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Abstract 
This paper proposes a more inclusive statistical model for predicting image noise in Computed 
Tomography (CT), associated with scanning factors, considering the effect of beam hardening and 
image processing filters. It is based on power functions where the levels of the parameters will 
determine the rate of noise variation with respect to a given scanning factor. It includes the influ- 
ence of tube potential, tube current, slice thickness, Field of View (FOV), reconstruction methods 
and post-processing filters. To validate the model, tomographic measurements were made by us- 
ing a PMMA phantom that simulates paediatric head and adult abdomen, a PET bottle was used to 
simulate the head of the new-born. The influence of ROI (Region Of Interest) size over nonlinear 
model parameters was analysed, and high variations of powers of attenuation and FOV were found 
depending on ROI size. A nonlinear robust regression method was used. The validation was per- 
formed graphically by weighted residual analysis. A nonlinear noise model was obtained with an 
adjusted coefficient of determination ajNLR2 > 0.99  for ROI sizes between 10% and 70% of the 
phantom diameter or FOV. The model confirms the significance of the tube current, slice thickness 
and beam hardening effect on image. The process of estimation of the parameters of the model by 
Nonlinear Robust Regression turned out to be optimal. 
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1. Introduction 
Noise is considered a critical factor in Computed Tomography (CT) because it establishes an inferior limit to the 
contrast detectable by the observer. The collective dose is increasing worldwide due to CT examinations and its 
reduction which poses an optimization problem: while the lower the dose the higher the image noise. Previous 
models of image noise had been reported [1]-[4]. For instance, the model of noise in [1] is still useful to under- 
stand the association of noise with dose, attenuation, and acquisition parameters in spiral CT, but is incomplete 
because the image quality is only considered in terms of quantum noise and spatial resolution. Other important 
influences, which lead to image quality variations, such as beam hardening and reconstruction algorithms im- 
plemented by manufacturers can no longer be described by such a simple equation. A correlation between image 
noise and dose for each examination protocol was determined by measuring the noise while keeping the scan-
ning parameters other than tube current constant in [3] [4]. A more inclusive noise model could provide knowl-
edge about quantitative effect of reconstruction algorithms and beam hardening and a predictive tool for clinical 
applications. The aim of this work was to model the effect of scanning factors on image noise, including attrib-
utes of the scanned object, quantitative and qualitative factors and beam hardening considerations. 

The modelling of noise has a great importance from both descriptive and predictive points of view, taking into 
account its association with the physical quantities involved in the clinical applications of CT. 

2. Materials and Methods 
The analytical models can be used to quantitatively understand the association between the image quality and 
operational factors of CT machines and the properties of the scanned object. 

2.1. Definition of General Noise Model 
According to reported noise models [1]-[4], the deterministic association between image noise and operational 
factors can be expressed, in general, by the product of power functions as presented in Equation (1). The noise 
σ  depends of multiple quantitative factors: the tube current time product 1F , effective attenuation of the 
scanned object 2F , the slice thickness 3F  and the reconstruction diameter 4F . In general, CT users do not 
know the exact functions of reconstruction modes, algorithms (kernels) and available post-processing tools in- 
stalled on CT machines, but they can be included as qualitative factors into mathematical models. 

In our proposal, the quantitative impact of qualitative factors on noise is expressed in exponential form 
( )expia

i i iF a X=  of binary variables iX  (i > 4). The quantitative effect of image processing factors will be 
identified through positive coefficients as in [5], which express their impact on noise reduction, or its increase 
with values less or greater than unity respectively. 
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where ε  is the error term, assumed as a random variable with normal distribution, constant variance and the 
expected value zero. The parameter of proportionality 0a  has units of 3 41 a aaHU mAs cm− −−⋅ ⋅  and is associated 
with technological factors of the CT system (for instance, detector’s efficiency, Data Acquisition System and 
geometrical aspects). The confidence interval and value of 0a  will depend on which factors are not included as 
predictors.  

In order to find the physical meaning of model parameters, the partial derivatives can be found as in Equation 
(2), which provide the rate of noise variation (RNVi) with respect to a given iF . 
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The value of 0a  determines the RNVi associated with the technological factors above mentioned, this means 
that images from machines of CT with lower values of 0a  will have lower noise levels, considering there are 
no significant differences among their corresponding parameters and equivalent levels of physical magnitudes. 
The RNVi associated with factor iF  is explained by each ia , and the RNVi associated with the remaining fac- 
tors hF  is explained by the product of the corresponding power functions for a given level of iF . For factors 
with 0ia < , 0iRNV >  and monotonous increasing when iF  increases, favouring lower noise levels, because 
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the power law decreases for a given combination of h
v

a
h

h i
F

≠
∏ . 

The tube potential was taken into account for obtaining the experimental design, but is not included as a pre- 
dictor of the nonlinear noise model because its effect is present in the effective attenuation factor 2F , which de- 
pends on the spectrally distributed energy fluence at the entrance of a homogeneous water phantom 0Ψ  and 
the fluence Ψ  after the beam traversed the phantom, see Equation (3). The factor 2F  describes the effective 
attenuation of photons, considering beam hardening [6]. Due to the dependence of the linear attenuation coeffi- 
cient with respect to energy, the attenuation does not satisfy the Lambert-Beer law for polychromatic beams. 
Thus 2F  is defined as the ratio of spectrally distributed energy fluence at the entrance of a homogeneous water 
phantom, whose total thickness is L, and the energy fluence at the exit of the same minus one: 

( )
0

2
0

1 exp d 1
L

lF lµ
Ψ

 Ψ = − = −  Ψ   
∫                             (3) 

where ( )lµ
Ψ

 is the linear attenuation coefficient averaged over the local spectrum of photons at a depth l, con- 
sidering the effect of polychromatic beam hardening. In general, when 0 1Ψ Ψ = , the measured in air noise is 
zero; note that the definition of 2F  satisfies this technological condition. 

The ( )lµ
Ψ

 corresponding to water was estimated according to the methodology developed in [7]. The lin- 
ear attenuation coefficient of water 

2H Oµ  was obtained using the program XMuDat [8], discretizing the energy 
range from 1 keV up to 140 keV (steps of 1 keV). The attenuation coefficient was adjusted to Equation (4) ac- 
cording to the energy levels E (MeV) and a given material, 

( ) ( ),ˆ E m KN Eτµ ζ α λ= ⋅ +                                (4) 

where ,  and ζ λ τ  are parameters obtained by nonlinear fitting and ( )KN α  is the Klein-Nishina cross section, 
which was estimated by Equation (5). 
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where 2
0E m cα = , 2

0 0.511 MeVm c=  and 132.818 10  cmer
−= ×  is the classic electron radius. 

For the application of the proposed model a Single Detector Scanner was used (SHIMADZU SCT-7800 TC, 
Kyoto, Japan). The energy fluence 

0Ψ  of the spectrum incident on the phantom was estimated for each tube 
potential level available (120 and 135 kV) on CT machine, determining incident spectra was performed using 
the program xcomp5 v.3.5 [9] with an anode angle of 7˚, at a distance of 31 cm from the focal spot and a thick- 
ness of absorber of 2.2 mm Al + 1 mm PMMA (Polymethyl Methacrylate), whose characteristics are similar to 
the tube and cover of the CT machine used for the estimation of the model. The energy fluence at the exit of the 
scanned object ( ) ( )( )0 ,ˆexp dE mmedl l EµΨ = Ψ −∫  was estimated by discretizing the distance l and the energy by 
steps of 0.1 cm and 1 keV respectively, the integral was numerically calculated by using the trapezoidal method. 
The averaged linear attenuation coefficient ( )lµ

Ψ
 was calculated according to the method described in [7] in 

order to obtain 2F . The effective attenuation coefficient *
effµ  was obtained for each level of fluence by adjust- 

ing the exponential ( )*
2 1 exp effF Lµ+ = ⋅ , considering beam hardening. 

The proposed model presented in Equation (1) includes qualitative factors and beam hardening effect on 
noise in addition to previous models of image noise [1]-[5], which therefore represents a more inclusive 
nonlinear model of noise. 

2.2. Experimental Design 
Several practical difficulties are presented on the estimation of the model assumed according to Equation (1): 
• To estimate the functional part, it requires a set of pixel noise measurements for different combinations of 

levels of physical factors. One option could be a full factorial design, which would imply overexploitation of 
the CT unit, for which are necessary more than 80,000 combinations of predictors levels, making very difficult 
to estimate the model due to this experimental limitation plus associated costs, especially in a machine dedi- 
cated to clinical diagnosis. The difficulty lies in determining an experimental design with the necessary com- 
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binations of predictor’s levels that satisfy a high prognostic value of the model. 
• Furthermore, the estimation of nonlinear models also requires a priori knowledge of a vector of model pa- 

rameters. 
• Nonlinear statistical models such as the one proposed are based on certain assumptions, for example the 

normal distribution of measurement values. If the probabilistic distribution of error is asymmetric or prone to 
outliers, the model assumptions would be invalidated and parameter estimates, confidence intervals and 
other statistics calculated would not be reliable. It is usual to find outliers of measured noise values in 
images from equipment for clinical use, which are not excludable for estimating the model as part of the 
experimental space. 

To overcome the practical difficulties mentioned and to get the experimental design, a four step methodology 
was applied: 

1) Obtaining an experimental design matrix with the minimum amount of combinations of levels of factors to 
guarantee an acceptable level of Predicted Error Variance of the model ( )mVEP . This is possible through an ex- 
perimental design of optimal variance (V-optimal design) [10], which was performed by using the set of tools 
Model-Based Calibration Toolbox, (MATLAB v.7.6 R2008a, MathWorks Inc.) [10], available for linear models. 
Therefore it was necessary to estimate a multiple linear regression model according to Equation (6), where Y 
corresponds to the logarithm of the noise measured, and the functional part as the logarithm of the nonlinear 
function given in Equation (1). 

0

v

i i
i

Y b X δ
=

= ⋅ +∑                                    (6) 

where 0 1X = , 0b  is the constant of the linear model and ib (i > 0) are now the parameters of a multiple linear 
regression model, each lni iX F=  was estimated for every 1 4i =  , and for i > 4, iX  values corresponds 
with binary values of qualitative variables, δ  is the error term of the linear model, which is assumed here as a 
random variable of normal distribution with constant variance and expected value is zero. 

2) For the experimental design a criterion of 1mPEV <  was established, assuming an expected mean square 
error of 3.5MSE < . The optimal design criterion was established as 0.28G < , where G is the maximum value of 
the prediction error variance of the experimental design dPEV , which is associated with the mPEV  according to 
Equation (7). 

m dPEV PEV MSE= ⋅                                  (7) 

The levels of iX  for the design were selected according to those available on the CT machine used and the 
required transformations for Equation (6). The levels of 1X  correspond to the natural logarithm of 40, 50, 100, 

250, 400 and 800 mAs respectively. The levels of ( )2
0

d
L

lX lµ
Ψ

= ∫  were calculated according to the combina- 

tions of each tube potential level (120 and 135 kV) with diameters levels shown in the phantoms Figure 1. 
These were used to simulate dimensions equivalent to an adult skull, and to the abdomen of paediatric patients, 
with the intermediate cylinder of 16 cm (PMMA walls), and to an adult abdomen with the largest diameter of 23 
cm, shown in Figure 1(a). The neonate skull was simulated with a bottle of 5 cm in diameter as shown in Fig- 
ure 1(b), with walls of Polyethylene Terephthalate (PET). 

The levels for X3 and X4 were estimated as logarithms of the slice thicknesses 0.1, 0.3 and 1 cm and for fields 
of view (FOV) of 5 and 50 cm respectively. 

For qualitative factors, the levels selected were transformed into binary variables for the following recon- 
struction modes: Standard “STD”, high resolution “HR”, motion compensation “MAC”, reconstruction of two 
frames per tube rotation “2segs” and reconstruction of three frames per tube rotation “3segs”. The levels of ker- 
nel were selected as: “RF1” (Extra smoothing), “RF2” (Smooth), “RF3” (Standard), “RF4” (Fine), “RF5” (Extra 
Fine) and “RF6” (for evaluation with water phantoms). 

The levels of post-processing filters of type “Smart Filter” selected were: “SF1” (Weak), “SF2” (Middle) and 
“SF3” (Strong) [11]. Binary variables for levels “3segs”, “RF6” and “SF3” were excluded to avoid computa- 
tional problems leading to linear dependencies between the columns of factors matrix [10] and they were the levels 
of less practical importance for the proposed model. Some restrictions were imposed to binary variables 

as reconstruction mode, kernel and Smart Filters as follows: 
8

5
1i

i
X

=

≤∑ , 
13

9
1i

i
X

=

≤∑  and 
15

14
1i

i
X

=

≤∑  respectively, 



R. Miller-Clemente et al. 
 

 
1244 

 
Figure 1. Water phantoms: (a) PMMA walls, with central pin 
in section of 10 cm, middle section (16 cm), and the largest 
section of 23 cm diameter, (b) PET bottle (5 cm). 

 
because they can only be selected operationally by combining a reconstruction mode with a kernel and a “Smart 
Filter” simultaneously for each image. 

3) Experimental measurements are described in the section Procedure of Experimental Measurements. 
4) As it is necessary to have an initial vector of parameters for the nonlinear model, the parameter vector ib  

would serve for this purpose. The parameters were estimated from the linear model given by Equation (1), as 
explained in the section of Estimating the Linear Model. 

It is important to note that the use of ib  as initial vector for estimating ia  should be done with caution, be- 
cause although the nonlinear function of Equation (1) could be transformed using logarithm, this does not nec- 
essarily imply that the linearized model parameters correspond to the nonlinear model, so the use of ib  could 
lead to inadequate physical interpretations. This is because the logarithmic transformation of the nonlinear 
model will affect the error term in general, so there is no guarantee for the fulfilment of important assumptions 
for robust nonlinear regression as normality and homoscedasticity of ε . 

Nonlinear model parameters were estimated by nonlinear robust fitting, which is less sensitive to large 
changes in small portions of data than the OLS. The method used is explained in the section Method for Esti- 
mating the Nonlinear Model. 

2.3. Procedure of Experimental Measurements 
Before starting the measurements, a calibration was performed to the CT machine to ensure operations in similar 
conditions to clinical use. Axial images were obtained sequentially according to the combinations of levels ob- 
tained in the experimental design. Three replicates were performed for each combination of levels from predic- 
tors. The noise was calculated as the standard deviation of the pixel intensities in Hounsfield units (HU), con- 
tained in a square region of interest (ROI) in the centre of each axial image. 

The number of pixels within the ROI could change the value and variability of σ , as the experimental design 
requires different diameters and combinations of levels where in some cases the FOV is smaller than the phan- 
tom’s diameter, the ROI size was defined as a percentage of the internal phantom’s diameter for images where 
the diameter was smaller than the FOV-see Figure 2(a), and a percentage of the FOV if otherwise-see Figure 
2(b). The ROI size effect on the nonlinear model was analysed by estimating the variation of parameters and the 
coefficient of determination according to different ROI sizes (from 10% to 70% of phantom’s diameter or FOV). 
The range of scanning time per rotation, tilting and rotation angle were 1 - 3.2 s, 0˚ and 360˚ respectively. The 
phantoms were placed using the laser positioning system of the CT unit, ensuring precise centring within 1 mm 
tolerance for the coincidence between the axis of rotation of the x-ray tube and the pin of the phantom, which 
was checked with the grids control tool available on the control panel. Noise was averaged from measured im- 
ages obtained with identical combinations of levels of input factors. 

2.4. Estimating the Linear Model 
As the linear regression techniques assume the normality of the dependent variable, this assumption was verified 
with the Lilliefors test for the distribution of values (p < 0.05), by using the function lillietest from MATLAB. 



R. Miller-Clemente et al. 
 

 
1245 

 
Figure 2. Definition of ROI: (a) square side of 30% of the 
phantom diameter and (b) 30% of the FOV when the FOV is 
smaller than the phantom’s diameter. 

 
For most methods of linear regression, it is assumed that the standard deviation of the error term is constant 

for all values of the dependent variable and predictors. This assumption is not always true. Moreover, the pixel 
noise measurements are prone to outliers. The algorithm of Iteratively Re-weighted Least-Squares (hereinafter 
IRLS) is efficient for the regression of data where the homoscedasticity is not rigorous and the appearance of 
outliers is common. It is common to find outliers among pixel noise measurements from CT images obtained 
with variation of several factors, the IRLS was the algorithm of choice for estimating the multiple linear regres- 
sion model presented in Equation (6), by using robustfit function from MATLAB and the weighting function 
bisquare (tuning constant = 4.685) [10]. 

2.5. Method for Estimating the Nonlinear Model 
A Nonlinear Robust Regression (NLRR) was applied with the IRLS algorithm by using the function nlinfit from 
MATLAB and the weighting function bisquare (tuning constant = 4.685). Confidence intervals were obtained 
with a significance level of 0.05. Parameters ib  were used as initial parameters for the nonlinear model, where

( )0exp bξ = . 

2.6. Model Validation 
To validate the Multiple Linear Robust Regression Model (LRRM) the result of the analysis of variance was 
taken into account, which provides information about the adequacy of the proposed model to describe the ex-
perimental data. The goodness of fit for the linear model was validated by using the adjusted coefficient of de-
termination 2

ajLR . The adjusted coefficient of determination 2
ajNLR  and the mean square error NLMSE  were 

taken into account to evaluate the goodness of fit for the nonlinear model. 
The nonlinear model validation was performed using the weighted residual plot analysis [12] that is, if the re- 

siduals have a representative random behaviour of the errors included in the statistical association between the 
response variable and the predictors, the model fits the data well, otherwise, a non-random structure will be ob- 
served. The weighted residuals were estimated according to Equation (8). 

[ ]ˆ ˆk k k ke w σ σ= −                                     (8) 

where kw  is the estimated weight for nonlinear regression by IRLS, kσ  and ˆkσ  are the noise value meas- 
ured and estimated, respectively, corresponding to the k-th combination of levels from the experimental design. 
The weighted residuals plot analysis was done by using weighted residual versus predictors, weighted residual 
versus regression function values, sequential weighted residuals, residuals lag plot, normal probability plot and 
histogram of weighted residuals. 

3. Results and Discussion 
3.1. Results of Experimental Design 
To compute ( )lµ

Ψ
, the linear attenuation coefficient of water ( )2,H OEµ  was estimated according to Equation 

(4), the parameters obtained are shown in Table 1. For estimating ( )2,H OEµ , the spectra were calculated with 
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maximum energy fluence of 120 and 135 keV. No significant differences were found among the parameters ζ , 
λ  and τ  for both energy levels. 

The estimated values of ( )lµ
Ψ

 are shown in Figure 3. It can be seen how ( )lµ
Ψ

 changes in depth within 
the irradiated object. The effective linear attenuation coefficient *

effµ  was estimated from fitting 2 1F −  asso- 
ciated with L, resulting 0.192 and 0.187 cm−1 for tube potential levels of 120 and 135 kVp respectively (see 
Figure 4). Practically there are no significant differences between the levels of attenuation for corresponding 
values of the tube potential in the range of 0 to 14 cm diameter, so that in this region the contribution of the at- 
tenuation factor to the noise will be virtually the same for any tube potential selected. For studies of regions in 
patients with densities near to water (e.g., brain tissue of grey and white matter, soft tissue, etc.) whose equiva- 
lent diameter respect to water is from 0 to 14 cm, it is recommended to use the lower tube potential as the noise 
level would be similar to that obtained with higher tube potential for a combination of given levels of other pre- 
dictors, providing a lower dose [13] to the patient and better contrast. 

Figure 5 shows the fitting of the water attenuation coefficient ( )2,H OEµ . The effective energies are determined 
graphically as 0.070 and 0.075 MeV for 120 and 135 kV respectively, corresponding to the effective attenuation 
values of 0.192 and 0.187 cm−1. A set of k = 130 combinations of factors levels was obtained from a design 
V-optimal, with a value V-optimal = 0.18. The PEV analysis resulted G = 0.273. Noise was measured according 
to experimental design. The set of measurement was repeated for different levels of ROI size, i.e., from 10% to 
70% of phantom’s diameter or FOV as explained before. After the measurements on images, average noise val- 
ues were estimated for measurements corresponding to the same combinations of experimental factor levels. The 
sample was reduced to 52 average noise values. 

The quantitative and qualitative levels used for the experimental design are shown in Table 2. 

3.2. Results of the Nonlinear Regression Model 
3.2.1. Parameters of Model’s Linear Function 
The normality of ( )ln kσ  cannot be rejected according to the test of Lilliefors (p > 0.05). The parameters ob-
tained by the IRLS algorithm were used as initial values for the estimation of the parameters for the nonlinear 
noise model. 

3.2.2. Estimation of Nonlinear Model Parameters 
Nonlinear fitting of kσ  associated with the Fi, presented a coefficient of determination 2 0.99ajNLR >  for ROI 
sizes up to 60% (see Figure 6), and a mean square error 2NLMSE <  for every ROI sizes, although better pre- 
cision is obtained with ROI sizes in the range between 30% and 40% (MSENL of 0.21 and 0.79 respectively). The  
 

Table 1. Nonlinear fitting parameters of ( ),E mµ  for water according to Equation (4). 

Emax (keV) 
Parameters 

ζ  (1023 cm−3) λ  (10−6 cm−1 MeVτ) τ  

120 3.34 ± 8.62 6.62 ± 0.65 2.90 ± 0.02 

135 3.34 ± 7.34 6.72 ± 0.59 2.90 ± 0.01 

 
Table 2. Levels of Xi used for experimental designs. 

X1 X2 X3 X4 Rec. Modea Kernela Smart Filtera 

3.69 0.96 −2.30 −4.63 X5 (STD) X9 (RF1) X14 (SF1) 

3.91 1.00 −1.20 −2.33 X6 (HR) X10 (RF2) X15 (SF2) 

4.61 3.00 0  X7 (MAC) X11 (RF3)  

5.52 3.11   X8 (2segs) X12 (RF4)  

5.99 4.26    X13 (RF5)  

6.68 4.42      
aXi = 1 if the level between parentheses is chosen, otherwise Xi = 0. 
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Figure 3. Linear attenuation coefficient av- 
eraged over the local spectrum of photons at 
depth within water phantom. 

 

 
Figure 4. Attenuation associated with phan- 
tom’s thickness for levels of energy of inci- 
dent beam. The effective attenuation coeffi- 
cients ( effµ∗ ) were obtained from curves fitting. 

 

 
Figure 5. Fitting of the analytical model in 
Equation (4) with solid curve and data for 
water (black triangles). 

 
effect of ROI size on the model parameters is shown in Figure 7. The parameters 2a  and 4a  show a similar 
dependence on ROI size, and both interchange their significance alternatively, i.e., for a given ROI size, when 
the confidence interval of 2a  crosses zero, those corresponding to 4a  do not. This is perhaps due to a kind of 
interaction between the slice thickness and the FOV with respect to their influence on image noise. In Table 3, 
there appears the nonlinear model’s parameters for the ROI size of 30% which has the highest 2

ajNLR . 
In order to select an appropriate ROI size, it is very important to take into account that the ROI should be 

large enough for sufficient pixel sampling and to avoid the effects of correlated pixels, but small enough to mi- 
nimize the effects of non-uniformity in CT number (e.g. by beam hardening). From results obtained here, a ROI 
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size of 30% satisfies the mentioned criteria and the better noise model according to the used CT machine, with 
adequate physical meaning of parameters. 

The expected value of a0 = 2.35 is in the range of 0.44 to 4.25 HU mAs0.53 cm0.7, which means that the factors 
(not included as predictors) associated with CT system components, contribute significantly to the increase of 
noise more than twice the product of the powers of the predictors. From confidence intervals of Table 3, the 
factors 1F , 2F  and 3F  influence significantly on image noise. Comparing the values of parameters estimated 
with ROI sizes different than 30% in Figure 7, it can be observed that all values of 1a  and 3a  are contained 
between the corresponding confidence intervals shown in Table 3, however 2a  and 4a  are contained between 
the corresponding confidence intervals in Table 3 only for ROI sizes between 30% and 60%. In the Figure 8 are 
presented fractional power functions of these quantitative factors, where for any value of 1F  and 4F , noise 
will be reduced in at least a 25%, with regard to the product of the other power functions. The factor that most 
reduces noise is 1F , down to 2% for 800 mAs, but the dose to the patient increases with the increase of the mAs. 
The improvement of image quality at the expense of the tube load increment should be made with caution. This 
is valid for the use of modern Automatic Exposure Control technologies, which should be rigorously evaluated 
prior to its clinical implementation, although significant dose reductions can be obtained with acceptable diag-
nostic image quality [14]. The estimated noise is directly proportional to F2 (effective attenuation). However, the 
increase of the slice thickness reduces the noise, but for all the levels of 3F  the value of the power function will 
be greater than unity or just one, for instance, slice thicknesses lower than 0.5 cm at least will duplicate the noise 
level. The power function of 3F  provides the greater contribution to noise after the coefficient of proportional-
ity and the power function of F2. Because of this, higher slice thicknesses are preferable if low noise images are 
of interest. The contribution of F2 to noise is the same for both 120 kV and 135 kV. Bearing in mind the confi-
dence intervals of the nonlinear parameters (see Table 3), the proposed model does not present significant dif-
ferences with the parameters of quantitative factors with regard to other reported models [1]-[3], where the noise 
is directly proportional to the inverse of the square root of the mAs and the pixel size. The parameter of 4F  
does not include the value −0.5 as it could be expected [2]. This confirms the importance of  
 

 
Figure 6. Effect of the ROI size over the 

2
ajNLR . 

 

 
Figure 7. Effect of the ROI size over the 
parameters of quantitative factors. 
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Table 3. Nonlinear noise model parameters and confidence 
intervals (ROI size of 30%). 

Parameters 
( )0 15ia i = 

 
Confidence Intervals, 95% 

Lower Upper 

2.35 0.44 4.25 

−0.53 −0.68 −0.38 

0.55 0.23 0.87 

−0.64 −0.80 −0.49 

−0.06 −0.28 0.16 

−0.33 −0.70 0.04 

0.43 0.01 0.85 

−0.39 −0.83 0.06 

−0.07 −0.46 0.31 

−0.77 −1.20 −0.35 

−0.50 −0.86 −0.13 

−0.38 −0.75 −0.01 

0.03 −0.30 0.36 

0.16 −0.14 0.45 

−0.05 −0.79 0.68 

−0.03 −0.67 0.60 
 

 
Figure 8. Effect of fractional power functions of quantitative factors: (a) tube current, (b) attenuation, (c) 
slice thickness and (d) field of view. 

 
the estimation of model parameters for specific machines of CT, for proper delimitation of optimization strate-
gies and more effective protocols at a radiology department level. Some qualitative factors have not a significant 
contribution to the noise model, as seen by its parameters: 5a , 7 8a a−  and 12 15a a− . The qualitative factors of 
high resolution mode (HR), “Fine” and “Extra Fine” kernels (RF4 and RF5) contribute also to the increment of 
the noise, which coefficients are 0.43

6 1.54HRf F= = , 0.03
4 12 1.03RFf F= =  and 0.16

5 13 1.17RFf F= =  respectively, 
where the mode “HR” influences noise significantly. The remaining modes of reconstruction STD, MAC and 
2segs ( 0.33

5 0.72STDf F −= = , 0.39
7 0.68MACf F −= =  and 0.07

2 8 0.93segsf F −= = ) and kernels RF1, RF2 and RF3 
( 0.77

1 9 0.46RFf F −= = , 0.5
2 10 0.61RFf F −= =  and 0.38

3 11 0.68RFf F −= = ) are recommendable for low noise levels. 

3.2.3. Validation of Nonlinear Model 
The model validation was made by graphical residual analysis. The graphs of dispersion of weighted residuals 
versus predictor variables are presented from Figure 9 to Figure 10, which do not exhibit any systematic struc- 
ture, indicating that the model fits well to the data. The graph of weighted residuals considered with lag in Fig- 
ure 11(a) allows demonstrating the independence of the errors, since there is not a deterministic distribution 
pattern; the points show a random dispersion. The graph of sequential weighted residuals of Figure 11(b) dem- 
onstrates the random behaviour of the same ones; this is due to the fact that the experimental design and the col-  
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Figure 9. Graphical analysis of weighted residuals associated with predictors: (a) Tube current F1, (b) attenuation 
with beam hardening F2, (c) slice thickness F3 and (d) field of view F4. 

 

 
Figure 10. Graphical analysis of weighted residuals associated with qualitative fac- tors. Reconstruction Modes: (a) 
Standard X1, (b) High Resolution X2, (c) Motion Compensation X3 and (d) reconstruction of two frames per tube 
rotation X4. Kernels: (e) Extra smoothing X5, (f) Smooth X6, (g) Standard X7 and (h) Fine X8. Smart Filters: (i) Ex-
tra Fine X9, (j) Smooth X10, (k) Middle X11. 

 

 
Figure 11. Analysis of weighted residuals: (a) with lag = 1, (b) sequential, (c) estimated noise and (d) histogram. 

 
lection of information were randomized.  

That is, the measurements were done sequentially without the gradual increase of any factor and the combina- 
tions of them were established randomly in the sequence. 

In Figure 11(c), it is shown the weighted residuals versus the values of the regression function in order to 
verify the functional sufficiency of the model. Also they can be used to evaluate the assumption of homoscedas- 
ticity of the random errors. The residuals are distributed approximately in equal quantities between the negative 
and positive values. Systematic patterns are not observed graphically. The probabilistic distribution of weighted 
residuals is normal, as presented in Figure 11(d), this suggests that the process of estimation of the parameters 
of the model by NLRR turned out to be optimal. 

4. Conclusions 
A more inclusive nonlinear model of image noise in CT was obtained. The Least Square Robust Regression 
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constitutes an appropriate method for the estimation of image noise. Further research should be conducted for 
other image quality descriptors. The product of fractional power functions allows the quantitative analysis of the 
effect of scanning factors such as tube current, attenuation, slice thickness and FOV. The dependence of image 
noise from the square root of the inverse of tube current, attenuation and slice thickness was confirmed, but the 
FOV showed non-significant effect on image noise. Although the functions of the reconstruction algorithms are 
unknown, the use of binary variables allows to identify their association with the image noise analytically and 
the estimation of related coefficients for each one. 

New effective attenuation coefficients were estimated, regarding beam hardening effect on noise, which con- 
tributes significantly to noise increase as expected. 

The ROI sizes up to 70% of diameter or FOV did not affect the adjusted coefficient of determination, but the 
parameters of attenuation and FOV showed variations that could lead to physical misinterpretation. A satisfac- 
tory ROI size from 30% to 60% was identified. The coefficient of proportionality characterizes how noise-prone 
can be a CT unit in particular. The type of model proposed provides a tool for identification of alternative pro- 
tocols with optimisation purposes. 
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