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Abstract 
A real-time pricing system of electricity is a system that charges different electricity prices for dif-
ferent hours of the day and for different days, and is effective for reducing the peak and flattening 
the load curve. In this paper, using a Markov decision process (MDP), we propose a modeling me-
thod and an optimal control method for real-time pricing systems. First, the outline of real-time 
pricing systems is explained. Next, a model of a set of customers is derived as a multi-agent MDP. 
Furthermore, the optimal control problem is formulated, and is reduced to a quadratic program-
ming problem. Finally, a numerical simulation is presented. 
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1. Introduction 
In recent years, there has been growing interest in energy and the environment. For problems on energy and the 
environment such as energy saving, several approaches have been studied (see, e.g., [1] [2]). In this paper, we 
focus on real-time pricing systems of electricity. A real-time pricing system of electricity is a system that 
charges different electricity prices for different hours of the day and for different days, and is effective for 
reducing the peak and flattening the load curve (see, e.g., [3]-[6]). In general, a real-time pricing system consists 
of one controller deciding the price at each time and multiple electric customers such as commercial facilities 
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and homes. If electricity conservation is needed, then the price is set to a high value. Since the economic load 
becomes high, customers conserve electricity. Thus, electricity conservation is achieved. In the existing methods, 
the price at each time is given by a simple function with respect to power consumptions and voltage deviations 
and so on (see, e.g., [6]). In order to realize more precisely pricing, it is necessary to use a mathematical model 
of customers. 

In this paper, using a Markov decision process (MDP), we propose a mathematical model of real-time pricing 
systems. Since in many cases, the status of electricity conservation of customers is discrete and stochastic, it is 
appropriate to use an MDP. Then, a set of electricity customers is modeled by a multi-agent MDP. Furthermore, 
we consider the finite-time optimal control problem. By appropriately setting the cost function, it is achieved 
that customers conserve electricity actively. This problem can be used for the model predictive control method, 
which is a control method that the finite-time optimal control problem is solved at each time. In addition, the 
finite-time optimal control problem can be reduced to a quadratic programming problem. The proposed approa- 
ch provides us with a basic of real-time pricing systems. 

This paper is organized as follows. In Section 2, the outline of real-time pricing systems is explained. In 
Section 3, a model of electricity customers is derived. In Section 4, the optimal control problem is formulated, 
and its solution method is derived. In Section 5, a numerical simulation is shown. In Section 6, we conclude this 
paper. 

Notation: Let   denote the set of real numbers. Let nI , 0m n×  denote the n n×  identity matrix, the 
m n×  zero matrix, respectively. For simplicity, we sometimes use the symbol 0  instead of 0m n× , and the  
symbol I  instead of nI . For two events ,A B , let E A B    denote the conditional expected value of A   

under the event B . 

2. Outline of Real-Time Pricing Systems 
In this section, we explain the outline of real-time pricing systems studied in this paper. 

Figure 1 shows an illustration of real-time pricing systems studied in this paper. This system consists of one 
controller and multiple electric customers such as commercial facilities and homes. For an electric customer, we 
suppose that each customer can monitor the status of electricity conservation of other customers. In other words, 
the status of some customer affects that of other customers. For example, in commercial facilities, we suppose 
that the status of rival commercial facilities can be checked by lighting, Blog, Twitter, and so on. Depending on 
power consumption, i.e., the status of electricity conservation, the controller determines the price at each time. If 
electricity conservation is needed, then the price is set to a high value. Since the economic load becomes high, 
customers conserve electricity. Thus, electricity conservation is achieved. 

In this paper, the status of electricity conservation of each customer is modeled by a Markov decision process 
(MDP). Then a set of customers is modeled by a multi-agent MDP (MA-MDP). Furthermore, by using the 
obtained MA-MDP model, we consider the optimal control problem and its solution method. 
 

 
               Figure 1. Illustration of real-time pricing systems.                               
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3. Model of Customers 
First, consider modeling the dynamics of each customer by a one-dimensional MDP. The value of the state x   
is randomly chosen among the finite set { }0,1, , 1n − . The element of { }0,1, , 1n −  expresses the status of  
electricity conservation, and “ 0 ” implies the status that a customer conserves electricity maximally, “ 1n − ” 
implies the status that a customer does not conserve electricity. Then the MDP of a customer is given by  

( ) ( )( ) ( )1t P u t tπ π+ =                                  (1) 

where ( )u t ∈  is the control input, and corresponds to the price. The vector  

( ) ( ) ( ) ( ) [ ]T
0 1 1     0,1 n

nt t t tπ π π π −= ∈    denotes the probability distribution, that is, ( ) [ ]0,1i tπ ∈  implies  

the probability that the state is i  at time t . In addition, the initial probability distribution must satisfy the 
following condition:  

( )
1

0
0 1.

n

i
i
π

−

=

=∑  

The transition probability matrix ( )( )P u t  is given by  
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The control input is determined under the condition for each element:  

( )0 1ij ia b u t≤ + ≤                                    (2) 

and the condition for each column:  

( )
1

1.
n

ij i
i

a b u t
=

+ =∑                                    (3) 

Next, consider modeling the dynamics of a set of customers by an MA-MDP. The number of customers is  
given by q . For the customer i , the state is given by { }0,1, , 1ix n∈ − , and from (1), the MDP model is  
given by  

( ) ( )( ) ( )1 .i i i it P u t tπ π+ =  

Then, we suppose that the MA-MDP model expressing the dynamics of a set of customers is given by  

( )
( )
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   +  
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               (4) 

where ijλ  expresses the effect of couplings between customers, and is a constant satisfying the following  
condition:  

1
1, 1, 2, , .

q

ij
j

i qλ
=

= =∑                                    (5) 

For simplicity of discussion, coupling terms are given by ij Iλ , but may be replaced with matrices satisfying  
some condition corresponding to (5). 
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4. Optimal Control 
4.1. Problem Formulation 
Consider the following problem. 

Problem 1. Suppose that for the MA-MDP model (4) expressing the dynamics of customers, the initial state  
( ) 00i ix x= , 1, 2, ,i q=  , the desired state dx , and the prediction horizon N  are given. Then, find a control  

input sequence ( )iu t , 1, 2, ,i q=  , 0,1, , 1t N= −  minimizing the following cost function  

( )( ) ( )( ) ( )
2 2

0
0 1

 0
qN

i i i i
i d i

t i
J E Q x t x R u t x x

= =

 = − + =  ∑∑                     (6) 

subject to the following constraint:  

( ) ( ) ( )( )1 2, , , ,qf u t u t u t M≤                             (7) 

where ( )f ⋅  is a given linear function, M  is a given vector. ,i iQ R  are given weights.  
Hereafter, for simplicity of notation, the condition ( ) 00i ix x=  in the cost function (6) is omitted. 

By using the constraint (7), the input constraint such as ( )min max
iu u t u≤ ≤  can be imposed. In addition, by  

adjusting ,i iQ R , several specifications such that the state ( )ix t  must converges to the neighborhood of the 
desired state dx  can be considered. 

4.2. Solution Method 
We derive a solution method for Problem 1. First, consider the MDP model (1). The MDP model is a class of 
nonlinear systems. However, in this case, it can be transformed into a linear system. The MDP model (1) can be 
rewritten as  

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
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1
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By the property of the probability distribution, the relation ( ) ( )1 1nt tπ π+ + =  holds. From this fact, the 
MDP model (1) can be equivalently transformed into the following linear system:  

( ) ( ) ( )1 ,t A t Bu tπ π+ = +                                 (8) 

where [ ]T1 2       nB b b b=  . 
Next, by using the linear system (8), consider representing the MA-MDP model (4) as a linear system. The 

linear system for the customer i  is denoted by  

( ) ( ) ( )1 .i i i i it A t B u tπ π+ = +  

Then, the MA-MDP model (4) can be equivalently transformed into the following linear system:  

( )
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where  
1 1
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Finally, consider the cost function (6). Define  

[ ]1 :  0  1    1 ,L n= −  

( )22 2
2 :  0   1     1  .L n = −   

Then we can obtain  

( ) ( )1 ,i iE x t L tπ  =   

( )( ) ( )
2

2 .i iE x t L tπ  =  
 

Therefore, the cost function (6) can be rewritten as  
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∑∑

∑∑
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             (10) 

From the above discussion, Problem 1 is equivalent to the following problem. 
Problem 2 

( )

( )
( )

( ) ( )
( )

find , 1, 2, ,
0,1, , 1,

min Cost function 10 ,

subject to System 9 ,

Inequality constraint 2 , 7 ,

Equality constraint 3 .

iu t i q
t N

=

= −





 

Problem 2 is reduced to a quadratic programming (QP) problem, and can be solved by a suitable solver such 
as MATLAB and IBM ILOG CPLEX. In addition, if 0iR = , then Problem 2 is reduced to a linear program- 
ming (LP) problem (we remark that 2

i dQ x  in the cost function (10) is a constant). See [7] for further details. 

5. Numerical Example 
Since it is difficult to use data in real systems, we present an artificial example. The state is chosen among the  
finite set { }0,1,2,3 . The number of consumers is given by 5q = . The coefficient matrices ,i iA B  in the linear  
system for the consumer i  are given by  

1 2 3

0.3 0.4 0.3 0.5 0.5 0.6 0.5 0.3 0.6 0.3 0.1 0.3
0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.4 0.1 0.3 0.4 0.2

,  ,  ,
0.2 0.2 0.2 0.2 0.2 0 0.2 0.3 0.2 0.3 0.4 0.1
0.1 0.1 0.3 0.1 0.1 0.2 0.2 0 0.1 0.1 0.1 0.4

A A A

     
     
     = = =
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4 5

0.7 0.5 0.4 0.5 0.3 0.5 0.2 0.4 0.6
0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.4 0.2

,  ,  .
0.1 0.1 0.1 0.2 0.3 0 0.3 0.1 0.2
0.1 0.2 0.4 0.1 0.3 0.3 0.2 0.1 0.2

iA A B

     
     −     = = =
     −
     

−     

 

The parameters ijλ  in (9) are given by  

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0.7 0.3 0 0 0
0.2 0.6 0.2 0 0

.0 0.1 0.8 0.1 0
0 0 0.2 0.7 0.1
0 0 0 0.1 0.9

λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ

   
   
   
   =
   
   
     

 

The parameters N , dx , iQ , and iR  are given by 10N = , 0dx = , 1iQ = , and 0iR = , respectively.  
From 0iR = , Problem 2 is reduced to an LP problem. The initial state is given by ( ) [ ]T0 0  0  0  1ix = . In  

addition, the input constraint ( )0 1iu t≤ ≤  is imposed. 
In this numerical example, we consider the following two cases:   

• The price for each customer is the same (i.e., ( ) ( ) ( )1 2 qu t u t u t= = =  holds).  
• The price for each customer is different.  

Case (i) is the conventional case in real-time pricing systems. In Case (ii), we suppose that the difference in 
the price is covered by using local concurrencies such as the Eco-point point system [8]. The Eco-money system 
[9] in Japan were introduced to stimulate the economy and raise awareness of global warming. In the Eco-point 
point system, many points, which correspond to money in a local concurrency, are given for the products that 
are effective from the viewpoints of electricity conservation and the environment. Such a system for energy 
management systems has been discussed in [10]. 

Next, we present the computational results. First, the computational result in Case (i) is explained. Figures 2-6 
show the probability distribution for each customer. From these figures, we see that ( )0

i tπ  increases and  
( )3

i tπ  decreases. Thus, the state converges to 0 , which corresponds to the status that a customer conserves  
electricity maximally, with a certain probability. Furthermore, the optimal value of the cost function is 97.5902 , 
and the optimal control input is derived as  

( ) ( ) ( ) ( ) ( )0 0.5, 1 0.65, 2 0.6637, 3 0.5664, 4 0.5168,u u u u u= = = = =  

( ) ( ) ( ) ( ) ( )5 0.5151, 6 0.5184, 7 0.5189, 8 0.5192, 9 0.5192.u u u u u= = = = =  

 

 
                           Figure 2. π1(t) in Case (i).                           
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                           Figure 3. π2(t) in Case (i).                           
 

 
                           Figure 4. π3(t) in Case (i).                           
 

 
                           Figure 5. π4(t) in Case (i).                           
 

Next, the computational result in Case (ii) is explained. Figures 7-11 show the probability distribution for  
each customer. Comparing Figures 2-6 with Figures 7-11, we see that transient responses of ( )0

i tπ  are  

improved in Case (ii). In particular, for the customer 5 , the steady state of ( )5
0 tπ  is also improved (see  
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                           Figure 6. π5(t) in Case (i).                           
 

 
                           Figure 7. π1(t) in Case (ii).                          
 

 
                           Figure 8. π2(t) in Case (ii).                          
 
Figure 6 and Figure 11). Furthermore, the optimal value of the cost function is 84.5057, and we see that the  
optimal value of the cost function is improved. The optimal control input  

( ) ( ) ( ) ( ) ( ) ( )
T1 2 3 4 5        u t u t u t u t u t u t =    is derived as  
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                           Figure 9. π3(t) in Case (ii).                          
 

 
                           Figure 10. π4(t) in Case (ii).                          
 

( ) ( ) ( ) ( ) ( )

1 1 0.6637 0.5478 0.5755
1 1 0.6792 0.5942 0.5719

0 ,  1 ,  2 ,  3 ,  40.5 0.8575 0.6081 0.5492 0.5086
1 0.615 0.5664 0.5135 0.52

0.5 0.785 0.7622 0.7790

u u u u u

       
       
       
       = = = = =
       
       
              

,
79

0.7627

 
 
 
 
 
 
  

 

( ) ( ) ( ) ( )

0.5755 0.5811 0.5811 0.5817
0.5825 0.5831 0.5850 0.5850

5 ,  6 ,  7 ,  80.5068 0.5057 0.5048 0.5045
0.5473 0.5576 0.5608 0.5625
0.7752 0.7669 0.7726 0.7684

u u u u

       
       
      
      = = = =
      
      
             

( )

0.5816
0.5853

,  9 .0.5043
0.5629
0.7713

u

 
 

  
  =
  
  
   

 

From these values, we see that in the steady state, ( )5u t  is widely different to ( )iu t , 1, 2,3, 4i = . Thus, in the 
system considered here, it is appropriate to use a local concurrency. 

6. Conclusions 
In this paper, we have proposed a modeling method and an optimal control method of real-time pricing systems 
using the MDP-based approach. In many cases, the status of electricity conservation of customers is discrete and  
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                           Figure 11. π5(t) in Case (ii).                         
 
stochastic, and the use of the MDP model is effective. A real-time pricing system is modeled by multi-agent 
MDPs, and the optimal control problem is reduced to a QP problem. Furthermore, a numerical simulation has 
been shown. The proposed method provides us with a new method in real-time pricing of electricity. 

There are several open problems. First, it is important to develop the identification method of the MA-MDP 
model based on the existing result (see, e.g., [11]) for MDPs. Since the effect of couplings between customers 
was simplified, it is also important to consider modeling it more precisely. Next, the optimal control problem is 
reduced to a QP problem or an LP problem. These problems can be solved faster than a combinatorial 
optimization problem such as a mixed integer programming problem. However, for large-scale systems, the 
computation time for solving the optimal control problem will be long. Then, it is important to develop a 
distributed algorithm. 
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