

Lattices Associated with a Finite Vector **Space**

Mengtian Yue

Office of Scientific Research, Langfang Teachers' College, Langfang, China Email: ymtxyz@126.com

Received 23 December 2013; revised 23 January 2014; accepted 30 January 2014

Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

(i) (ii) **Open Access**

Abstract

Let F_q^n be a *n*-dimensional row vector space over a finite field F_q . For $1 \le d \le n-1$, let W_0 be a *d*dimensional subspace of F_a^n . L(n,d) denotes the set of all the spaces which are the subspaces of F_a^n and not the subspaces of W_0 except $\{0\}$. We define the partial order on L(n,d) by ordinary inclusion (resp. reverse inclusion), and then L(n,d) is a poset, denoted by $L_0(n,d)$ (resp. $L_{R}(n,d)$). In this paper we show that both $L_{O}(n,d)$ and $L_{R}(n,d)$ are finite atomic lattices. Further, we discuss the geometricity of $L_o(n,d)$ and $L_R(n,d)$, and obtain their characteristic polynomials.

Keywords

Vector Space; Geometric Lattice; Characteristic Polynomial

1. Introduction

Let P be a poset. For $a, b \in P$, we say a covers b, denoted by b < a; if b < a and there doesn't exist $c \in P$ such that b < c < a. If P has the minimum (resp. maximum) element, then we denote it by 0 (resp. 1) and say that P is a poset with 0 (resp. 1). Let P be a finite poset with 0. By a rank function on P, we mean a function rfrom P to the set of all the integers such that r(0) = 0 and r(a) = r(b) + 1 whenever b < a. Observe the rank function is unique if it exists. P is said to be ranked whenever P has a rank function.

Let P be a finite ranked poset with 0 and 1. The polynomial $\chi(P, x) = \sum_{a \in P} \mu(0, a) x^{r(1)-r(a)}$ is called the characteristic polynomial of P, where μ is the Möbius function on P and r is the rank function of P. A poset *P* is said to be a lattice if both $a \lor b := \sup\{a, b\}$ and $a \land b := \inf\{a, b\}$ exist for any two elements $a, b \in P$. $a \lor b$ and $a \land b$ are called the join and meet of a and b, respectively. Let P be a finite lattice with 0. By an atom in *P*, we mean an element in *P* covering 0. We say *P* is atomic if any element in $P \setminus \{0\}$ is the join of atoms. A finite atomic lattice *P* is said to be a geometric lattice if *P* admits a rank function *r* satisfying $r(a \wedge b) + r(a \vee b) \leq r(a) + r(b)$, $\forall a, b \in P$. Notations and terminologies about posets and lattices will be adopted from books [1] [2].

The special lattices of rough algebras were discussed in [3]. The lattices generated by orbits of subspaces under finite (singular) classical groups were discussed in [4] [5]. Wang *et al.* [6]-[8] constructed some sublattices of the lattices in [4]. The subspaces of a *d*-bounded distance-regular have similar properties to those of a vector space. Gao *et al.* [9]-[11] constructed some lattices and posets by subspaces in a *d*-bounded distance-regular graph. In this paper, we continue this research, and construct some new sublattices of the lattices in [4], discussing their geometricity and computing their characteristic polynomials.

Let F_q be a finite field with q elements, where q is a prime power. For a positive integer n, let F_q^n be the n-dimensional row vector space over F_q . Let $1 \le d \le n-1$. For a fixed d-dimensional subspace W_0 of F_q^n , let $L(n,d) = \{P | P \text{ is a subspace of } F_q^n \text{ and is not of } W_0\} \cup \{\{0\}\}$.

If we define the partial order on L(n,d) by ordinary inclusion (resp. reverse inclusion), then L(n,d) is a poset, denoted by $L_o(n,d)$ (resp. $L_R(n,d)$). In the present paper we show that both $L_o(n,d)$ and $L_R(n,d)$ are finite atomic lattices, discuss their geometricity and compute their characteristic polynomials.

2. The Lattice $L_o(n,d)$

In this section we prove that the lattice $L_o(n,d)$ is a finite geometric lattice, and compute its characteristic polynomial. We begin with a useful proposition.

Proposition 2.1. ([12], Lemma 9.3.2 and [13], Corollaries 1.8 and 1.9). For $0 \le k \le m \le n$, the following hold:

1) The number of k-dimensional subspaces contained in a given m-dimensional subspace of F_q^n is

$$\begin{bmatrix} m \\ k \end{bmatrix}_q = \prod_{i=m-k-1}^m (q^i - 1) / \prod_{i=1}^k (q^i - 1).$$

2) The number of *m*-dimensional subspaces containing a given *k*-dimensional subspace of F_q^n is

$$\begin{bmatrix} n-k\\ m-k \end{bmatrix}_q$$

3) Let P be a fixed m-dimensional subspaces of F_q^n . Then the number of k-dimensional subspaces Q of F_q^n satisfying dim $(P \cap Q) = t$ is

$$q^{(m-t)(k-t)} \begin{bmatrix} n-m \\ k-t \end{bmatrix}_q \begin{bmatrix} m \\ t \end{bmatrix}_q.$$

Theorem 2.2. $L_o(n,d)$ is a geometric lattice. **Proof.** For any two elements $P, Q \in L_o(n,d)$,

$$P \lor Q = P + Q, P \land Q = \begin{cases} P \cap Q & \text{if } P \cap Q \not\subset W; \\ \{0\} & \text{otherwise.} \end{cases}$$

Therefore $L_o(n,d)$ is a finite lattice. Note that $\{0\}$ is the unique minimum element. Let P(n,d;j) be the set of all the *j*-dimensional subspaces of $L_o(n,d)$, where $1 \le j \le n$. Then P(n,d;1) is the set of all the atoms in $L_o(n,d)$. In order to prove $L_o(n,d)$ is atomic, it suffices to show that every element of $P(n,d;j)(1\le j\le n)$ is a join of some atoms. The result is trivial for j=1. Suppose that the result is true for j=l>1. Let $U \in P(n,d;l+1)$. By Proposition 2.1 and $\dim(W_0 \cap U) \le l$, the number of *l*-dimensional subspaces of $L_o(n,d)$ contained in U at least is

$$\begin{bmatrix} l+1\\ l \end{bmatrix}_q -1 = \frac{q(q^l-1)}{q-1} \ge 2.$$

Therefore there exist two different *l*-dimensional subspaces $U', U'' \subseteq U$ of $L_o(n,d)$ such that $U = U' \lor U''$.

By induction U is a join of some atoms. Hence $L_o(n,d)$ is a finite atomic lattice. For any $U \in L_o(n,d)$, define $r_o(U) = \dim U$. It is routine to check that r_o is the rank function on $L_o(n,d)$. For any $U, V \in L_o(n,d)$, we have

$$\begin{aligned} r_o\left(U \lor V\right) + r_o\left(U \land V\right) &= \dim\left(U + V\right) + \dim\left(U \land V\right) \\ &\leq \dim\left(U + V\right) + \dim\left(U \cap V\right) \\ &= \dim U + \dim V = r_o\left(U\right) + r_o\left(V\right). \end{aligned}$$

Hence $L_o(n,d)$ is a geometric lattice. \Box

Lemma 2.3. For any $P, Q \in L_o(n,d)$, suppose that dim P = t, dim Q = t + s and dim $(W_0 \cap Q) = m$. Then the Möbius function of $L_o(n,d)$ is

$$\mu(P,Q) = \begin{cases} \left(-1\right)^{s} q^{\binom{s}{2}} & \text{if } \{0\} \neq P \leq Q \text{ or } P = Q = \{0\};\\ \sum_{l=1}^{s} \left(-1\right)^{s-l+1} \left(\begin{bmatrix} s\\l \end{bmatrix}_{q} - \begin{bmatrix} m\\l \end{bmatrix}_{q} \right) q^{\binom{s-l}{2}} & \text{if } \{0\} = P < Q;\\ 0 & \text{otherwise.} \end{cases}$$

Proof. The Möbius function of $L_o(n,d)$ is

$$\mu(P,Q) = \begin{cases} (-1)^{s} q^{\binom{s}{2}} & \text{if } \{0\} \neq P \leq Q \text{ or } P = Q = \{0\}; \\ \sum_{\{0\} < U \leq Q} -\mu(U,Q) & \text{if } \{0\} = P < Q; \\ 0 & \text{otherwise.} \end{cases}$$

By Proposition 2.1, we have

$$\sum_{\{0\}< U\leq Q} -\mu(U,Q) = \sum_{l=1}^{s} (-1)^{s-l+1} \left(\begin{bmatrix} s \\ l \end{bmatrix}_{q} - \begin{bmatrix} m \\ l \end{bmatrix}_{q} \right) q^{\binom{s-l}{2}}.$$

Thus, the assertion follows. \Box

Theorem 2.4. The characteristic polynomial of $L_o(n,d)$ is

$$\chi(L_{O}(n,d),x) = x^{n} + \sum_{l=1}^{n} (-1)^{n-l+1} \left(\begin{bmatrix} n \\ l \end{bmatrix}_{q} - \begin{bmatrix} d \\ l \end{bmatrix}_{q} \right) q^{\binom{n-l}{2}} + \sum_{j=1}^{n-1} \sum_{t=\max\{0,d+j-n\}}^{\min\{d,j-1\}} \sum_{l=1}^{j} (-1)^{j-l+1} q^{\binom{(d-l)(j-t)+\binom{j-l}{2}}{2}} \begin{bmatrix} d \\ t \end{bmatrix}_{q} \begin{bmatrix} n-d \\ j-t \end{bmatrix}_{q} \left(\begin{bmatrix} j \\ l \end{bmatrix}_{q} - \begin{bmatrix} t \\ l \end{bmatrix}_{q} \right) x^{n-j}.$$

Proof. By Proposition 2.1 and Lemma 2.3, we have

$$\begin{split} \chi(L_{O}(n,d),x) &= \sum_{P \in L_{O}(n,d)} \mu(\{0\},P) x^{r_{O}(F_{q}^{n}) - r_{O}(P)} \\ &= x^{n} + \sum_{\{0\} \neq P \in L_{O}(n,d)} \mu(\{0\},P) x^{n-\dim(P)} \\ &= x^{n} + \sum_{l=1}^{n} (-1)^{n-l+1} \left(\begin{bmatrix} n \\ l \end{bmatrix}_{q} - \begin{bmatrix} d \\ l \end{bmatrix}_{q} \right) q^{\binom{n-l}{2}} \\ &+ \sum_{j=1}^{n-1} \sum_{t=\max\{0,d+j-n\}}^{\min\{d,j-1\}} \sum_{l=1}^{j} (-1)^{j-l+1} q^{\binom{(d-l)(j-l)+\binom{j-l}{2}} \binom{d}{t}}_{q} \left[\frac{n-d}{j-t} \right]_{q} \left(\begin{bmatrix} j \\ l \end{bmatrix}_{q} - \begin{bmatrix} t \\ l \end{bmatrix}_{q} \right) x^{n-j}. \end{split}$$

3. The Lattice $L_R(n,d)$

In this section we prove that the lattice $L_R(n,d)$ is a finite atomic lattice, classify its geometricity and compute its characteristic polynomial.

Theorem 3.1. The following hold:

1) $L_{R}(n,d)$ is a finite atomic lattice.

2) $L_{R}(n,d)$ is geometric if and only if n = 2.

Proof. 1) For any two elements $P, Q \in L_R(n, d)$, $P \wedge Q = P + Q$ and

$$P \lor Q = \begin{cases} P \cap Q & \text{if } P \cap Q \not\subset W; \\ \{0\} & \text{otherwise.} \end{cases}$$

Therefore $L_R(n,d)$ is a finite lattice. Note that $\{0\}$ is the unique minimum element. Let P(n,d;j) be the set of all the *j*-dimensional subspaces of $L_R(n,d)$, where $0 \le j \le n-1$. Then P(n,d;n-1) is the set of all the atoms in $L_R(n,d)$. In order to prove $L_R(n,d)$ is atomic, it suffices to show that every element of $P(n,d;j)(0 \le j \le n-1)$ is a join of some atoms. The result is trivial for j = n-1. Suppose that the result is true for $j = n-l \le n-1$. Let $U \in P(n,d;n-l-1)$. By Proposition 2.1, the number of n-l-dimensional subspaces of $L_R(n,d)$ containing U is equal to

$$\begin{bmatrix} l+1\\1 \end{bmatrix}_q = \frac{q^{l+1}-1}{q-1} \ge 2$$

Then there exist two different (n-l)-dimensional subspaces $U \subseteq U', U'' \in L_R(n,d)$ such that $U = U' \vee U''$. By induction U is a join of some atoms. Therefore $L_R(n,d)$ is a finite atomic lattice.

2) For any $U \in L_R(n,d)$, we define $r_R(U) = n - \dim U$. It is routine to check that r_R is the rank function on $L_R(n,d)$. It is obvious that $L_R(2,1)$ is a geometric lattice. Now assume that $n \ge 3$. Let P be a 1-dimensional subspace of F_q^n and $P \subseteq W_0$. By Proposition 2.1, the number of 2-dimensional subspaces of $L_R(n,d)$ containing P is equal to

$$\begin{bmatrix} n-1\\1 \end{bmatrix}_{q} - \begin{bmatrix} d-1\\1 \end{bmatrix}_{q} = \frac{q^{d-1}(q^{n-d}-1)}{q-1} \ge 2.$$

Therefore, there exist two different 2-dimensional subspaces $P \subseteq P', P'' \in L_R(n,d)$ such that $P = P' \cap P''$. So $P' \lor P'' = \{0\}$, $P' \land P'' = P' + P''$. Hence $r_R(P' \lor P'') + r_R(P' \land P'') = 2n - 3 > 2n - 4 = r_R(P') + r_R(P'')$, which implies that $L_R(n,d)$ is not a geometric lattice when $n \ge 3$. \Box

Lemma 3.2. For any $P, Q \in L_R(n, d)$, suppose that dim P = t + s, dim Q = t and dim $(W_0 \cap P) = m$. Then the Möbius function of $L_R(n, d)$ is

$$\mu(P,Q) = \begin{cases} (-1)^{s} q^{\binom{s}{2}} & \text{if } P \le Q \neq \{0\} \text{ or } P = Q = \{0\};\\ \sum_{l=1}^{s} (-1)^{s-l+1} \left(\begin{bmatrix} s \\ l \end{bmatrix}_{q} - \begin{bmatrix} m \\ l \end{bmatrix}_{q} \right) q^{\binom{s-l}{2}} & \text{if } P < Q = \{0\};\\ 0 & \text{otherwise.} \end{cases}$$

Proof. The Möbius function of $L_R(n,d)$ is

$$\mu(P,Q) = \begin{cases} (-1)^{s} q^{\binom{s}{2}} & \text{if } P \le Q \ne \{0\} \text{ or } P = Q = \{0\}; \\ \sum_{\substack{P \le U < \{0\} \\ 0}} -\mu(P,U) & \text{if } P < Q = \{0\}; \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 2.1 implies that

$$\sum_{P\leq U<\{0\}}-\mu(P,U)=\sum_{l=1}^{s}(-1)^{s-l+1}\left(\begin{bmatrix}s\\l\end{bmatrix}_{q}-\begin{bmatrix}m\\l\end{bmatrix}_{q}\right)q^{\binom{s-l}{2}}.$$

Theorem 3.3. The characteristic polynomial of $L_{R}(n,d)$ is

$$\chi(L_R(n,d),x) = x^n - 1 + \sum_{j=1}^n (-1)^{n-j} \left(\begin{bmatrix} n \\ j \end{bmatrix}_q - \begin{bmatrix} d \\ j \end{bmatrix}_q \right) q^{\binom{n-j}{2}} (x^j - 1).$$

Proof. By Proposition 2.1, we have

$$\begin{split} \chi \left(L_{R}\left(n,d\right),x \right) &= \sum_{P \in L_{R}(n,d)} \mu \left(F_{q}^{n},P\right) x^{r_{R}\left(\{0\}\right)-r_{R}(P)} \\ &= x^{n} + \sum_{F_{q}^{n} \neq P \in L_{R}(n,d)} \mu \left(F_{q}^{n},P\right) x^{\dim(P)} \\ &= x^{n} + \sum_{j=1}^{n} \left(-1\right)^{n-j} \left(\begin{bmatrix} n \\ j \end{bmatrix}_{q} - \begin{bmatrix} d \\ j \end{bmatrix}_{q} \right) q^{\binom{n-j}{2}} x^{j} + \sum_{l=1}^{n} \left(-1\right)^{n-l+1} \left(\begin{bmatrix} n \\ l \end{bmatrix}_{q} - \begin{bmatrix} d \\ l \end{bmatrix}_{q} \right) q^{\binom{n-l}{2}} \\ &= x^{n} - 1 + \sum_{j=1}^{n-1} \left(-1\right)^{n-j} \left(\begin{bmatrix} n \\ j \end{bmatrix}_{q} - \begin{bmatrix} d \\ j \end{bmatrix}_{q} \right) q^{\binom{n-j}{2}} (x^{j} - 1). \end{split}$$

References

- [1] Aigner, M. (1979) Combinatorial Theory. Springer-Verlag, Berlin. <u>http://dx.doi.org/10.1007/978-1-4615-6666-3</u>
- [2] Wan, Z. and Huo, Y. (2004) Lattices Generated by Transitive Sets of Subspaces Under Finite Classical Groups. 2nd Edition, Science Press, Beijing.
- [3] Liu, Y.H. (2011) Special Lattice of Rough Algebras. *Applied Mathematics*, **2**, 1522-1524. http://dx.doi.org/10.4236/am.2011.212215
- [4] Huo, Y.J. and Wan, Z.-X. (2001) On the Geomericity of Lattices Generated by Orbits of Subspaces under Finite Classical Groups. *Journal of Algebra*, 243, 339-359. <u>http://dx.doi.org/10.1006/jabr.2001.8819</u>
- [5] Gao, Y. and You, H. (2003) Lattices Generated by Orbits of Subspaces under Finite Singular Classical Groups and Its Characteristic Polynomials. *Communications in Algebra*, **31**, 2927-2950. <u>http://dx.doi.org/10.1081/AGB-120021900</u>
- [6] Wang, K.S. and Guo, J. (2009) Lattices Generated by Two Orbits of Subspaces Under Finite Classical Groups. *Finite Fields and Their Applications*, 15, 236-245. <u>http://dx.doi.org/10.1016/j.ffa.2008.12.008</u>
- [7] Wang, K.S. and Li, Z.T. (2008) Lattices Associated with Vector Spaces Over a Finite Field. *Linear Algebra and Its Applications*, 429, 439-446. <u>http://dx.doi.org/10.1016/j.laa.2008.02.035</u>
- [8] Guo, J., Li, Z.T. and Wang, K.S. (2009) Lattices Associated with Totally Isotropic Subspaces in Classical Spaces. *Linear Algebra and Its Applications*, 431, 1088-1095. <u>http://dx.doi.org/10.1016/j.laa.2009.04.009</u>
- [9] Gao, S.G., Guo, J. and Liu, W. (2007) Lattices Generated by Strongly Closed Subgraphs in d-Bounded Distance-Regular Graphs. *European Journal of Combinatorics*, **28**, 1800-1813. <u>http://dx.doi.org/10.1016/j.ejc.2006.05.011</u>
- [10] Guo, J. and Gao, S.G. (2008) Lattices Generated by Join of Strongly Closed Subgraphs in d-Bounded Distance-Regular Graphs. *Discrete Mathematics*, 308, 1921-1929. <u>http://dx.doi.org/10.1016/j.disc.2007.04.043</u>
- [11] Guo, J. and Wang, K.S. (2010) Posets Associated with Subspaces in a d-Bounded Distance-Regular Graph. Discrete Mathematics, 310, 714-719. <u>http://dx.doi.org/10.1016/j.disc.2009.08.014</u>
- [12] Brouwer, A.E., Cohen, A.M. and Neumaier, A. (1989) Distance-Regular Graphs. Springer-Verlag, New York. <u>http://dx.doi.org/10.1007/978-3-642-74341-2</u>
- [13] Wan, Z. (2002) Geometry of Classical Groups over Finite Fields. 2nd Edition, Science Press, Beijing/New York.