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Abstract 
Let p  and q  be two fixed non zero integers verifying the condition ( )gcd p q, 1= . We check 
solutions in non zero integers a b a b1 1 2 2, , ,  and a3  for the following Diophantine equations: (B1) 

( )a a q a b a p2 2
1 2 1 1 2 0+ + =  (B2) 

( ) ( )a a a q a b a a b a a b a a b a q p a b a b a p4 2 2 4
1 2 3 1 1 2 1 1 3 1 2 3 2 2 3 1 1 2 2 3 0.+ + + + + + + =  The equations (B1) and (B2) 

were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with 

the freeness of the Möbius group Gλ  generated by two matrices of ( )2 ,  namely  
 
 

A
1
0 1

=
λ

 

and  
 
 

B
1 0

1
=

λ
 where p

q
.=λ  They proved that if one of the equations (B1) or (B2) has 

solutions in non zero integers then the group Gλ  is not free. We give algorithms to decide if these 
equations admit solutions. We obtain an arithmetical criteria on p  and q  for which (B1) admits 
solutions. We show that for all p  and q  the equations (B1) and (B2) have only a finite number 
of solutions. 

 
Keywords 
Diophantine Equation, Möbius Groups, Free Group 

 
 

1. Introduction 
Let k  and d  be two positive integers with 2d ≥  and 1, , kA A  be matrices of the group ( ).d   
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Denote ( )1, , kp A A  the group, respectively ( )1, , kgp A A  the semigroup, generated by the matrices 
1, , .kA A  
The following problem P  has been studied in several papers: 
•  Instance: ( )1, , k dA A ∈   
•  Question: ( )1, , kp A A  or ( )1, , kgp A A  are they free with 1, , kA A  as generators? 
Recall that in 1991 D. Klarner, J.-C. Birget and W. Satterfield in [3] proved that if 3d ≥  then the problem 

P  is not decidable. Moreover in 1999 J. Cassaigne, T. Harju and J. Karhümaki in [4] proved that the same 
result is true if we suppose that all the matrices 1, , kA A  are lower triangular. 

The case 2d =  is open and seems difficult. In [5] and [6] results concerning the freeness of the semigroups 
and groups generated by two matrices are established. In this paper we are studying this problem restricted to the 
case of Möbius groups. 

Let *λ ∈  and 2τ λ= . The Möbius group Gλ  is the subgroup of ( )2   generated by 
1
0 1

A
λ 

=  
 

 

and 
1 0

1
B

λ
 

=  
 

. 

The problem of characterization of the set of complex values of λ  or τ  for which the group Gλ  is free, 
was studied in several papers. Thus in [1] it is proved that if λ  is transcendental or 2λ ≥  then Gλ  is free. 

R.C. Lyndon and J.L. Ullman in [1] remarked that Gλ  is not free if and only if there exists a word 
1 1 2 2 1 1n n nw a b a b a b a− −=   whose 2 1n −  letters are non zero integers so that the product of the powers of 

matrices ( ) 1 11 1 2 2 n n na b aa b a bM w A B A B A B Aλ
− −=   is a lower triangular matrix. The element in the right upper 

corner of the matrix ( )M wλ  is of the form ( )wτλ  where ( ) 1
0

n j
jjw cτ τ−

=
= ∑  is a polynomial in τ  of 

degree 1n −  with coefficients .jc  Moreover jc  are polynomials with integers coefficients in the variables 
1 1 2 2, , , , , .na b a b a  
Results concerning the set of algebraic values of λ  or τ  for which the group Gλ  is not free were 

obtained in [1] [2] [7]-[11]. 
Deciding if for ] [0,4τ ∈   the group Gλ  is not free seems very difficult. Let us recall some important 

results in this direction. 

The group Gλ  is not free if λ  belongs to one of the following sets: *1 ,A n
n

 = ∈ 
 

  

*, ,
1

pB p k
kp

 
= ∈ 

+ 
  *, , 1m nC m n m n

mn
+ = ∈ + > 

 
  (see [1] [2] [7] [8] [10] [11]). 

In this paper we check if for a given ] [0,4τ ∈   there exists a non trivial word of non zero integers 
1 1 2 2 1 1n n nw a b a b a b a− −=   such that ( ) 0.Q wτ =  

The main results of our paper concern the freeness of Möbius groups: 
•  We prove that if the length of w  is small then the problem is decidable (cases 2n =  and 3n = ) (see 

Theorems 1, 2 and 3). 
•  We give algorithms which solve the problem for { }2,3n∈  (see Corollary 1 and the proof of Theorem 3). 

Moreover, we give an arithmetical criteria for this problem when 2n =  (see 2 of Theorem 1). 
•  We give a lower bound numerical function l  defined from ] [2,4  to ∗ , increasing and unbounded, 

such that for each ] [2,4 ,τ ∈   if ( )wMτ  is a lower triangular matrix then the length of w  is bigger than 
( )l τ  (see Theorem 4 and Corollary 3). 
As proved by A.F. Beardon ([2]) in these two cases { }2,3n∈  we have to find solutions for the equations 

(B1) and (B2). In fact in our paper we consider and study two more general equations: 
(B'1) ( )1 2 1 1 2 0a a q a b a p+ + =  
(B'2) ( ) ( )2 2

1 2 3 1 1 2 1 1 3 1 2 3 2 2 3 1 1 2 2 3 0.a a a q a b a a b a a b a a b a qp a b a b a p+ + + + + + + =  

2. Sequences of Polynomials Associated to Matrices 
In this section, we study the properties of some sequences of polynomials in a fixed 2τ λ=  associated to 
matrices of the group Gλ . 
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We consider { }( )( )0 ,
∗
⋅  the free monoid of words on non zero integers with the concatenation operation. 

We denote by   the empty word of the free monoid { }( )0
∗  and a non empty word { }( )0w

∗
∈   by 

1 2 3 nw k k k k=  , where 1, , nk k  are non zero integers. Then n  is called the length of w  and is denoted by 

w . The reversal of a word 1 2 3 nw k k k k=   is 3 2 1nw k k k k=

  and the opposite of w  is 

( )( )( ) ( )1 2 3 .nw k k k k− = − − − −  
For every word 1 1 2 2 1 1n n nw a b a b a b a− −=   of { }( )0

∗  of length 2 1w n= −  we consider the matrix 
product  

 ( ) 1 11 1 2 2 .n n na b aa b a bM w A B A B A B Aλ
− −=   

For instance, for 1 1 2, ,a b a  non zero integers we have: 

( ) 1
1

1
0 1

a
M aλ

λ 
=  
 

 and ( ) ( )1 1 1 2 1 1 2
1 1 2

1 2 1

1
.

1
a b a a a b a

M a b a
b a bλ

τ λ τ
λ τ

+ + + 
=  + 

 

We use the notation:  

( ) ( ) ( )
( ) ( )
w w

M w
w w

τ τ
λ

τ τ

λ
λ
 

= ⋅ 
 

 
 

 

We remark that ( ) ( ) ( ), ,w w wτ τ τ    and ( )wτ  are polynomials in τ  with coefficients in .  We 

also have ( ) ( )ω ω− = −

  and ( ) ( )( )1
M Mλ λω ω

−
= −  

  

If { },∈    then ( ) ( )w wτ τ− =   and if { },∈    then ( ) ( ).w wτ τ− = −   Also 

( ) ( )w w=    and if { },∈    then ( ) ( ).w wτ τ=    

We use the notation ( )
0

M wλ

∗ 
=  ∗ ∗ 

 to indicate that ( )M wτ  is a lower triangular matrix or that 

( ) 0wτ = . 
From now on, in order to simplify the notation we write: 

( ) ( )
( ) ( )

n n

n n

P Q w w
R S w w

τ τ

τ τ

λ λ
λ λ

  
= ⋅  

   

 
 

 

For instance, nP  is an abbreviation for the polynomial in τ  with parameters 1 1 2 2 1 1, , , , , , ,n n na b a b a b a− −  
defined by:  

( ) ( )1 1 2 2 1 1 1 1 2 2 1 1, , , , , , , .n n n n n n nP a b a b a b a a b a b a b aτ− − − −=   

Using the fact that ( )2,A B∈   we have:  
 1.n n n nP S Q Rτ− =  (1) 

The sequences of polynomials in τ , ( ) 1n n
P

≥
, ( ) 1n n

Q
≥

, ( ) 1n n
R

≥
 and ( ) 1n n

S
≥

 verify the following relations:  

 1 1 1

1 1

1
0 1

P Q a
R S

   
=   
  

 (2) 

 ( )2 2 1 1 1 2 1 1 2

2 2 1 2 1

1
1

P Q a b a a a b a
R S b a b

τ τ
τ

+ + +  
=    +   

 (3) 

 
( )
( )

1 1 1 1

1 1 1 1

1
1

n n n n n n n n n n

n n n n n n n n n n

P Q P b Q a P a b Q
R S R b S a R a b S

τ τ
τ τ

+ + + +

+ + + +

 + + + 
=     + + +   

 (4) 
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 1 1 1 1

1 1 1 1

n n n n n n n n

n n n n n n n n

P Q P b Q a P Q
R S R b S a R S

τ
τ

+ + + +

+ + + +

+ +   
= ⋅   + +   

 (5) 

The relations (4) and (5) follow from the equality 

11 1

1 1

.n nn n n n b a

n n n n

P Q P Q
B A

R S R S
λ λ

λ λ
++ +

+ +

   
=   

   
 

In the following sections, we also use the following two relations:  

 ( ) 2
3 1 1 1 2 2 2 1 1 2 21 .P a b a b a b a b a bτ τ= + + + +  (6) 

 
( )

3 1 2 3
2

1 1 2 1 1 3 1 2 3 2 2 3 1 1 2 2 3

Q a a a

a b a a b a a b a a b a a b a b aτ τ

= + +

+ + + + +
 (7) 

Using the previous relations we obtain  
Proposition 1 The sequences ( ) 1n n

Q
≥

 and ( ) 1n n
Q

≥
 of polynomials in τ  verify the following identities:  

 ( )1 1 1 1 1 0n n n n n n n n n na Q a a a b a Q a Qτ+ + + + − − + + + =   (8) 

 ( )1 1 1 1 1 0.n n n n n n n n n nb P b b b a b P b Pτ+ + + + − − + + + =   (9) 

Proof. From (5) we have  

[ ] [ ]1 1 1
1

1 1and .n n n n n n
n n

P Q Q P Q Q
a a+ + −

+

= − = −  

These identities and the equation 1n n n nP P b Qτ+ = +  give the equation (8). The equation (9) can be similarly 
obtained .  

Let us suppose that 2p
q

τ λ= =  where p  and q  are non zero integers and ( ), 1gcd p q = . 

If 1p =  the group Gλ  is not free because in this case ( )( )2 1, 2 ,1 0Q q τ− =  (see [1]). 
In the following we consider that 1p > . Then ( ) 0p

q

w ≠ , and ( ) 0p
q

w ≠ . Indeed, if ( ) ( ) 0p p
q q

w w =   

then using the fact that ( )( )det 1wτ =  we deduce ( ) ( ) 1p p
q q

p w w
q

− =   which is in contradiction with the 

fact that ( ), 1gcd p q = . 

This remark allows us to define a new sequence ( ) 1n n
x

≥
 by n

n
n

Q
x

P
= ⋅  This sequence satisfies the following 

relation:  

 1 1
1

1n n

n
n

x a
b

x
τ

+ += + ⋅
+

 (10) 

Thus we obtain  

1 1

1
1

1
1

1
1

n n

n

n

n
n

x a
b

a
b

a

τ

τ

+ +

−
−

= + ⋅
+

+
+

+

 

These relations are similar with formulas for continued fractions. The properties of these sequences will be 
used in the next sections of our paper. 

Let us also consider the sequence ( ) 1n n
y

≥
 defined by: 
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( )1 1 1 1
1, , , ,

1n n n n n n

n
n

y y a b a b x a
b

x
τ

+ += = = − ⋅
+


 

We remark that ( )1 1 1 1, , , , , 0n n n nx a b a b a+ + =  if and only if  

( ) ( )1 1 1 1, , , , .n n n nx a b a y a b+= − −  

The following lemma is the key element of Section 5. 
Lemma 1 Let 1 1 1, , , , ,n n na b a b a +  be 2 1n +  non zero integers and suppose that 1τ > . If 

( )1 1 1 1, , , , , 0n n n nx a b a b a+ + =  then ( )1 1
1, , ,

1n nx a b a
τ

≤ ⋅
−


  

Proof. If ( )1 1 1 1, , , , , 0n n n nx a b a b a+ + =  we have 

( ) ( )1 1 1 1

11

1 1 1, , , ,
1 11n n n n

nn
nn

x a b a y a b
bb aa

τττ
+

++

= − − = ≤ ≤ ⋅
−−+

  

Let 2τ λ=  such that Gλ  is not free. We define the following numerical function: 

( ) { }( ) ( ){ }min 0 , 2 1 and 0 .n w w n wτκ τ
∗∗= ∈ ∃ ∈ = − =    The number ( )κ τ  will be called the 

calibre of the group Gλ . 

Hence ( ) 2κ τ =  if and only if there are non zero integers 1 1 2, ,a b a  such that 1 1 2
0a b aA B A

∗ 
=  ∗ ∗ 

. Also we 

have ( ) 3κ τ ≤  if and only if there are non zero integers 1 1 2 2 3, , , ,a b a b a  such that 31 1 2 2
0

.aa b a bA B A B A
∗ 

=  ∗ ∗ 
 

3. The Diophantine Equation (B1)  
In the next three sections, we consider the following problem ( )nP , where n∈ , 2n ≥ : 

•  Instance: Two non zero integers ,p q  with ( ), 1.gcd p q =  
•  Question: Is there a word of length 2 1n −  of non zero integers 1 1 nw a b a=   such that 

( )
0

M wτ

∗ 
=  ∗ ∗ 

, where p
q

τ = ? 

So we check solutions in non zero integers 1 1, , , na b a  for the diophantine equation 

 ( )( )1 1, , , 0.n nQ a b a τ =  (11) 

The set of 2τ λ=  for which the Möbius group Gλ  is not free coincides with the set of τ  for which there 
exists 2n ≥  such that the Equation (11) admits solutions. 

In this section, we consider the case 2n =  and in the next section the case 3n = . The relation 
( )2 1 1 2, , 0Q a b a =  is equivalent to the Equation (B'1) and the relation ( )3 1 1 2, , 0Q a b a =  is equivalent to the 

equation (B'2). If p  and q  are perfect squares we obtain the equations (B1) and (B2). 
We will prove that the problem ( )2P  is decidable. The decidability of the problem ( )2P  has already 

been established by A.F. Beardon (Theorem 2, [2]) for the case when p  and q  are perfect squares. Our 
algorithm is simpler and allows us to give an arithmetical criteria for integers p  and q  for which the problem 

( )2P  has solutions (see Theorem 1 below). 
First, we prove a result concerning the equation (B'1). 
Proposition 2 Let p  and q  be two integers with ( ), 1gcd p q =  and α ∈ . Denote  

( ) ( ) ( ) ( ){ }3

1 1 2 1 2 1 1 2, , , , .L p q a b a q a a pa b aα α∗= ∈ + + =  

Then:  
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1. If ( ) ( )1 1 2, , , ,a b a L p q α∈  and { }1,2i∈  we have  

( )1
1 2b q
p

α≤ +
 

( )21 .ia q q p
p

α≤ + +  

2. The set ( ), ,L p q α  is finite.  
Proof. 
1) Let ( ) ( )1 1 2, , , ,a b a L p q α∈  and for { }1,2i∈  put 1i id q pa b= + . Then 2

1 2 1d d q pbα= + , 
( )id q mod p≡  and id q≠ . 

As 1
1 2 1 2

1 1 1b q
p a a a a

α  
= − +  

   
 we deduce ( )1

1 2b q
p

α≤ + . Because 2
1id q pbα≤ +  and 

1

i
i

d q
a

pb
−

=  we have  

( )2

1

1 .i
i

d q
a q q p

pb p
α

+
≤ ≤ + +  

2) results from (1).   
Using the previous proposition we can obtain the decidability of the problem ( )2P . 
Theorem 1 Let p  and q  be two integers with ( ), 1gcd p q = . The following sentences are equivalent:  
1. The equation ( )1 2 1 1 2 0q a a pa b a+ + =  has solutions in non zero integers.  
2. There exists a divisor d  of 2q , d q≠  such that ( )d q mod p≡ .  

3. ( ) ( )21 1 , , 0p m n m n
q m n

τ ∗ 
= ∈ + ∈ + ≠ 

 
 .  

Proof. The equivalence between (1) and (2) results from the Proposition 2. It is enough to consider 0α =  in 
that proposition. The equivalence between (1) and (3) is obvious.  

Remark 1 Let ( )D n  be the set of all divisors of the integer n . If d  is like in (2) of the previous Theorem 
1 then a solution ( )1 1 2, ,a b a  to the equation (B'1) can be obtained by taking  

• 1 2
1

d q d qb D D
p p

   − −
∈    

   
  and  

• 
1

i
i

d q
a

pb
−

=  for { }1,2i∈   

where 1d d=  and 
2

2
qd
d

= ⋅  Moreover any solution ( )1 1 2, ,a b a  of the equation (B'1) can be obtained by this 

method. We can write τ  as in (3) of the Theorem 1 

1 2

1 1p
q d q dq

p p

τ = = + ⋅
− −

 

The results of A.F. Beardon ([2], theorem 2) concerning the problem ( )2P  for the case when p  and q  
are perfect squares (or equivalently when λ ∈ ) result immediately from the next corollary. 

Corollary 1 Let p  and q  be two non zero integers with ( ), 1gcd p q =  and 
2

2
2 .p

q
τ λ= =  The group 

Gλ  is not free with the calibre ( ) 2k τ =  if and only if there exists a divisor d  of 4q , 2d q≠  such that 

( )2 2d q mod p≡ .  

From the previous theorem it also follows: 
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1) The equation (B'1) has no solution if 2p
q

τ = > . 

2) 2pk
q

 
= 

 
 in the following cases: a) 1p = ; b) 2p =  ; c) 3p ≥  and 1q kp= ±  with *.k ∈  

Below we present another form of the Theorem 1 in which we use the decomposition of q  as a product of 
prime numbers. 

Theorem 2 Let p  and q  be two integers with 2p >  and ( ), 1gcd p q = . Let us suppose that the 
decomposition of q  as a product of powers of distinct prime numbers 1 2, , , mπ π π  is 1 2

1 2 .m
mq αα απ π π=   

Then 2pk
q

 
= 

 
 if and only if there exist:  

• two disjoint subsets I  and J  of { }1,2, , m  with .I J ≠ ∅  
• a set of integers ( )l l I J

δ
∈ 

 with 1 l lδ α≤ ≤  for every .l I J∈   
• { }1, 1 .ε ∈ −  
such that ( ).ji

i ji I j J mod pδδπ ε π
∈ ∈

≡∏ ∏   

Proof. Let 1 2
1 2

m
md ββ βεπ π π=   be a divisor of 2 , .q d q≠ ±  We can drop the case d q= −  because 2.p >  

Hence ( ) ( )1 2 1 2, , , , , ,m mβ β β α α α≠   and 0 2k kβ α≤ ≤  for every { }1,2, , .k m∈   We put 
{ }{ }1,2, , i iI i m β α= ∈ <  and { }{ }1,2, , .j jJ j m β α= ∈ >  Then I J = ∅  and .I J ≠ ∅  Let: 

if
if

I
J

α β
δ

β α
− ∈

=  − ∈
 



 





. 

We have 1 δ α≤ ≤
 

 for every .I J∈   The condition ( )d q mod p≡  is equivalent to  

( ).ji
i j

i I j J
mod pδδπ ε π

∈ ∈

≡∏ ∏  

Corollary 2 Let p  and α  be two non zero integers and π  be a prime number. Suppose that 

( ), 1.gcd p π =  Then 2pk απ
  = 
 

 if and only if there exists an integer δ  with 1 δ α≤ ≤  such that 

( )mod pδπ ε≡  where { }1, 1 .ε ∈ −  
Proof. We take 1m =  in the previous theorem.  

Example: Using the previous results and an example from ([7]) we have 
12 3

127
k   = 
 

 and 2

12 2.
127

k   = 
 

 

4. The Beardon Diophantine Equation (B2)  
Now we consider the problem ( )3P . We mention that the equation ( )( )3 1 1 2 2 3, , , , 0Q a b a b a τ =  has been 
considered in several papers (see [2] [8] [10]) for the case when p  and q  are perfect squares. 

From now on, we suppose that ( )( )2 1 1 2, , 0Q a b a τ ≠  for every ( ) ( )3*
1 1 2, ,a b a ∈   i.e. following Theorem 1, 

τ  does not belong to ( ) ( )2*1 1 , , 0 .A m n m n
m n

 
= + ∈ + ≠ 
 

  Hence we can define a function 

] [ ( ) *: 0, 4 Aϕ +→    by ( ) { }inf .Aϕ τ τ α α= − ∈  We remark that ( ) 0ϕ τ >  and 

a) ( ) 2ϕ τ τ= −  if ] [2,4 .τ ∈  

b) ( ) 1 1min 1 ,1
1k k

ϕ τ τ τ = − − + − 
+ 

 if ] [1,2 ,τ ∈  where 
1

1
k

τ
 = ⋅ − 

 

Using the relations (8) for the sequence of polynomials ( ) 1n n
Q

≥
 we prove that the problem ( )3P  is 

decidable. 

Theorem 3 Let ] [0,4Qτ ∈   such that τ  does not belong to the set ( ) ( )2*1 1 ,m n
m n

 
+ ∈ 

 
 . Then the 
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equation  

( )( )3 1 1 2 2 3, , , , 0Q a b a b a τ =  

has a finite number of solutions ( ) ( )5*
1 1 2 2 3, , , , .a b a b a ∈    

Proof. Using the relations (8) we deduce that  

( ) ( )2 1 1 2 2 2 2 3 1 3, , , , .Q a b a Q a b a a a=  

Hence 2
1 1 2 2 2 3 1 2 2

1 1 1 1 1 1 1
b a a b a a b b a

τ τ
     

+ + + + = ⋅            
 Using the function ϕ  we have:  

( )
2

1 2 2 2

1b b a
ϕ τ

≤ ⋅
  

 

We obtain a finite number of possibilities for 1 2,b b  and 2.a  So 1a  and 3a  remain to be studied. From 
the equation  

( )( )3 1 1 2 2 3, , , , 0Q a b a b a τ =  

it follows that  

( ) ( )3 1 1 2 2 3 3 1 1 2 2 3, , , , , , , , 1.P a b a b a S a b a b a =  

Hence there exists ( ) 2
1 2,d d ∈  such that 

•  4
1 2 .d d q=  

•  ( )2 2
1 1 1 2 2 2 1 1 2 2 1.q a b a b a b qp a b a b p d+ + + + =  

•  ( )2 2
2 2 3 1 2 1 3 2 2 1 2 .q a b a b a b qp a b a b p d+ + + + =  

Thus there exists a finite number of possibilities for 1a  and 3.a   

If ( )( )3 1 1 2 2 3, , , , 0Q a b a b a τ =  from the inequality 
( )

2
1 2 2 2

1b b a
ϕ τ

≤
  

 we obtain 

a) If ] [3,4τ ∈  then ( )3P  has no solution. 

b) If 12 ,3
2

τ  
∈ + 
 

 then { }1 2 2, , 1,1 .b b a ∈ −  

We also remark that the equation (B'2) is equivalent to the following equation 

 31
2

1 1 3 2

.
a qa q a

q a b p q a b p
+ = −

+ +
 (12) 

This enables us to obtain some explicit expressions for the rationals τ  such that equation (B'2) has solutions 
in *.Z  

Proposition 3 Let ,k   be two non zero integers and 21, kk  be two divisors of .k  If 
1 2

1 1 1 1
k k k

τ
 

= + + 
 

  

then the equation (B'2) has solutions in *.Z  

Proof. Let 1 1 2 2 2, ,b k b k a= = = −  and 1 1 2 3 .b a b a k= = −  Then (10) is equivalent to 
1 2

1 1 1 1
k k k

τ
 

= + + ⋅ 
 

  

Note that if in equation (B'2) we have 1 1 2 3b a b a=  then τ  is exactly given by the above expression. 
Using once again (10) we obtain 
Proposition 4 Let α  and α′  be in *Z  with .α α′≠  If  

 
( )

2 2α ατ
αα α α

′+
=

′ ′−
 

then the equation (B'2) has solutions in *.Z   
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Proof. Consider (10) for 1 2 11,b b a α= = =  and 3 .a α′= −  Then 
1

1

1
1b
a

α ρ
τ

= −
+

 and 

2
3

1 ,
1b
a

α ρ
τ

′= − +
+

 where 
2 2α αρ
α α

′+
= ⋅

′+
 It follows that if we take 2a α α′− = −  then (10) is verified.  

In the next proposition we give another method to obtain solutions of Equation (B'2). It is similar to those 
presented in [8] and [10]. 

Proposition 5 Let p  and q  be two integers with ( ), 1.gcd p q =  Suppose that there exist 1 2,a b  and 2a   

in *Z  such that ( )1 2 1 1 2 1.a a q a b a p+ + =  If p
q

τ =  then the equation (B'2) has solutions in *.Z   

Proof. Let 1 1 1 1 2 2 2 2 1, , 1,A a q B b a A B b a= = = − = −  and 3 2 .A a q=  Then 2

1 2
1 2

1 1 .
1 1

A
B B

A A
τ τ

+ = −
+ +

 Hence  

the equation (B'2) has solutions.  
We end this section with the following open questions: 
Questions: 
1) Find all the solutions of (B2). 
2) Find arithmetical characterizations (similar to those given in Theorem 1 for the positive integers p  and 

q  for which the problem ( )3P  has solutions. 

5. Increasing Unbounded Lower Bound Function for κ 
In this section, we prove that in order to show that the group Gλ  is not free for a rational τ  with 2 4τ λ= <  
and τ  close to 4, we have to consider longer and longer words in A  and B . Similar remarks (without any 
proof) have been made by A.F. Beardon in [2] and S.P. Farbman in [7]. 

Everywhere in this section, we consider that τ  is a rational number in the open interval ]2,4[ . 

From the Lemma 1, Section 2, if ( )( )1 1 1, , , , 0n n n nx a a b a τ+ + =  then ( )( )1
1, ,

1n nx a a τ
τ

≤ ⋅
−


 For this  

reason we consider the sequence ( ) 1n n
α

≥
 of rational functions in the variable τ , ( ) ,n nα α τ=  defined by: 

 

1

1

1
11

1n

n

α

α
τ

α

+

=


= −
 −


 

For example 

( ) ( )
2

2 3 2

2 4 3,
1 3 1

τ τ τα τ α τ
τ τ τ
− − +

= =
− − +

 and ( )
3 2

4 3 2

6 10 4
5 6 1

τ τ τα τ
τ τ τ
− + −

= ⋅
− + −

 

We also define the function ] [ { }: 2, 4 0,1l → N  by the formula: 

 ( ) ( )* 1inf
1kl kτ α τ

τ
 = ∈ ≤ ⋅ 

− 
N  

Thus one has ( ) 2l τ =  if and only if ] ]2,3τ ∈ , ( ) 3l τ =  if and only if 3, 2 2τ  ∈ +   and ( ) 4l τ =  if  

and only if 5 52 2, .
2

τ
 +

∈ + 
 

 

Now we will calculate ( )nα τ . 
Note that ( ) ( )( )1, 1,1, 1, , 1,1 .n nxα τ τ= − − −  For this reason we find the matrix 
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( )1 1 1 1
1

n n
nX AB AB AB A AB A C A− − − −
+ = = = , where 1C AB−= . We suppose now that 2sin

2
θλ  =  
 

 with 

π ,π
2

θ  ∈   
, so ( )2 2 1 cosτ λ θ= = − . As ( )trace 2 2cosC τ θ= − =  the matrix C  verifies the equation:  

2
2 22cos .C C I Oθ− + =  

Using this relation we find that  

 
( )( ) ( )

( ) ( ) ( )

sin 1 sin 2sin sin
21

sin
2sin sin sin sin 1

2 2

n

n n
C

n n n

θθ θ θ

θ θ θθ θ

  + −  
  = ⋅

    − − −    
    

 

Hence ( )
( )( )

( )( ) ( ) ( )
( )( )

1

sin 1 1
sinsin 1 sin 1

sin 1

n

n
nn n

n

θ
α τ

θθ θ
θ

+

+
= = ⋅

+ −
−

+

 

Lemma 2 Let ( ) 3, , xα τ ∈ , 2τ >  be such that 1
1

x α
τ

≥ >
−

. Then for every *,a b∈Z  we have 

1 11 0
1 1

a
b

x
τ τ

α

+ ≥ − >
+ −

.  

Proof. Since 1 1
x

τ τ≤ − <  we obtain that 1 1 1
1 1b
x

τ τ
α

≤ <
+ −

. Hence 1 11
1 1

a
b

x
τ τ

α

+ ≥ − ⋅
+ −

  

The previous expression for ( )nα τ  and Lemma 2 show that ( )l τ  is well defined and ( ) ( )l τ κ τ< , for 
every τ  in the open interval ]2,4[ . So l  is a lower bound numerical function for the function κ  restricted 
to ] [2,4 .  

Theorem 4 For any *n∈  and ] [2,4τ ∈  one has ( ) 1l nτ = +  if and only if there exists 
1π, π

1 2
n n

n n
θ + ∈  + + 

 such that 2 2cos .τ θ= −   

Proof. Let ( ) 1l nτ = + , where *.n∈  From the definition of the function l  this previous equality holds if 

and only if ( )1
1

1nα τ
τ+ ≤
−

 and ( ) 1
1kα τ

τ
>

−
, for all { }1, ,k n∈  . But ( ) 1

1kα τ
τ

>
−

 if and only if 

( )( )
( )

1 1
1 2cossin 1

1
sin

k
k

θθ
θ

> ⋅
−−

−

 

Thus we obtain the system of two inequalities 
( )( )
( )

sin 1
1

sin
k

k
θ

θ
−

<  and 
( )( )
( )

sin 1
0

sin
k

k
θ

θ
+

< . 

Finally, ( ) 1l nτ = +  if and only if we have 
( )( )
( )( )

sin 1
0

sin 2
n
n

θ

θ

+
≥

+
 and 

( )
( )( )

sin
0

sin 1
k

k
θ
θ

<
+

 for all { }1, ,k n∈  . 

These inequalities give 
1π, π .

1 2
n n

n n
θ + ∈  + + 

  

Corollary 3 The function l  is increasing and unbounded.  
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Therefore  

 ( ) ( )
4, 4 4, 4

lim lim .l
τ τ τ τ

τ κ τ
→ < → <

= = ∞  

Example: We consider the sequence 14
2n nτ = − , for n∈N .  

• For 0n =  we have 0 3τ = . So ( )2 0
0

1 1
2 1

α τ
τ

= ≤
−

, hence ( )0 2l τ = . As ( )( )3 01,1, 1,1, 1 0x τ− − − = , it 

follows that ( )0 3κ τ =  . 

• For 1n =  we have 1
7
2

τ =  and ( )2 1
3
5

α τ = , ( )3 1
5

11
α τ = , ( )4 1

1

3 1 2 .
13 1 5

α τ
τ

= < =
−

 Hence ( )1 4l τ =  

and since  

 ( )( )5 12, 1,1, 1,1, 1,1, 1,2 0x τ− − − − =  

we have ( )1 5κ τ =  

• For 2n =  we have 2
15
4

τ =  and ( )2 2
7

11
α τ = , ( )3 2

33
61

α τ = , ( )4 2
119
251

α τ = , ( )5 2
305
781

α τ =  , 

( )6 2
2

231 1 4
451 1 11

α τ
τ

= < = ⋅
−

 Hence ( )2 6l τ =  and ( )2 7κ τ ≥ . From [7] we have ( )2 18κ τ ≤ .  

Questions: 
1) Is it true that for every ] [0,4τ ∈   and , 2n n∈ ≥ , the problem ( )nP  is decidable? 
2) Is it true that for every ] [0,4τ ∈   there exists , 2n n∈ ≥  such that the problem ( )nP  is 

decidable? 
3) Is it true that for every ] [0,4τ ∈   there exists , 2n n∈ ≥ , such that the problem ( )nP  has 

solutions? 
4) Find ( )nκ τ , for 2n ≥ . 
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