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Abstract

During the assembly of internal combustion engines, the specific size of crankshaft shell bearing is
not known until the crankshaft is fitted to the engine block. Though the build requirements for the
engine are consistent, the consumption profile of the different size shell bearings can follow a
highly volatile trajectory due to minor variation in the dimensions of the crankshaft and engine
block. The paper assesses the suitability of time series models including ARIMA and exponential
smoothing as an appropriate method to forecast future requirements. Additionally, a Monte Carlo
method is applied through building a VBA simulation tool in Microsoft Excel and comparing the
output to the time series forecasts.
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1. Introduction

Inventory control is an essential element within the discipline of operations management and serves to ensure
sufficient parts and raw materials are available for immediate production needs while minimising the overall
stock holding at the point of production and throughout the supply chain. Methodologies including Materials
Requirements Planning and Just-in-Time Manufacturing have evolved to manage the complexities of supply
management supported by an extensive academic literature. Similarly extensive study into the inventory profiles
for spare part and service demand has also been prevalent over the last 50 years.

This paper presents a study of an inventory process that does not fit into the standard inventory models within
conventional operations management or for service and spare parts management. In high volume internal com-
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bustion engine manufacturing, the demand profile for crankshaft shell bearings follows a highly variable demand
profile though there is consistent demand for the engines. The paper reviews the application of both time series
analysis and a Monte Carlo simulation method to construct a robust forecast for the shell usage consumption.
Section 2 presents the problem statement. Time series analysis is reviewed in Section 3. The Monte Carlo simu-
lation method written in Microsoft Excel VBA is presented in Section 4. Forecasts generated by both the time
series models and the simulation are assessed in Section 5 and concluding remarks are presented in Section 6.
The analysis utilises usage data provided by a volume engine manufacturer over a 109-week production build
period.

2. Problem Statement

The construction of petrol and diesel engines involve fitting a crankshaft into an engine block and attaching pis-
ton connecting rods to the crankshaft crank pins [1]. The pistons via the connecting rods turn the crankshaft
during the power stroke of the engine cycle to impart motion. Shell bearings are fitted between the crank jour-
nals and crank pins and the engine block and connecting rods. During engine operation a thin film of oil under
pressure separates the bearing surface from the crankshaft journals and pins. For the smooth operation of the en-
gine, the thickness of the oil film has to be consistent for each crank journal and pin. Though the crankshaft,
connecting rods and engine block are machined to exceptionally tight tolerances minor deviations in the dimen-
sions of the machined surfaces mean that the thickness of the oil film will not be consistent across the individual
crank journals and pins.

To overcome the problem, the engine designer specifies a range of tolerance bands within an overall tolerance
for the nominal thickness of the shell bearing. Similar tolerance bands are specified for the machined surfaces of
the engine block and crankshaft. A shell bearing whose thickness is defined within a specific tolerance band is
identified by a small colour mark applied during the shell manufacturing process. The engine designer creates a
“Fitting Matrix”, where the combination of the tolerance bands for the engine block and crankshaft are com-
pared against which the appropriate shell bearing can be selected. During the engine assembly, the selection
process is automated. Embossed marks on the crankshaft and engine block specify the tolerance bands of each
machined surface. The marks are either optically scanned or fed into a device that creates a visual display of the
colours of the shells to select for assembly. Selection is rapid and does not impede the speed of engine assembly.
Table 1 illustrates the set of tolerance bands and associated “Fitting Matrix” for the selection of main bearing
shells for a typical engine.

Over time the usage profile for some shells thicknesses can show considerable variation against a consistent
demand for the engine itself. The high variation poses a difficult procurement problem for engine assemblers
that support high volume automotive production. It is difficult to determine what the usage consumption for high
usage shells will be over a future time horizon as the shell bearings can be globally sourced and can require lead
times of between 3 and 6 months.

Figure 1 illustrates the consumption trajectory of journal shell sizes over a 109-week sample period that has
high demand profiles. The shells are identified by the colour green and yellow. The green shell consumption is
highly volatile with sporadic spikes in demand. The yellow shell consumption after showing a rapid decline over
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Figure 1. Time series trajectories for green and yellow shell consumption.
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Table 1. Bearing selection-fitting matrix.

Dimension Table

Engine Block: Main Bearing Crankshaft Main Bearing Main Bearing
) Upp Tol +0.024 um ) Upp Tol +0.008 um Thickness Upp Tol +0.012 pm
Dia =59 mm Dia =55 mm =2mm
Lwr Tol =0 um Lwr Tol —0.016 um Lwr Tol —0.06 um
Mark Range (pum) Mark Range (pm) Colour Range (pum)

A 0 +6 1 +8 +4 Blue +12 +9

B +6 +12 2 +4 0 Black +9 +6

C +12 +18 3 0 -4 Brown +6 +3

D +18 +24 4 -4 -8 Green +3 0

5 -8 -12 Yellow 0 -3

6 -12 -16 Pink -3 -6

Fitting Matrix

Main Bearing
A B @ D
1 Pink Pink/Yellow Yellow Green
2 Pink/Yellow Yellow Green Green/Brown
3 Yellow Green Green/Brown Brown
Engine Block
4 Green Green/Brown Brown Black
5 Green/Brown Brown Black Black/Blue
6 Brown Black Black/Blue Blue

the first 30 weeks of the sample period settles to lower and less volatile demand than the green shell.

3. Time Series Analysis

Succinctly, a time series is a record of the observed values of a process or phenomena taken sequentially over
time. The observed values are random in nature rather than deterministic where the random behaviour is more
suitable to model through the laws of probability. Systems or processes that are non-deterministic in nature are
referred to as stochastic where the observed values are modelled as a sequence of random variables. For-
mally:

A stochastic process {Y (t);t eT} is a collection of random variables where T is an index set for which all
the random variables Y (t) , teT,are defined on the same sample space. When the index set T represents time,
the stochastic process is referred to as a time series [2].

While time series analysis has extensive application, the purpose of the analysis is two-fold [3]. Firstly to un-
derstand or model the random (stochastic) mechanism that gives rise to an observed series and secondly to pre-
dict or forecast the future values of a series based on the history of that series and, possibly, other related series
or factors.

Time series are generally classified as either stationary or non stationary. Simplistically, stationary time series
process exhibit invariant properties over time with respect to the mean and variance of the series. Conversely,
for non stationary time series the mean, variance or both will change over the trajectory of the time series. Sta-
tionary time series have the advantage of representation by analytical models against which forecasts can be
produced. Non stationary models through a process of differencing can be reduced to a stationary time series
and are so open to analysis applied to stationary processes [4].
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An additional method of time series analysis is provided by smoothing the series. Smoothing methods esti-
mate the underlying process signal through creating a smoothed value that is the average of the current plus past
observations.

3.1. Analysis of Stationary and Non-Stationary Time Series

Stationary time series are classified as having time invariant properties over the trajectory of the time series. It is
these time invariant properties that are stationary while the time series itself appears to fluctuating in a random
manner. Formally, an observed time series {Y (t);t € T} is weakly stationary if the following properties hold:

1) E[Y(t)]=uVteT
2) Var[Y(t)]=UZ<oo
3) Cov(Y,Y,j)=7; vt jeT

Further, the time series is defined as strictly stationary if in addition to Properties 1-3, if subsequently:

4) The joint distribution of {Y (t,),Y (t,),~--Y (t )} is identical to {Y(t,+h),Y (t,+h),--Y (t, +h)} for
any t,heT.

Conversely, a non-stationary time series will fail to meet either or both the conditions of Properties 1 and 2.

Property 3 states that the covariance of lagged values of the time series is dependent on the lag and not time.
Subsequently the autocorrelation coefficient p, at lag k is also time invariant and is given by

0 :COV(yl,ka):ﬁ
Covar(y)  n

The set of all p,, k=0,1,2,---,n forms the Autocorrelation Function or ACF. The ACF is presented as a
graphical plot. Figure 2 provides an example of a stationary time series with the associated ACF diagram. Suc-
cessive observations of a stationary time series should show little or no correlation and is reflected in the ACF
plot showing a rapid decline to zero.

Conversely, the ACF of a non stationary process will show a gentler decline to zero. Figure 3 replicates the
ACF for a non-stationary random walk process.

Stationary time series models are well defined throughout the time series literature where a full treatment of
their structure can be found. Representative references include [5]-[8].

A consistent view of a time series is that of a process consisting of two components a signal and noise. The
signal is effectively a pattern generated by the dynamics of the underlying process generating the time series.
The noise is anything that perturbs the signal away from its true trajectory [7]. If the noise results in a time series
that consists of uncorrelated observations with a constant variance, the time series is defined as a white noise
process. Stationary time models are always white noise processes where the noise is represented by a sequence
of error or shock terms {51} where g ~ N (0, o). The time series models applicable to stationary and non sta-
tionary time series are listed in Table 2.

From Table 2, it is seen that by setting the p, d, and q parameters to zero as appropriate, the MA(q), AR(p)
and ARMA(p, q) processes can be presented as sub processes of the ARIMA(p, d, q) process and is illustrated in
the hierarchy presented in Figure 4. The stationary processes can be thought of as ARIMA processes that do not
require differencing.

@)

Table 2. Description of time series models.

1) Moving Average Process MA(q): The time series y; is defined as the sum of the process mean and the current shock value plus a
weighted sum of the previous “q” past shock values.

2) Autoregressive Process AR(p): The time series y; is presented as a linear dependence of weighted “p” observed past values summed
with the current shock value and a constant.

3) Autoregressive Moving Average ARMA(p, q): The time series y; is presented as a mixture of both moving average and autoregressive
terms. ARMA(p, q) processes require fewer parameters when compared to the AR or MA process (Chatfield, 2006).

4) Autoregressive Integrated Moving Average ARIMA (p, d, g): A non stationary time series is transformed into a stationary time series
through a process of differencing. The ARIMA process differences a time series at most d times to obtain a stationary ARMA(p, q) process.

()
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Time Series Plot of a Stationary Process
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Figure 2. Stationary time series—example ACF.

Time Series Plot of a Random Walk
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Figure 3. Non-stationary time series example ACF (Random walk).
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Figure 4. Time series model hierarchy.

Moreover, the ARIMA process reveals time series models that are not open to analysis by the stationary re-
presentations. Two such models are included in Figure 4, the random walk model, ARIMA(O, 1, 0) and the ex-
ponential moving average model, ARIMA(O, 1, 1).

Table 3 returns the modelling processes that are applied to stationary and non-stationary time series. The
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Table 3. Synthesis of time series models.

Process Model Stationary Condition

Ye=H+é— '91‘9171 - '92‘9&2 T qupq

MA(q) None: MA(q) process is always stationary.

Y =u+0(B)s,
yt:5+¢1yl—l+¢2yl—2+‘“+¢pylfp+€t 2
AR , <1
® ®(B)y,=5+¢, |z:1:¢
> >
Y. = o+ ¢iyt—i +é - gigt—i
ARMA(p, q) =) = AR(p) component is stationary.
®(B)y,=5+0(B)s,
a The AR(p) component is stationary after the series is
ARIMA(p, d, q) ®(B)(1-B) y,=5+0(B)¢, ® pdifferenced d timreys.

equations of the models are replicated in their standard form and in terms of the backshift operator B (see Ap-
pendix 1). Time series models expressed in terms of the backshift operator are more compact and enable a re-
presentation for the ARIMA process that has no standard form equivalent.

3.2. Model Identification

Initially, inspection of the ACF of a time series is necessary to determine if the series is stationary or will require
differencing. There is no analytical method to determine the order of differencing though empirical evidence
suggests that generally first order differencing (d = 1) is sufficient and occasionally second order differencing (d
= 2) should be enough to achieve a stationary series [7].

The ACF is also useful to indicate the order of the MA(q) process as it can be shown that for k >q, p,=0.
Hence the ACF will cut off at lag q for the MA(q) process. The ACF of the AR(p) and ARMA(p, q) processes
both exhibit exponential decay and damped sinusoidal patterns. As the form of the ACF’s for these processes is
indistinguishable, identification of the process is provided by the Partial Autocorrelation Coefficient (PACF).

The properties of the PACF are discussed extensively in the time series literature and in particular a compre-
hensive review provided in [9]. Descriptively, the PACF quantifies the correlation between two variables that is
not explained by their mutual correlations to other variables of interest. In an autoregressive process, each term
is dependent on a linear combination of the preceding terms. In evaluating the autocorrelation coefficient p, ,
the term y; is correlated to v, , . However, y; is dependent on y,-; which in turn is dependent on vy, , and the
dependency propagates throughout the time series to vy, , . Consequently, the correlation at the initial lag of the
time series propagates throughout the series. The PACF evaluates the correlation between x; is and x,_,
through removing the propagation effect.

The PACF can be calculated for any stationary time series. For an AR(p) process, it can be shown that the
PACF cuts off at lag p. The PACF for both the MA(q) and ARMA(p, q) process the PACF is a combination of
damped sinusoidal and exponential decay.

The structure of a stationary time series is determined through inspection of both the ACF and PACF dia-
grams of the series. Table 4 presents the classification of the stationary time behaviour (adapted from [7] [8]).

Neither the ACF nor PACF yield any useful information with respect to identifying the order of the ARMA (p,
q) process. Though there are additional methods that can aid the identification of the required order of the
process [7] [8] including the extended sample autocorrelation function (ESACF), the generalised sample partial
autocorrelation function (GPACF), and inverse autocorrelation function (IACF) as suitable methods for deter-
mining the order of the ARMA model. However, with respect to investigating the structure of a time series both
sets of authors agree that with the availability of statistical software packages it is easier to investigate a range of
models with various orders to identify the appropriate model and forego the need to apply these additional me-
thods.

The estimation of the parameter coefficients ¢ and 6 can be estimated through Maximum Likelihood Es-
timation (MLE). An extensive explanation of the MLE application to estimate the parameters of each the models

()
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Table 4. Classification of stationary time series behavior.

Model ACF PACF

Infinite exponential decay and/or damped

MA(q) Cuts off after lag q sinusoid—tailing off

Infinite exponential decay and/or damped

AR(p) sinusoid—tailing off Finite-cuts off after lag p
ARMA(p,q) Infinite exponential decay and/or damped Infinite exponential decay and/or damped
P4 sinusoid—tailing off sinusoid—tailing off

listed in Table 2 is provided in [10]. Additionally the parameters of the AR(p) process can be calculated with
the Yule Walker Equations [4] [9].

The robustness of a derived model is assessed through residual analysis of the model. For the ARMA(p, q)
process the residual are obtained from

& =Y, _[5‘"'2’):&%1 _Zq:égtlJ 2

If the residual values exhibit white noise behaviour, the ACF and PACF diagrams of the residual values
should not show any discernable pattern then the appropriate model has been chosen and the correct orders of p
and q have been correctly identified.

3.3. Generation of Forecasts

Establishing a model that describes the structure of an observed time series enables meaningful forecasts to be
drawn from the model. Forecasting methods for each of the models in Table 2 are succinctly described in [11]
and are defined as follows:

AR(p) Process:

The forecast for the AR(p) process is based on the property that the expectation of the error terms &, are
zero. The forecast is developed iteratively from the previous observation to create a one step ahead forecast. The
step ahead is denoted by

r=1: 91 (l):5+¢1yt—l+¢2yl—2+”'+¢pyt—p+l

T=2: 9{ (2):5+¢19t (1)+¢2y172 +'”+¢pyl—p+2

At each successive iteration, the most recent observation drops out of the forecast and replaced by the pre-
vious forecast value. At 7 > p, each term is a forecasted value and continuing the iteration process, the forecast
converges onto the mean of the AR(p) process.

MA(q) Process:

The expectation of the &, terms in the MA(q) process follow a white noise process and so the expectation of
all future values of &, ,i> 0 is zero. Hence for t > ¢ the forecast of a MA(q) process is just the mean value of
the process, u .

ARMA(p, q) Process:

The forecast for the ARMA(p, q) process is the combination of the results from the pure AR(p) and MA(q)
processes. For t > g, the error terms completely drop out of the forecast.

3.4. Smoothing Methods

Smoothing methods provide a class of time series models that have the effect of reducing the random variation
of a time series with the effect of exposing the process signal within the time series. A variety of smoothing
models that average the series continually over a moving span of observed values or fit a polynomial approxi-
mation to a restricted interval of the series are presented in [12].

Of the smoothing techniques available, the exponential smoothing model has proved useful due to it’s sim-
plicity of application. First order exponential smoothing is defined by the following recurrence relation:



R. Davies et al.

Yo =AY, +(1-2) ¥y (3)

where A is the smoothing factor (0<4<1).

Effectively, first order exponential smoothing is a linear combination of the current observation plus the dis-
counted sum of all previous observations due to the smoothing factor 4. Moving back through the recursive
relation (1—4) geometrically decays and so the older observations have a diminishing contribution to the smooth-
ed estimation of the current value.

Though the recursive relation defined in Equation (3) can be expressed as an ARIMA(O, 1, 1) model, the me-
thod was initially developed from first principles in [13] as a means of forecasting inventory.

First order exponential smoothing will for trending data lag behind an increasing trend and lead a decreasing
trend. Second order exponential smoothing overcomes this problem as does increasing the value of the smooth-
ing factor [7]. However, providing the time series is showing no systematic trend, first order exponential smoothing is
an adequate model to analyse a time series [6].

The forecast generated from first order exponential smoothing is just the value of the smoothed current value
and in principle would extend over all future values. However, as more observed values become available it
makes sense to update the forecast.

4. Simulation Application to Evaluate Consumption Rate (Monte Carlo Method)

Frequently in real world scenarios due to the complexity of the system under investigation it may not be possible
to evaluate the systems behaviour by applying analytical methods. Under such conditions an alternative ap-
proach to model such system is through creating a simulation. Succinctly, simulation methods provide a alter-
native approach to studying system behaviour through creating an artificial replication or imitation of the real
world system [14]. The applications where simulation methods may be useful is extensive and include diverse
disciplines such as manufacturing systems, flight simulation, construction, healthcare, military and economics
[15] [16].

Systems or processes that can be modelled through an underlying probability distribution are open to simula-
tion through the Monte Carlo method [17]. The method simulates the behaviour of a system by taking repeated
sets of random numbers from the underlying probability distribution of the process under investigation. The de-
velopment of the method is attributed to the work of Stanislaw Ulam and John von Neumann during the late
1940’s to aid their work in atomic physics for the development of nuclear weapons. Analytical methods were
proving difficult if not impossible to apply and Ulam turned to random experimentation to elicit system attri-
butes and behaviour [18].

A specific application of the Monte Carlo method is dependent on the nature of the underlying probability
distribution of the system or process under investigation. However the method application is consistent and will
follow the steps outlined in Table 5.

Application of Monte Carlo Method to Shell Consumption Case Study

Visual inspection of the time series trajectories of the shell consumption does not yield an obvious probability
distribution so Stage 1 of the Monte Carlo process begins by examining the histograms of the observed series.

Table 5. Monte Carlo method process stages (Adapted from [17]).

Stage 1 Define a distribution of possible inputs for each input random variable: Requires recognition of the underlying probability
distribution of the process. This may be directly apparent or may require empirical observation of the process under investigation.

Stage 2 Generate outputs randomly from those distributions: Requires the selection of an appropriate random number generator to

model the observed probability distribution. Random number generators are generally available in most statistical software packages and
Micro Soft Excel.

Stage 3 Perform a deterministic computation using that set of outputs: Involves computing the desired output variable or variables from
the generated random numbers.

Stage 4 Aggregate the results of the individual computations into the final result: The aggregation process is dependent on the specific
simulation but could be as straightforward as computing the average of the simulated results.
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Figure 5 returns the histograms of the consumption of the Green and Yellow Shell consumption for the full tra-
jectory of observed values. The histograms for each shell indicate the data is negatively skewed and so drawing
random numbers from a skewed normal distribution for the simulation is deemed appropriate. It can also be
shown that the distributions for shorter time spans of the observed values are also skewed.

Stages 2 to 4 of the Monte Carlo process are embedded in a Visual Basic for Applications (VBA) program
created in Microsoft Excel to carry out the simulation. Figure 6 provides a schematic of the VBA simulation

programme.

The VBA programme incorporates a skewed normal random number generation algorithm developed in [19]
that generates random numbers based on the skew value of sample input data. The Excel spreadsheet contains
the consumption history for each shell. Upon invoking the simulation, the required sample and forecast periods

Distribution of Green Shell Consumption Distribution of Yellow Shell Consumption
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Figure 5. Histograms of green and yellow shell consumption.
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are read from input data in the spreadsheet. For each shell, against the sample period, the skew, median and
standard deviation values are calculated and input into the random number generator. For each week of the sam-
ple period, the generator calculates 100 positive random numbers to create an average simulated consumption
for each week. Since it is impossible to have negative consumption, negative random numbers are rejected.
Against each weekly average, an overall average is computed to create the forecast signal.

The random number generator satisfies Stage 2 of Monte Carlo process, while Stages 3 and 4 are satisfied
through computation of the forecast signal.

Additional functionality is provided in the simulation tool that over the forecast period will generate orders
taking into account current stock levels, safety levels and orders already placed.

5. Generation of Forecasts for the Bearing Shell Consumption

The time series and the Monte Carlo methods described in the preceding sections are applied to the historical
shell bearing consumption usage to generate forecasts to create orders to satisfy future engine build requirements.
The forecasts of each model are compared to determine if there is either a consistent or significant differences
between each method.

5.1. ARIMA (p, d, q)

The purpose of the ARIMA(p, d, q) process is to establish the underlying model that describes the time series
through specifying the p and q parameters once the appropriate order of differencing d has identified a stationary
process. Model identification is primarily based on inspection of the ACF and PACF diagrams and referencing
the Classification Table (Table 4). The robustness of the forecast generated from the identified model is deter-
mined by Residual Analysis where primarily if the ACF and PACF diagrams of the residual values show no
discernible pattern, the forecast can be assessed as robust [2]-[11]. It is considered that the identification of a
time series model requires both judgement and experience and it is recommended that the iterative model build-
ing process illustrated in Figure 7 is followed [8] [9].

The forecasting process is illustrated against the Green Shell consumption replicated in Figure 1. The analy-
sis is carried out using the Minitab® statistical package. The ACF and PACF diagrams are replicated in Figure 8
and with reference to Table 4 indicates that the time series follows an AR(1) process.

Table 6 returns the output generated against 40 observations. The ACF and PACF diagrams of the residual
values are returned in Figure 9 and do not show any discernible pattern. The Chi Square statistics appear to be

Table 6. Model estimation for green usage.

ARIMA Model: Green

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.6940 0.1168 5.94 0.000

Constant 368.1 104.8 351 0.001
Mean 1203.0 342.5

Number of observations: 40

Residuals: SS = 16,691,055 (backforecasts excluded)
MS =439,238; DF = 38

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 8
Chi-Square 14.9 21.1 239 *
DF 10 22 34 *
P-Value 0.135 0.518 0.902 *
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Figure 9. ACF and PACF for residuals of the AR(1) process.

low and diminish as the number of lags increases.

Evidence therefore exists to support that the residuals follow a white noise process and the AR(1) is a robust
representation of the observed time series.

The AR(1) process is defined by

y, =368.1+0.694y, ,

The forecast for the process will converge onto the process mean, x=1203.
The procedure applied to the Yellow shell consumption also resulted in an AR(1) process. Though the details
are omitted, the AR(1) process is defined by

y, =86.73+0.8665Y, ,

The forecast for the process will converge onto the process mean, u =649.

5.2. Exponential Smoothing

The application the first order exponential smoothing method requires a choice of smoothing factor A and the
number of observations to smooth against. There is no analytical method to determine the optimum choice of
smoothing factor and it is necessary to investigate various levels of A and choose the smoothing factor that
minimises the squared sum of the forecast errors e, defined by

Similarly there is no method to determine the optimum number of observations to forecast against. The influ-
ence of past the observations decays geometrically over time and the impact of the decay can be evaluated
against a set of observations.

Table 7 returns generated forecasts for the varying levels of 1 against both the Green and Yellow shell data
where the full set of 109 observations are used. Due to the magnitude of errors, the square root of SS. (1) is
returned in Table 7.

There is a distinct contrast between the two forecasts. Forecast accuracy for the Green consumption increases
as A increases and is a consequence of the volatility of the series. For the Yellow consumption forecast accu-
racy is assured at A=0.4, where SS_ (1) takes the minimum value. Evident for both time series is that the
forecast is influenced by the level of the smoothing factor A . The choice of smoothing factor for the Yellow
forecast is defined by the existence of a minimum SS_ (). The choice of smoothing factor for the Green fore-
cast is not so clear. By inspection of Table 6, choosing A4 =0.6 would appear appropriate as the forecast re-
ducesat A1 =0.8 drops slightly.

Table 8 returns the forecast generated at different observation levels for specific choices of smoothing factor
A.

Variation in the forecast level only becomes apparent at the lower number of observations and the variation is



R. Davies et al.

insignificant relative to the level of each forecast and the width of the confidence intervals.
The evidence from Table 7 and Table 8 suggests that the level of smoothing factor is critical with respect to
generating a robust forecast while the choice of the number of observations to forecast against is not critical.

5.3. Monte Carlo Simulation

Table 9 returns output from the simulation programme for a range of sample periods for both the Green and
Yellow shell consumption. What is clear from both sets of simulations is that for any sample period the simu-
lated forecast signals are consistent. For the Green simulation as the sample period increases, volatility of the
consumption is exposed to the simulation. As the sample period increases, the standard deviation increases re-
sulting in an inflated forecast relative to the sample mean. For the Yellow simulation, as the sample period is

Table 7. Forecasts generated against smoothing factor level.

Green Forecast Summary (N = 109)

Yellow Forecast Summary (N = 109)

A Forecast LCL UCL Con Int  Sqrt (SSe(4)) A Forecast LCL UCL Con Int  Sqrt (SSe(1))
0.2 1095.82 —607 2798 3405 9352 0.2 502.18 —246 1251 1497 4273
04 1209.07  -218 2636 2855 8048 04 644.26 -13 1302 1315 3958
0.6 1265.79 —-16 2547 2563 7423 0.6 752.99 107 1399 1292 4034
0.8 1262.91 37 2489 2452 7112 0.8 824.60 166 1483 1318 4256

Table 8. Forecasts generated against number of observations.
Green Yellow
4=0.6 Forecast LCL UCL Con Int A=04 Forecast LCL UCL Con Int
N =109 1265.789  -15.6988  2547.277  2562.975 N =109 6442553  -13.0679 1301579  1314.646
N =50 1265.789  -98.4743  2630.052  2728.526 N =50 6442553  100.0596  1188.451  1088.391
N =20 1265.789  251.1019  2280.476  2029.374 N =20 6442454 1719441 1116547  944.6025
N =10 1265.889  717.1508  1814.628  1097.477 N =10 643.8595  21.71238  1266.007  1244.294
Table 9. Simulated forecast output.
Green Simulation

Period Mean St Dev Simulated Forecast Signal

N =10 1055.70 27131 1014 1016 1010 1019 1021

N =15 933.53 483.71 921 918 924 917 926

N =20 1013.30 543.61 1271 1271 1269 1277 1264

N =25 1289.44 907.56 1760 1773 1759 1769 1779

Yellow Simulation

Period Mean St Dev Simulated Forecast Signal

N =10 461.00 279.72 475 478 486 475 481

N =15 344.40 292.29 442 445 448 454 445

N =20 328.95 257.37 422 419 415 416 425

N =25 391.08 303.48 503 498 501 507 496
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extended, the standard deviation has not increased significantly reflecting that over extended sample periods the
distribution of observations has a greater consistency.

The simulation process is sensitive to excessive volatility resulting in an inflated forecast signal. In principle
the affect of the volatility can be overcome by reducing an excessive observation to say within one or two stan-
dard deviations of the sample mean. The difficulty in this approach is creating a consistent rule that would apply
to all excessive observations. Setting a trigger point at for example 2.5 standard deviations above the sample, an
observation at 2.6 standard deviations would be excessively reduced while an observation at 3.5 standard devia-
tions may not be reduced enough.

5.4. Comparison of Forecasting Methods

Table 10 returns the observations of the shell consumption for the following 12 weeks beyond the original ob-
servations and the respective graphs of the time series is returned in Figure 10.

A summary of the output from each method is presented in Table 11 where the totals of each forecast are
compared to the total of the observed values over the forecast period.

The forecast signals are reasonably close to one another. Though the simulated forecast signal for the Yellow
shell is significantly lower than the signals generated by the time series methods, the total forecast is in excess of
the observed consumption over the forecast period. The consistency of the forecast signals imply that each mod-
elling processes is robust so indicating the reliability of the signals to generate purchase orders for the shells.

Table 10. Observed shell consumption over forecast period.

1 2 3 4 5 6 7 8 9 10 11 12 Total
Green 1433 1449 234 305 319 308 362 721 795 877 791 941 8535

Yellow 1115 509 111 491 445 374 387 603 457 432 89 59 5072

Table 11. Summary of forecast output.

Method Shell Forecast Signal Total Forecast Observed Consumption Excess
Green 1203 14,436 8535 5901
Autoregressive
Yellow 649 7788 5072 2716
Green 1265 15,180 8535 6645
Exponential Smoothing
Yellow 644 7728 5072 2656
Green 1275 15,300 8535 6765
Simulation
Yellow 475 5700 5072 628
Green Yellow
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Figure 10. Time series observations over forecast period.
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6. Conclusions

Historically, forecasting future demand of the crankshaft shells has proven exceptionally difficult. The purchas-
ing professionals within the case study environment having no experience of applying formal forecasting me-
thods placed orders on the crankshaft shell suppliers that were effectively a “best guess”. To mitigate the need to
guess, formal time series analysis was assessed as a suitable approach to modelling demand along with a Monte
Carlo simulation method coded in Microsoft Excel VBA.

The forecasts generated by the exponential smoothing and autoregressive process are remarkably close. The
simulation process though proving to be sensitive to volatile consumption with judgement of the physical time
series, an appropriate forecast signal can be found.

The advantage of the exponential smoothing method lies in its simplicity of execution. The method is open to
coding in VBA and would therefore negate the need for specialised software. Though for a volatile time series,
it may not be possible to find a smoothing factor that will maximise forecast accuracy. However, choosing a
smoothing factor between 0.5 and 0.7 should provide an appropriate forecast signal.

The ARIMA process requires interaction between the user and the modelling process as the ACF and PACF
have to be inspected to determine the structure of the model. Though in this study, the autoregressive models
were basic AR(1) models, future trajectories may follow more complex ARIMA models. It is recommended that
at least 30 observations of a time series are needed to enable the generation of a meaningful forecast. In the cur-
rent study, there is over two years of data available so the restriction did not apply. However, for the build of a
new engine, the application of the ARIMA model would be impeded until there are enough observations to
forecast against. Empirical evidence from this study confirms that the exponential smoothing model can produce
meaningful forecasts with at least 10 observations and would therefore provide a more robust method of fore-
casting with limited data sets.

The simulation method provides a seamless process to generate forecast signals and offers additional functio-
nality to generate orders. Execution of the simulation for the complete shell requirement is efficient and com-
pletes generally in less than two minutes. The simulation is sensitive to volatile demand and can over inflate the
forecast signal.

Monte Carlo methods have proved effective to model a diverse range of complex applications. While the me-
thod is consistent, the execution of the method to a specific application has to be tailored to that application. The
functionality of the simulation method created within this study is restricted to modelling the forecast consump-
tion of the crankshaft shells. Conversely, the time series methods are universally applicable.

Inspection of Table 11 confirms that for each of methods, the forecast signals are close to each other and so
with respect to forecast accuracy there is no one best method. Moreover, since the forecast signals are close to
one another, the purchasing professionals are confident that a robust forecast signal is being generated.

Currently, the appropriate choice of forecasting tool is the simulation method as it provides a seamless
process not only to generate the forecast signal but also generate the orders. Building a VBA programme around
the exponential smoothing process should in principle provide the functionality provided by the simulation me-
thod.

Inventory profiles exhibited by the consumption of the crankshaft shells are rare within the discipline of Op-
erations Management. Conventional though rigorous methods of inventory control that include Materials Re-
quirement Planning and Just-in-Time Kanban systems do not apply to the procurement of the crankshaft shells.
Moreover, due to the rarity of such inventory profiles, there does not appear to be any significant research into
this unique area of inventory management. The application of the Monte Carlo simulation method and time se-
ries analysis begins to close this gap.
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Appendix 1. Backshift and Differencing Operators

Frequently within the time series literature, time series are presented using difference operator denoted by V
and the lag or backshift operator B. Kirchgéssner et al. (2013) succinctly define the properties of both operators.
The essential properties of the operators are replicated as follows:

First order differencing is expressed using the difference operator V such that

VY =Y = Yias
Second order differencing is expressed as
VA = V(Y= Ye) = Ve = 2Yes + Vs
The backshift operator B has the effect of “delaying” a time series by one period, such that
BY: = ¥Yiu
Applying the backshift operator to y, ,, the following is obtained
By,, = B(BY,) = B%y,
In general
B“Y, = Ve (A1)
Applying property (Al) to a time series of the form
Ve =& +0¢&,+0,6 ,++06
yields a polynomial in B such that
Y, =(1+6,B+0,B” +--+6,8% )z, =0(B)s
The backshift operator can be related to a first order difference in the following way
VY =¥~ Ya = ¥ — By, =(1-B)y,
Second order differencing
V2, =V(Vy,)=(1-B)(1-B)y, = (1-B)’y,
If a series is differenced d times then it can be shown that

Vly, =(1- B)°I Y,
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