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Abstract

Let p and g be two fixed non zero integers verifying the condition gcd(p,q)=1. We check

solutions in non zero integers a,,b;,a,,b, and a, for the following Diophantine equations: (B1)
(a,+a,)q* +a,b,a,p* =0 (B2)

(a,+a,+2,)q" +(a,b,a, +a,b,a, +a,b,a, +a,b,a;)q* p* +a,b,a,b,a, p* =0. The equations (B1) and (B2)
were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with

1 2
the freeness of the Mébius group G, generated by two matrices of SC, ((C), namely A= (0 1}

10
and B=(/1 J where A=£. They proved that if one of the equations (B1) or (B2) has
q

solutions in non zero integers then the group G, is notfree. We give algorithms to decide if these
equations admit solutions. We obtain an arithmetical criteriaon p and q for which (B1) admits
solutions. We show that for all p and g the equations (B1) and (B2) have only a finite number
of solutions.
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1. Introduction
Let k and d be two positive integers with d >2 and A,---, A be matrices of the group G, (C).
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Denote Gp(A,---,A) the group, respectively Sgp(A&,--~,Ak) the semigroup, generated by the matrices
AL AL

The following problem 3 has been studied in several papers:

e Instance: A,---, A e€GL, (C)

e Question: Gp(A,---,A) or Sgp(A,--,A) aretheyfree with A,---,A as generators?

Recall that in 1991 D. Klarner, J.-C. Birget and W. Satterfield in [3] proved that if d >3 then the problem
P is not decidable. Moreover in 1999 J. Cassaigne, T. Harju and J. Karhiimaki in [4] proved that the same
result is true if we suppose that all the matrices A,---, A are lower triangular.

The case d =2 is open and seems difficult. In [5] and [6] results concerning the freeness of the semigroups
and groups generated by two matrices are established. In this paper we are studying this problem restricted to the
case of Mdbius groups.

« . . 1 2
Let 2eC" and r=A4°. The Mtbius group G, is the subgroup of S£,(C) generated by A:( )

01
10
and Bz( j
A1

The problem of characterization of the set of complex values of 4 or ¢ for which the group G, is free,
was studied in several papers. Thus in [1] it is proved that if A is transcendental or |ﬂ|22 then G, is free.

R.C. Lyndon and J.L. Ullman in [1] remarked that G, is not free if and only if there exists a word
w=aba,b,---a, b ,a whose 2n-1 letters are non zero integers so that the product of the powers of
matrices M, (w)= A*B*A%B™ ... A"1B™1 A™ s a lower triangular matrix. The element in the right upper
corner of the matrix M, (w) is of the form AQ, (w) where Q[(w):Z?:)cjr" is a polynomial in z of
degree n—1 with coefficients c;. Moreover c; are polynomials with integers coefficients in the variables
a,b.a,b,, - a,

Results concerning the set of algebraic values of A or z for which the group G, is not free were
obtained in [1] [2] [7]-[11].

Deciding if for 7z e Qﬂ]0,4[ the group G, is not free seems very difficult. Let us recall some important
results in this direction.

The group G, isnotfreeif A belongs to one of the following sets: A= {£|n € Z*},
n

B :{L|p,k eN*}, C :{m+n|m,n eN ,m+n >1} (see [1] [2] [7] [8] [10] [11]).
kp+1 mn

In this paper we check if for a given ¢ e@m]o, 4[ there exists a non trivial word of non zero integers
w=a)ba,bh, --a, b _,a, suchthat Q (w)=0.

The main results of our paper concern the freeness of Mébius groups:

o We prove that if the length of w is small then the problem is decidable (cases n=2 and n=3) (see
Theorems 1, 2 and 3).

¢ We give algorithms which solve the problem for ne {2,3} (see Corollary 1 and the proof of Theorem 3).
Moreover, we give an arithmetical criteria for this problem when n=2 (see 2 of Theorem 1).

o We give a lower bound numerical function | defined from Qﬂ]2,4[ to N", increasing and unbounded,
such that for each re@ﬂ]2,4[, if Mr(w) is a lower triangular matrix then the length of w is bigger than
I(7) (see Theorem 4 and Corollary 3).

As proved by A.F. Beardon ([2]) in these two cases ne {2,3} we have to find solutions for the equations
(B1) and (B2). In fact in our paper we consider and study two more general equations:

(B'1) (& +a,)q+aba,p=0

(B2) (a +a,+a;)q” +(aba, +aba; +ab,a; +a,b,a;)qp +aba,b,a, p* =0.

2. Sequences of Polynomials Associated to Matrices

In this section, we study the properties of some sequences of polynomials in a fixed 7 =A1° associated to

matrices of the group G, .
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We consider ((Z\{O})* ) the free monoid of words on non zero integers with the concatenation operation.

We denote by ¢ the empty word of the free monoid (Z\{0})" and a non empty word we(Z\{0})" by

w=kk,k;---k,, where k,---,k, arenon zero integers. Then n is called the length of w and is denoted by

|w . The reversal of a word w=kkpky---k —is W=k kKK
W=k, )(=k; ) (ks )+ (=K, )-

For every word w=aha,b, --a, b, ,a, of (Z\{O})* of length |wj=2n-1 we consider the matrix
product

and the opposite of w is

M, (w)= A*B2A%B% ... A1 Bh1 A%,
For instance, for a,;,b;,a, non zero integers we have:

Mi(ai):(é aillj and Mi(aiblaz):[“b?;bﬂ ﬂ(alijza:b?;blazr)}

We use the notation:

Ml(w):{ 7 (w) ﬂQ(W)],

AR (W) S (w)

We remark that P (w),Q, (w), R, (w) and S, (w) are polynomials in 7 with coefficients in Z. We
also have (-o)” =—(@”) and [Ml(a))}flel((—w)N)

If Te{PS} then 7T (-w)=7(w) and if Te{QR} then 7 (-w)=-7 (w). Also
P(w)=8(w") andif Te{Q R} then T, (w)="7T, (w").

T

* 0
We use the notation M,l(w)z( ] to indicate that M, (w) is a lower triangular matrix or that
k%
0, (w)=0.
From now on, in order to simplify the notation we write:

[Pn ﬂan:[ P (w) ﬂQr(W)]_

AR, S AR, (W) S (w)

n

For instance, P, is an abbreviation for the polynomial in z with parameters a,,b,a,,b,,---,a,,,b,,,a,
defined by:
I:)n (al'bll az’bz""’an—llbn—l’ a, ) = 731 (aiblazbz "'an—lbn—lan )
Using the fact that A,B e SL,(C) we have:
PS,-7Q,R, =1. (1)

The sequences of polynomialsin =, (P,) . (Q,)..,. (R,),.., and (S,) , verify the following relations:

Py (1 &
AN @

[Pz QZJ _ [1"' abr (al + az)"' alblaZTJ

®)
R, S, b, 1+abr
I:)n+l Qn+1 _ Pn + bn z-Qn an+l Pn + (1 + an+1bn T ) Qn (4)
Rn+1 Sn+1 - Rn + bn Sn an+1T Rn + (1+ an+lbnT) Sn
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[ IDn+l Qn+l} _ (Pn + bnTQn an+an+l + Qn J (5)

Rn+1 Sn+1 Rn + bnsn a‘nJrlz-Rn+l + Sn

The relations (4) and (5) follow from the equality

Pn +1 A Qn+1 _ Pn A Qn by A@na
= B™A™,
AR, S AR, S

n+l n

In the following sections, we also use the following two relations:
P, =1+(ab, +ab, +a,b, ) +aba,b,r°. (6)

Q,=a,+a, +a,
+(aba, +aba, +ab,a; +ab,a; )7 +aba,b,a,r’

Using the previous relations we obtain
Proposition 1 The sequences (Q,),_, and (Q,) ., of polynomialsin r verify the following identities:

anQn+1 - [(an + an-¢-1 ) + anbnan-¢-1z-:| Qn + an+1Qn—1 =0 (8)

b,P

nfnil ™

()

[(b, +b,,,)+b,ab,.,z |, +b, P, =0. 9)

n+l' n
Proof. From (5) we have

Pn+1 =L[Qn+l _Qn] and Pn zai[Qn _Qn—l]'

n+1

These identities and the equation P

1 =P, +b,7Q, give the equation (8). The equation (9) can be similarly
obtained .

Let us suppose that 7 = P _ 22 where p and g are non zero integers and gcd(p,q)=1.
q
If p=1 thegroup G, isnot free because in this case Q,(1,-29,1)(z)=0 (see [1]).
In the following we consider that p>1. Then P, (w)#0, and S, (w)=0. Indeed, if P, (w)S,(w)=0

q q

oo

then using the fact that det(/\/l, (w)):l we deduce —BQ

2o, wR,

q

(w) =1 which is in contradiction with the

oo

fact that ged (p,q)=1.

This remark allows us to define a new sequence (Xn )nZl by x, = % This sequence satisfies the following
n
relation:
1
Xp =8 t+ : (10)
b7 +—
n
Thus we obtain
1
Xn+1 = an+1 + 1
b,7+ . 1
e
1
b, 7+
a,_, +-

These relations are similar with formulas for continued fractions. The properties of these sequences will be
used in the next sections of our paper.

Let us also consider the sequence (yn) defined by:

n>1
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1

yn:yn(a:l'bl’""an’bn): :Xn+l_an+1'

b,z+—
Xn

We remark that x,., (a,,b,,--,a,,b,,a,,,)=0 ifand only if

n+1

Xy (al’bl""'a‘n): yl(_an+1'_bn)'
The following lemma is the key element of Section 5.
LemmalLet a,b,---,a,,b,,a,., be 2n+1 non zero integers and suppose that 7 >1. If

ny~nt n+l

Xnﬂ(ai,bl,...,an,bn,am):0 then |xn(a1,b1,...'an)
Proof. If Xn+1(ai,bl,-~-,a b .a ):0 we have

n~nt Fn+l

1
<—— .
-1

1 1 1
< < .
ble-p

Xy (ai’bll""an) =|yl(_an+1’_bn)
b+
a

N+l | n+1

Let r=4" suchthat G, is not free. We define the following numerical function:
k(7)= min{n eN'|3we(z\{0}),|w=2n-1and Q, (W)= O}. The number «(zr) will be called the

calibre of the group G;.

* 0
Hence «(z)=2 ifand only if there are non zero integers a,,b,a, such that A%BY A% :( ] Also we

E

*

* 0
have «(z)<3 ifand only if there are non zero integers a,,b;,a,,b,,a, suchthat A*B*A%B%2A% = [* J

3. The Diophantine Equation (B1)

In the next three sections, we consider the following problem 93(n), where neN, n>2:
e Instance: Two non zero integers p,q with ged(p,q)=1.
e Question: Is there a word of length 2n—1 of non zero integers w=a)b, ---a, such that

M, (w)= 0 , Where r=Ps
’ %k q

So we check solutions in non zero integers a,,b,,---,a, for the diophantine equation

Qn(al’bl""'an)(r)zo' (11)

The set of =A% for which the Mobius group G, is not free coincides with the set of ¢ for which there
exists n>2 such that the Equation (11) admits solutions.

In this section, we consider the case n=2 and in the next section the case n=3. The relation
Q,(a,,b,a,)=0 is equivalent to the Equation (B'1) and the relation Q,(a,,b,a,)=0 is equivalent to the
equation (B'2). If p and q are perfect squares we obtain the equations (B1) and (B2).

We will prove that the problem 3(2) is decidable. The decidability of the problem 93(2) has already
been established by A.F. Beardon (Theorem 2, [2]) for the case when p and g are perfect squares. Our
algorithm is simpler and allows us to give an arithmetical criteria for integers p and q for which the problem
P(2) has solutions (see Theorem 1 below).

First, we prove a result concerning the equation (B'1).

Proposition 2 Let p and q be two integers with ged (p,q)=1 and « €Z. Denote

L(pqua):{(al’buaz)e(Z*)S q(a1+a2)+ paba, =a;.

Then:
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1.If (a,b,a,)el(p,ga) and ie{l,2} we have

|bl|sﬁ(|a|+z|q|>

1
|a] sm(qz +|q|+|pa|).

2.Theset L(p,q,c) isfinite.

Proof.

1) Let (a.b,a)el(p,gea) and for ie{l,2} put d =q+pab . Then dd,=0°+pha ,
d; =q(mod p) and d;, #q.

1| o 1 1 1
As b == —q(—+—ﬂ we deduce < —(|a|+2|q|) . Because |d <q°+|pbal and
P e ] < 5+ 2 Beoause 0] <0+t
g dizd

we have

il +lal _ 1
a| < ——<:=(q° +|q|+|pe|).
a5 Sy +ll+lped)

2) results from ().

Using the previous proposition we can obtain the decidability of the problem 93(2).

Theorem 1 Let p and q be two integers with ged (p,q)=1. The following sentences are equivalent:

1. The equation q(a, +a, )+ paba, =0 has solutions in non zero integers.

2. There exists adivisor d of g°, d=q suchthat d =q(mod p).

3. T:BG{iJrl(m,n)e(Z*)2 ,m-+n ;tO}.

g (m n

Proof. The equivalence between (1) and (2) results from the Proposition 2. It is enough to consider o =0 in
that proposition. The equivalence between (1) and (3) is obvious.

Remark 1 Let D(n) be the set of all divisors of the integer n. If d is like in (2) of the previous Theorem
1 then a solution (a,,b;,a,) to the equation (B'1) can be obtained by taking

e be D(dl_qjﬂ D(dz _qj and
p p

. aizd‘—_q for ie{1,2}
pb,

2

where d,=d and d -4 Moreover any solution ,b,a,) of the equation (B'1) can be obtained by this
1 27 & 2

method. We can write 7 as in (3) of the Theorem 1

p 1 1

=—= +—_.
q q_dl q_dz
p p

The results of A.F. Beardon ([2], theorem 2) concerning the problem 3(2) for the case when p and g

are perfect squares (or equivalently when A € Q) result immediately from the next corollary.
2

Corollary 1 Let p and g be two non zero integers with gcd(p,q)=1 and r=2—2=/12. The group

G, is not free with the calibre k(z)=2 if and only if there exists a divisor d of q*, d=q* such that
d zqz(mod pz).
From the previous theorem it also follows:
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1) The equation (B'1) has no solution if 7z = P2,
q

q
Below we present another form of the Theorem 1 in which we use the decomposition of q as a product of
prime numbers.
Theorem 2 Let p and q be two integers with p>2 and gcd(p,q):l. Let us suppose that the

Pm

decomposition of q as a product of powers of distinct prime numbers 7z, 7z,,---, 7, 1S Q=772 - 7",

2) k(ﬁjzz in the following cases: a) p=1;b) p=2 ;c) p>3 and q=kp+l with keN".

Then k (Ej =2 ifand only if there exist:
q

« two disjoint subsets | and J of {1,2,---,m} with 1UJ=@.

- asetof integers () with 1<, <a, forevery lelUJ.

o 56{1,—1}.

such that ],z = gHJ.eJ;zj&" (mod p).

Proof. Let d =e&x/izf? .-z’ be a divisor of g*,d =+q. We can drop the case d =-q because p> 2.
Hence (.5, By)# () and  0<pf <2¢ for every ke{l,2--,m}. We put
I={ie{L2 - m}|B <af and J={je{L2-m}|B;>a;} Then INI=0 and 1UJ=2. Let

a,-p, iflel
o= . .
p,—a, iflel

lelUJ

We have 1<5,<¢q, forevery ¢elUJ. Thecondition d= q(mod p) is equivalent to
[T7" =¢[T=" (mod p).
iel jed
Corollary 2 Let p and « be two non zero integersand 7z be a prime number. Suppose that
ged ( p,;r) =1. Then k(ﬁ%) =2 ifand only if there exists an integer 6 with 1< <« such that
7’ =¢(mod p) where &e{l1,-1}.
Proof. We take m=1 in the previous theorem.

Example: Using the previous results and an example from ([7]) we have k(%) =3 and k(liz ) =2.

4. The Beardon Diophantine Equation (B2)

Now we consider the problem 3(3). We mention that the equation Q,(a,,b;,a,,b,,a;)(7)=0 has been
considered in several papers (see [2] [8] [10]) for the case when p and q are perfect squares.

From now on, we suppose that Q, (a,,b,,a,)(7)=0 forevery (a,b,a,)e (Z*)3 i.e. following Theorem 1,

7 doesnotbelongto A= {i+1 (m, n)e (Z* )2 ,m+n = 0}. Hence we can define a function
m n

9:]0,4[N(Q\A)> Q. by (p(r):inf{|r—a||aeA}. We remark that ¢(7)>0 and
a) (o(r):r—Z if T€]2,4[.

. 1 1 1
b =minyr-1-—1+—— if 1,2], where k=] —]-
) o(7) {T k1l K T} relt L—J
Using the relations (8) for the sequence of polynomials (Qn )nZl we prove that the problem s13(3) is

decidable.

Theorem 3 Let 7<QM]0,4[ such that  does not belong to the set {i+l (m,n)e(Z*)z}. Then the
m n
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equation

(alb1a2 zae)( ):

has a finite number of solutions (a,,b,,a,,b,,a;) e (Z*)S .
Proof. Using the relations (8) we deduce that
Qz (a'llbl’az)QZ (azvbz!as) =a,a,.

Hence r+1 i+i r+i i+i __ 1 5+ Using the function ¢ we have:
b, b,\a, a ) bpba

al a‘Z a‘Z 22
—1 .
[o(=)]

We obtain a finite number of possibilities for b,b, and a,.
the equation

[bib, |2 <

So a and a, remain to be studied. From

Q3(ai,b1,a2,b2,a3)(r):0

it follows that
P3(ai’bl’aZ'bZ’a3)s3(allbl’aZ’bZ’a(i):l'

Hence there exists (d,,d,)eZ?® such that

. d12d2 =q".

* Ealbl+a1b , +a,0 ;qp+a1b1a2b2 p?=d,.

° q +(a,b, +a,b, +a,b, ) gp+ab,ab p? =d,.

Thus there exists a finite number of possibilities for a, and a,.

If Q;(a.b,a,,b,,a,)(r)=0 from the inequality |blb2|a§s;2 we obtain

[#(7)]
a) If re]3,4] then 93(3) has no solution.
b)If e }2+%,3{ then by,b,,a, € {~1,11.
We also remark that the equation (B'2) is equivalent to the following equation
a9 &9 _ 5 (12)
q+abp g+ah,p
This enables us to obtain some explicit expressions for the rationals z such that equation (B'2) has solutions

in Z".
. . . 1 1/1 1
Proposition 3 Let k,¢ be two non zero integers and k;,k, be two divisors of k. If 7 :E+Z[k—+k—]
1 2
then the equation (B'2) has solutions in Z".
Proof. Let b, =k ,b, =k,,a, =-¢ and ba, =b,a, =—k. Then (10) is equivalentto _%+%(ki+kij
2

Note that if in equation (B'2) we have ba, =b,a, then 7 isexactly given by the above expression.

Using once again (10) we obtain
Proposition 4 Let ¢ and o' bein Z* with |a|=|a’|. If

a*+a?

= ad'(a-a')

then the equation (B'2) has solutions in Z".
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Proof. Consider (10) for b, =b, =1,a =a and a, =-a'. Then =a-p and
br+—
8
a’+a’
=—a'+p, Where p= —- It follows that if we take —a, =a—a' then (10) is verified.
a+a

b,z +—

In the next proposition we give another method to obtain solutions of Equation (B'2). It is similar to those
presented in [8] and [10].
Proposition 5 Let p and q be two integers with gcd ( p,q) =1. Suppose that there exist a,,b, and a,

in Z" suchthat (a,+a,)q+aba,p=1. If 7= then the equation (B'2) has solutions in Z".
q

Proof. Let A =a,q,B, =ba,, A, =-1B, =-b,a and A =a,q. Then ! + ! 1 =-A,. Hence
BlT+E B,z +—

the equation (B'2) has solutions.

We end this section with the following open questions:

Questions:

1) Find all the solutions of (B2).

2) Find arithmetical characterizations (similar to those given in Theorem 1 for the positive integers p and
q for which the problem 93(3) has solutions.

5. Increasing Unbounded Lower Bound Function for x

In this section, we prove that in order to show that the group G, is not free for a rational 7 with 7 =1% <4
and r close to 4, we have to consider longer and longer words in A and B . Similar remarks (without any
proof) have been made by A.F. Beardon in [2] and S.P. Farbman in [7].

Everywhere in this section, we consider that = is a rational number in the open interval 2,4 .

n~n Fn+l

From the Lemma 1, Section 2, if x,,(a,-,a,.b,.a,,)(r)=0 then |xn(a1,---,an)(r)|sil~ For this
r_

reason we consider the sequence (e, )nZl of rational functions in the variable 7, «, =a,(z), defined by:

o =1
1
an+1:1_ 1
r——
an
For example
-2 2 —47+3 2 —67r2+10r -4
a,(t)=— 0,(r)=—— and o,(7)=——5——
2() -1 3( ) 2 -3r+1 4( ) =572 +67-1

We also define the function 1:]2,4[ — N\{0,1} by the formula:
. x 1
I(7) = mf{k eN'| e (r)s:}.

Thus one has I(z)=2 if and only if re]2,3], I(z)=3 if and only if T€:|3,2+\/§:| and I(z)=4 if

5+/5
> |

andonly if 7 e }2+\/§,

Now we will calculate o, (7).
Note that e, (7)=x,(L-11-1---,—11)(z). For this reason we find the matrix

1408
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X,.,=AB'AB™"...AB"A= (AB‘l)n A=C"A, where C=AB™". We suppose now that A= 25in(§] with
0e }gn{ 50 1=A"= 2(1—cos 6). As trace(C)=2-7=2cos6 the matrix C verifies the equation:
C?-2c0sféC+1,=0,.
Using this relation we find that

sin((n+1)0)-sino Zsin[gjsin(na)

n_

sin@ _2sin(gj5i”(”9) Si“(”g)_sm((n_l)gy

ence « sin((n+1)5’) - 1
H na (7) = sin((n+1)6’)-5i”(”‘9) 1_5&‘(”9;)
sin((n+1)8

Lemma 2 Let (a,7,x)eR®, 7>2 be such that |x|2a>i1. Then for every a,beZ” we have
_

1

>1-

Proof. Since Sz’ 1<z we obtain that ! < <1.Hence |a+
| | br+= r—l br+= T——
X a X a
The previous expression for o, () and Lemma 2 show that 1(z) is well defined and I(7)<x(z), for
every 7 in the open interval ]2,4[. So | is a lower bound numerical function for the function « restricted
to |2,4
T]heo[rem 4Forany neN and re]2,4] onehas I(z)=n+1 ifand only if there exists

T

n+1
Proof. Let I(z)=n+1, where ne N". From the definition of the function | this previous equality holds if

He}in, ”+1n} such that 7 =2—2¢osé.
n+2

and only if am(r)sil and ¢, (r)>il, for all ke{l,---,n}. But ¢ (r)>i1 if and only if
T— T—

1 1
sin((k—-1)¢) = 1-2cos@
~ sin(ko)

Thus we obtain the system of two inequalities

sin(.(k—l)é')<1 o sin((k+1)¢9)<0
sin(ko)

( sin(ko)
n+1)6 in(ké
Finally, 1(z)=n+1 ifand only if we have — (( D) ) >0 an M<O forall ke{l,--,n}.
sm((n+2)¢9) sin((k+1)0)
These inequalities give 0 e }Ln, n+l n:l.
n+l n+2

Corollary 3 The function | is increasing and unbounded.
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Therefore

lim |(T): lim K(z’):oo.

T>4,7<4 T4,7<4

Example: We consider the sequence 7, = 4—i ,for neN.
2n

« For n=0 we have 7,=3. So az(fo):%S , hence I(7,)=2. As x,(-11,-11-1)(z,)=0, it

Ty —

follows that x(7,)=3 .

e For n=1 we have TI:% and az(rl)zg, ay(7,) =

and since
Xs (2, -1,1-11-11-1, 2)(11) =0

we have x(z,)=5

e For n=2 we have Tz=% and az(rz)=%, a3(12):§, adrﬁz%, as(rz):% ,
a6(12)=&<L=—- Hence I(7,)=6 and «(r,)>7.From[7] we have «(7,)<18.

451 r,-1 11
Questions:

1) Is it true that for every 7eQ]0,4] and neN,n>2, the problem 93(n) is decidable?

2) Is it true that for every reQM]0,4[ there exists neN,n>2 such that the problem $3(n) is
decidable?

3) Is it true that for every 7eQ(]0,4] there exists neN,n>2, such that the problem 93(n) has
solutions?

4)Find «(z,),for n>2.
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