Liu, J.Z., Sahgal, V., Wang, X. and Yue, G.H. (2007) Quantifying Degeneration of White Matter 
in Normal Aging Using Fractal Dimension. Neurobiology of Aging, 28, 1543-1555. 

[31] Zhang, L., Liu, J.Z., Dean, D., Sahgal, V. and Yue, G.H. (2006) A Three-Dimensional Fractal Analysis Method for 
Quantifying White Matter Structure in Human Brain. Journal of Neuroscience Methods, 150, 242-253.  
http://dx.doi.org/10.1016/j.jneumeth.2005.06.021 
 

http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1093/cercor/bhg087
http://dx.doi.org/10.1109/TBME.2004.831543
http://dx.doi.org/10.1016/j.jneumeth.2005.06.021


Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is 
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide 
range of academic disciplines. SCIRP serves the worldwide academic communities and contributes 
to the progress and application of science with its publication. 
 
Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either 
submit@scirp.org or Online Submission Portal. 

 

    

    

    

    

mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper

	Computation of Local Fractal Dimension Values of the Human Cerebral Cortex
	Abstract
	Keywords
	1. Introduction
	2. Methods
	2.1. Source Data
	2.2. Image Pre-Processing
	2.3. Computing Local Fractal Dimension Using Cube Counting
	2.4. Determining the Effect of Region Size

	3. Results
	3.1. Effects of Selecting a Region Size
	3.2. Clinical Application 

	4. Discussion
	Acknowledgements
	References

