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Abstract 

Let n
qF  be a n-dimensional row vector space over a finite field qF . For 1 1d n≤ ≤ − , let 0W  be a d- 

dimensional subspace of n
qF . ( ),L n d  denotes the set of all the spaces which are the subspaces of 

n
qF  and not the subspaces of 0W  except { }0 . We define the partial order on ( ),L n d  by ordinary 

inclusion (resp. reverse inclusion), and then ( ),L n d  is a poset, denoted by ( ),OL n d  (resp. 

( ),RL n d ). In this paper we show that both ( ),OL n d  and ( ),RL n d  are finite atomic lattices. Further, 
we discuss the geometricity of ( ),OL n d  and ( ),RL n d , and obtain their characteristic polynomials. 
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1. Introduction 
Let P be a poset. For ,a b P∈ , we say a covers b, denoted by b a< ⋅ ; if b a<  and there doesn’t exist c P∈  
such that b c a< < . If P has the minimum (resp. maximum) element, then we denote it by 0 (resp. 1) and say 
that P is a poset with 0 (resp. 1). Let P be a finite poset with 0. By a rank function on P, we mean a function r 
from P to the set of all the integers such that ( )0 0r =  and ( ) ( ) 1r a r b= +  whenever b a< ⋅ . Observe the 
rank function is unique if it exists. P is said to be ranked whenever P has a rank function. 

Let P be a finite ranked poset with 0 and 1. The polynomial ( ) ( ) ( ) ( )1, 0, r r a
a PP x a xχ µ −
∈

= ∑  is called the  
characteristic polynomial of P, where µ  is the Mobius function on P and r is the rank function of P. A poset 
P is said to be a lattice if both { }: sup ,a b a b∨ =  and { }: inf ,a b a b∧ =  exist for any two elements ,a b P∈ . 
a b∨  and a b∧  are called the join and meet of a and b, respectively. Let P be a finite lattice with 0. By an 
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atom in P, we mean an element in P covering 0. We say P is atomic if any element in { }\ 0P  is the join of 
atoms. A finite atomic lattice P is said to be a geometric lattice if P admits a rank function r  satisfying 
( ) ( ) ( ) ( )r a b r a b r a r b∧ + ∨ ≤ + , ,a b P∀ ∈ . Notations and terminologies about posets and lattices will be 

adopted from books [1] [2]. 
The special lattices of rough algebras were discussed in [3]. The lattices generated by orbits of subspaces un-

der finite (singular) classical groups were discussed in [4] [5]. Wang et al. [6]-[8] constructed some sublattices 
of the lattices in [4]. The subspaces of a d-bounded distance-regular have similar properties to those of a vector 
space. Gao et al. [9]-[11] constructed some lattices and posets by subspaces in a d-bounded distance-regular 
graph. In this paper, we continue this research, and construct some new sublattices of the lattices in [4], discuss-
ing their geometricity and computing their characteristic polynomials.  

Let qF  be a finite field with q elements, where q is a prime power. For a positive integer n , let n
qF  be the 

n-dimensional row vector space over qF . Let 1 1d n≤ ≤ − . For a fixed d -dimensional subspace 0W  of n
qF , 

let ( ) { } { }{ }0,  is a subspace of  and is not of 0n
qL n d P P F W=  . 

If we define the partial order on ( ),L n d  by ordinary inclusion (resp. reverse inclusion), then ( ),L n d  is a 
poset, denoted by ( ),OL n d  (resp. ( ),RL n d ). In the present paper we show that both ( ),OL n d  and 

( ),RL n d  are finite atomic lattices, discuss their geometricity and compute their characteristic polynomials. 

2. The Lattice ( ),OL n d  

In this section we prove that the lattice ( ),OL n d  is a finite geometric lattice, and compute its characteristic 
polynomial. We begin with a useful proposition.  

Proposition 2.1. ([12], Lemma 9.3.2 and [13], Corollaries 1.8 and 1.9). For 0 k m n≤ ≤ ≤ , the following 
hold: 

1) The number of k-dimensional subspaces contained in a given m-dimensional subspace of n
qF  is 

( ) ( )
1 1

1 1
m k

i i

i m k iq

m
q q

k = − − =

 
= − − 

 
∏ ∏ . 

2) The number of m-dimensional subspaces containing a given k-dimensional subspace of n
qF  is 

q

n k
m k
− 

 − 
. 

3) Let P be a fixed m-dimensional subspaces of n
qF . Then the number of k-dimensional subspaces Q of n

qF  
satisfying ( )dim P Q t=  is  

( )( )m t k t

q q

n m m
q

k t t
− − −   

   −   
. 

Theorem 2.2. ( ),OL n d  is a geometric lattice. 
Proof. For any two elements ( ), ,OP Q L n d∈ , 

{ }
if  ;

,
0 otherwise.

P Q P Q W
P Q P Q P Q

⊄
∨ = + ∧ = 



 

 

Therefore ( ),OL n d  is a finite lattice. Note that { }0  is the unique minimum element. Let ( ), ;P n d j  be the 
set of all the j -dimensional subspaces of ( ),OL n d , where 1 j n≤ ≤ . Then ( ), ;1P n d  is the set of all the 
atoms in ( ),OL n d . In order to prove ( ),OL n d  is atomic, it suffices to show that every element of 
( )( ), ; 1P n d j j n≤ ≤  is a join of some atoms. The result is trivial for 1j = . Suppose that the result is true for 

1j l= > . Let ( ), ; 1U P n d l∈ + . By Proposition 2.1 and ( )0dim W U l≤ , the number of l -dimensional sub-
spaces of ( ),OL n d  contained in U  at least is 

( )11
1 2

1

l

q

q ql
l q

−+ 
− = ≥  − 

. 

Therefore there exist two different l-dimensional subspaces ,U U U′ ′′ ⊆ of ( ),OL n d  such that U U U′ ′′= ∨ . 
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By inductionU is a join of some atoms. Hence ( ),OL n d  is a finite atomic lattice. For any ( ),OU L n d∈  , de-
fine ( ) dimOr U U= . It is routine to check that Or  is the rank function on ( ),OL n d . For any 

( ), ,OU V L n d∈ , we have  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

dim dim

dim dim

dim dim .

O O

O O

r U V r U V U V U V

U V U V

U V r U r V

∨ + ∧ = + + ∧

≤ + +

= + = +

  

Hence ( ),OL n d  is a geometric lattice.   
Lemma 2.3. For any ( ), ,OP Q L n d∈ , suppose that dim P t= , dimQ t s= +  and ( )0dim W Q m= . Then 

the Mobius  function of ( ),OL n d  is 

( )

( ) { } { }

( ) { }

2

1 2

1

1                                         if  0  or 0 ;

, 1      if  0 ;

0                                                      othe

s
s

s l
s s l

l q q

q P Q P Q

s m
P Q q P Q

l l
µ

 
 
 

− 
 − +  

=

− ≠ ≤ = =

    
 = − − = <        

∑

rwise.











 

Proof. The Mobius  function of ( ),OL n d  is 

( )
( ) { } { }

( ) { }
{ }

2

0

1                  if  0  or 0 ;

, ,      if  0 ;

0                             otherwise.

s
s

U Q

q P Q P Q

P Q U Q P Qµ µ

 
 
 

< ≤


 − ≠ ≤ = =
= − = <




∑  

By Proposition 2.1, we have  

( )
{ }

( ) 1 2

0 1
, 1

s l
s s l

U Q l q q

s m
U Q q

l l
µ

− 
 − +  

< ≤ =

    
 − = − −        

∑ ∑ . 

Thus, the assertion follows.   
Theorem 2.4. The characteristic polynomial of ( ),OL n d  is  

( )( ) ( )

( )
( )( )

{ }

{ }

1 2

1

min , 11 1 2

1 max 0, 1

, , 1

1 .

n l
n n ln

O
l q q

j ld j jn d t j tj l n j

j t d j n l q q q q

n d
L n d x x q

l l

d n d j t
q x

t j t l l

χ
− 

 − +  

=

− −− − − + − + − 

= = + − =

    
 = + − −        

 −       
 + − −        −        

∑

∑ ∑ ∑
 

Proof. By Proposition 2.1 and Lemma 2.3, we have  

( )( ) { }( ) ( ) ( )

( )

{ }( ) ( )

{ } ( )

( )

( )
( )( )

,

dim

0 ,

1 2

1

1 2

max 1

, , 0 ,

0 ,

1

1 .

n
O q O

O

O

r F r P
O

P L n d

n Pn

P L n d

n l
n n ln

l q q

j lj d t j tj l n j

t l q q q q

L n d x P x

x P x

n d
x q

l l

d n d j t
q x

t j t l l

χ µ

µ

−

∈

−

≠ ∈

− 
 − +  

=

− 
− − + − + − 

= =

=

= +

    
 = + − −        

 −       
 + − −        −        

∑

∑

∑

∑
{ }

{ }min , 11

1 0,

d jn

j d j n

−−

= + −
∑ ∑
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3. The Lattice ( ),RL n d  

In this section we prove that the lattice ( ),RL n d  is a finite atomic lattice, classify its geometricity and compute 
its characteristic polynomial.  

Theorem 3.1. The following hold: 
1) ( ),RL n d  is a finite atomic lattice. 
2) ( ),RL n d  is geometric if and only if 2n = . 
Proof. 1) For any two elements ( ), ,RP Q L n d∈ , P Q P Q∧ = +  and  

{ }
       if  ;

0            otherwise.
P Q P Q W

P Q
⊄∨ = 



 

 

Therefore ( ),RL n d  is a finite lattice. Note that { }0  is the unique minimum element. Let ( ), ;P n d j  be the 
set of all the j-dimensional subspaces of ( ),RL n d , where 0 1j n≤ ≤ − . Then ( ), ; 1P n d n −  is the set of all the 
atoms in ( ),RL n d . In order to prove ( ),RL n d  is atomic, it suffices to show that every element of 
( )( ), ; 0 1P n d j j n≤ ≤ −  is a join of some atoms. The result is trivial for 1j n= − . Suppose that the result is 

true for 1j n l n= − ≤ − . Let ( ), ; 1U P n d n l∈ − − . By Proposition 2.1, the number of -dimensionaln l−  sub-
spaces of ( ),RL n d  containing U  is equal to 

11 1 2
1 1

l

q

l q
q

++  −
= ≥  − 

. 

Then there exist two different ( ) -dimensionaln l−  subspaces ( ), ,RU U U L n d′ ′′⊆ ∈  such that U U U′ ′′= ∨ . 
By induction U  is a join of some atoms. Therefore ( ),RL n d  is a finite atomic lattice.  

2) For any ( ),RU L n d∈ , we define ( ) dimRr U n U= − . It is routine to check that Rr  is the rank function on 
( ),RL n d . It is obvious that ( )2,1RL  is a geometric lattice. Now assume that 3n ≥ . Let P be a 1 -dimensional 

subspace of n
qF  and 0P W⊆ . By Proposition 2.1, the number of 2-dimensional subspaces of ( ),RL n d  con-

taining P is equal to 

( )1 11 1
2.

1 1 1

d n d

q q

q qn d
q

− − −− −   
− = ≥    −   

 

Therefore, there exist two different 2-dimensional subspaces ( ), ,RP P P L n d′ ′′⊆ ∈  such that P P P′ ′′=  . 
So { }0P P′ ′′∨ = , P P P P′ ′′ ′ ′′∧ = + . Hence ( ) ( ) ( ) ( )2 3 2 4R R R Rr P P r P P n n r P r P′ ′′ ′ ′′ ′ ′′∨ + ∧ = − > − = + , 
which implies that ( ),RL n d  is not a geometric lattice when 3n ≥ .   

Lemma 3.2. For any ( ), ,RP Q L n d∈ , suppose that dim P t s= + , dimQ t=  and ( )0dim W P m= . Then 
the Mobius  function of ( ),RL n d  is 

( )

( ) { } { }

( ) { }

2

1 2

1

1                                     if  0  or 0 ;

, 1    if  0 ;

0                                                otherwise.

s
s

s l
s s l

l q q

q P Q P Q

s m
P Q q P Q

l l
µ

 
 
 

− 
 − +  

=


 − ≤ ≠ = =

       = − − < =         
∑





 

Proof. The Mobius  function of ( ),RL n d  is 

( )
( ) { } { }

( )
{ }

{ }

2

0

1                  if  0  or 0 ;

, ,        if  0 ;

0                             otherwise.

s
s

P U

q P Q P Q

P Q P U P Qµ µ

 
 
 

≤ <


 − ≤ ≠ = =
= − < =




∑  

Proposition 2.1 implies that 
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( )
{ }

( ) 1 2

0 1
, 1

s l
s s l

P U l q q

s m
P U q

l l
µ

− 
 − +  

≤ < =

    
 − = − −        

∑ ∑ . 

Theorem 3.3. The characteristic polynomial of ( ),RL n d  is  

( )( ) ( ) ( )2

1
, , 1 1 1

n j
n n jn j

R
j q q

n d
L n d x x q x

j j
χ

− 
 −  

=

    
 = − + − − −        

∑ . 

Proof. By Proposition 2.1, we have  

( )( ) ( ) { }( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

0

,

dim

,

12 2

1 1

, , ,

,

1 1

1 1

R R

R

n
q R

r r Pn
R q

P L n d

Pn n
q

F P L n d

n j n l
n nn j n ln j

j lq q q q

n jn

q q

L n d x F P x

x F P x

n d n d
x q x q

j j l l

n d
x

j j

χ µ

µ

−

∈

≠ ∈

− −   
   − − +   

= =

−

=

= +

          
   = + − − + − −                    

    
 = − + − −        

∑

∑

∑ ∑

( )
1

2

1
1 .

n j
n

j

j
q x

− −  
 

=

−
∑
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