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Abstract

Let Fqn be a n-dimensional row vector space over a finite field Fy For 1<d<n-1,let W, be a d-
dimensional subspace of F. L(n,d) denotes the set of all the spaces which are the subspaces of
F, and not the subspaces of W, except {0}. We define the partial order on L(n,d) by ordinary
inclusion (resp. reverse inclusion), and then L(n,d) is a poset, denoted by L, (n,d) (resp.
Lg (n,d)). In this paper we show that both L, (n,d) and L. (n,d) are finite atomic lattices. Further,

we discuss the geometricity of L,(n,d) and L;(n,d), and obtain their characteristic polynomials.
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1. Introduction

Let P be a poset. For a,b e P, we say a covers b, denoted by b<-a;if b<a and there doesn’t exist ce P
such that b <c<a. If P has the minimum (resp. maximum) element, then we denote it by 0 (resp. 1) and say
that P is a poset with O (resp. 1). Let P be a finite poset with 0. By a rank function on P, we mean a function r
from P to the set of all the integers such that r(0)=0 and r(a)=r(b)+1 whenever b<-a. Observe the
rank function is unique if it exists. P is said to be ranked whenever P has a rank function.

Let P be a finite ranked poset with 0 and 1. The polynomial (P,x)=3_ _x(0,a)x"®"® is called the

characteristic polynomial of P, where , is the M®dbius function on P and r is the rank function of P. A poset
P is said to be a lattice if both avb:=sup{a,b} and ab:=inf{ab} exist for any two elements a,beP.
avb and aab are called the join and meet of a and b, respectively. Let P be a finite lattice with 0. By an

How to cite this paper: Yue, M.T. (2014) Lattices Associated with a Finite Vector Space. Applied Mathematics, 5, 672-676.
http://dx.doi.org/10.4236/am.2014.54064



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.54064
http://dx.doi.org/10.4236/am.2014.54064
http://www.scirp.org
mailto:ymtxyz@126.com
http://creativecommons.org/licenses/by/4.0/

M. T. Yue

atom in P, we mean an element in P covering 0. We say P is atomic if any element in P\{O} is the join of
atoms. A finite atomic lattice P is said to be a geometric lattice if P admits a rank function r satisfying
r(anb)+r(avb)<r(a)+r(b), Va,beP. Notations and terminologies about posets and lattices will be
adopted from books [1] [2].

The special lattices of rough algebras were discussed in [3]. The lattices generated by orbits of subspaces un-
der finite (singular) classical groups were discussed in [4] [5]. Wang et al. [6]-[8] constructed some sublattices
of the lattices in [4]. The subspaces of a d-bounded distance-regular have similar properties to those of a vector
space. Gao et al. [9]-[11] constructed some lattices and posets by subspaces in a d-bounded distance-regular
graph. In this paper, we continue this research, and construct some new sublattices of the lattices in [4], discuss-
ing their geometricity and computing their characteristic polynomials.

Let F, be afinite field with g elements, where q is a prime power. For a positive integer n, let F' be the
n-dimensional row vector space over F, . Let 1<d <n-1. For a fixedd -dimensional subspace W, of F,
let L(n,d)={P|P is asubspace of F" and is not of W, | U{{0}} .

If we define the partial order on L(n,d) by ordinary inclusion (resp. reverse inclusion), then L(n,d) isa
poset, denoted by L,(n,d) (resp. Lg;(n,d)). In the present paper we show that both L,(n,d) and
Ls (n,d) are finite atomic lattices, discuss their geometricity and compute their characteristic polynomials.

2. The Lattice L, (n,d)

In this section we prove that the lattice L, (n,d) is a finite geometric lattice, and compute its characteristic
polynomial. We begin with a useful proposition.

Proposition 2.1. ([12], Lemma 9.3.2 and [13], Corollaries 1.8 and 1.9). For 0<k <m<n, the following
hold:

1) The number of k-dimensional subspaces contained in a given m-dimensional subspace of F' is

NERICRIL R

i=m-k-1 i=1

2) The number of m-dimensional subspaces containing a given k-dimensional subspace of F is

M

3) Let P be a fixed m-dimensional subspaces of F'. Then the number of k-dimensional subspaces Q of F/'
satisfying dim(PNQ)=t is

Theorem 2.2. L, (n,d) isa geometric lattice.
Proof. For any two elements P,Q e L, (n,d),

PNQ if PNQ&W;
{0} otherwise.

PvQ=P+Q,P/\Q:{

Therefore L, (n,d) is a finite lattice. Note that {0} is the unique minimum element. Let P(n,d; ) be the
set of all the j -dimensional subspaces of L, (n,d), where 1< j<n. Then P(n,d;1) is the set of all the
atoms in Lo(n,d). In order to prove Lo(n,d) is atomic, it suffices to show that every element of
P(n,d; Has<ij< n) is a join of some atoms. The result is trivial for j=1. Suppose that the result is true for
j=1>1.Let UeP(n,d;l+1). By Proposition 2.1 and dim(W, NU)<1, the number of | -dimensional sub-
spaces of L, (n,d) containedin U at least is

{m} _1:M2

| qg-1

Therefore there exist two different I-dimensional subspaces U’,U" cU of L, (n,d) suchthat U=U'vU".
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By inductionU is a join of some atoms. Hence L, (n,d) is a finite atomic lattice. For any U e L, (n,d) , de-
fine ry,(U)=dimU . It is routine to check that r, is the rank function on L, (n,d) . For any
U,V ely(n,d), we have

(UVvV)+1,(UAV)=dim(U +V)+dim(U AV)
<dim(U +V)+dim(UNV)
=dimU +dimV =1, (U)+1, (V).
Hence L,(n,d) isa geometric lattice. O

Lemma 2.3. Forany P,Qe L, (n,d), suppose that dimP=t, dimQ=t+s and dim(W,NQ)=m.Then
the Mobius functionof L, (n,d) is

(-1) q[ZJ if {0}=P<QorP=Q={0};
u(P.Q)= z<1>[m m ]q(z) it {0}=P<Q;
0 otherwise.

Proof. The MG&bius function of L, (n,d) is

(1) q @ if {0}=P<QorP=Q={0};
#(PQ)=) 3 —u(U.Q) I {0}=P<Q;

0 otherwise.

Fooo-gor (LR

Thus, the assertion follows. [
Theorem 2.4. The characteristic polynomial of L, (n,d) is

7(Lo(nd),x)=x" +|§:;(_1)”"+1 [mq {‘:Uq[n;]
w1 minfa iy

RS

Proof. By Proposition 2.1 and Lemma 2.3, we have

A= 3 (o}, p)xel e

PELO(n,d)

=X+ Y u({o},p)xmome)
{012Pelp(n.d)

min{d, j- i oy ict)s 37! _ .
S5TST  yg ’; jm [n_ d} H _H i
j=1t=max{0,d+j-n} I=1 t q ]t q | q | q

By Proposition 2.1, we have

M-

+
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3. The Lattice L, (n,d)

In this section we prove that the lattice L, (n,d) is a finite atomic lattice, classify its geometricity and compute
its characteristic polynomial.

Theorem 3.1. The following hold:

1) Lg(n,d) isafinite atomic lattice.

2) Lg(n,d) isgeometricifandonlyif n=2.

Proof. 1) For any two elements P,QeL,(n,d), PAQ=P+Q and

PNQ if PNQazW,;

{0} otherwise.

Psz{

Therefore L, (n,d) isa finite lattice. Note that {0} is the unique minimum element. Let P(n,d;j) be the
set of all the j-dimensional subspaces of L (n,d), where 0< j<n-1.Then P(n,d;n-1) isthe setofall the
atoms in Lg(n,d). In order to prove Lg(n,d) is atomic, it suffices to show that every element of
P(n,d; j)(0< j<n-1) isa join of some atoms. The result is trivial for j=n-1. Suppose that the result is
true for j=n-I<n-1.Let UeP(n,d;n-1-1). By Proposition 2.1, the number of n—I-dimensional sub-
spaces of L (n,d) containing U isequal to

1+1
P441 9 —122.
1 a g-1
Then there exist two different (n—1)-dimensional subspaces U cU',U" e L, (n,d) suchthat U=U"vU".
By induction U is a join of some atoms. Therefore L, (n, d) is a finite atomic lattice.
2) Forany U e Ly (n,d), we define r, (U)=n—dimU. It is routine to check that r, is the rank function on

Lg (n,d). It is obvious that L, (2,1) is a geometric lattice. Now assume that n>3. Let P be a 1-dimensional
subspace of F' and P cW,. By Proposition 2.1, the number of 2-dimensional subspaces of L, (n,d) con-

taining P is equal to
_ _ d-1 n—d -1
n-1] Ja-1) @@y,
1 1 q-1
q q

Therefore, there exist two different 2-dimensional subspaces P < P',P" e L, (n,d) such that P=P'(\P".
So P'vP"={0}, P'AP"=P'+P" . Hence ry(P'vP")+r(P'AP")=2n-3>2n—-4=r,(P')+ry(P"),
which implies that LR(n,d) is not a geometric lattice when n>3. O

Lemma 3.2. For any P,QeL,(n,d), suppose that dimP =t+s, dimQ=t and dim(W, N P)=m. Then
the Mobius function of L (n,d) is

(‘1)5 q[Zj if P<Q={0} orP=Q={0};
o= (1] 7] ¢ e <o-to
0 otherwise.

(-1) q@ if P<Q={0} orP=Q={0};
1(P,Q)= PSUZ‘,{O}—;:(P,U) if P<Q={0};
otherwise.

Proposition 2.1 implies that
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> —u(pU)- i(—l)““m —[leq@'] |

P<U <{0} 1=1

Theorem 3.3. The characteristic polynomial of L, (n,d) is

2L (nd)x) = —1+§<—1>""'[{’?1—[".Uq[nzj%"—1)-

Proof. By Proposition 2.1, we have

2(Le(nd),x)= ¥ ,u(Fq”, p)XfR({O})er(P)

Pelg (n,d)

=x"+ Z ,u(Fan P) Xdim(P)

Fq #Pelg(n,d)

s HEHESES R HEH
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