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ABSTRACT 
We give a general formula of the quantum 2sl -invariant of a family of braid knots. To compute the quantum 
invariant of the links we use the Lie algebra 2g sl=  in its standard two-dimensional representation. We also 
recover the Jones polynomial of these knots as a special case of this quantum invariant. 
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1. Introduction 
The discovery of the Jones polynomial inspired many people to search for other skein relations compatible with 
Reidemeister moves and thus defined knot polynomials. This led to the introduction of the HOMFLY and 
Kauffmans polynomials. It soon became clear that all these polynomials are the first members of a vast family of 
knot invariants called quantum invariants. 

The original idea of quantum invariants was proposed by E. Witten in [1]. Witten’s approach coming from 
physics was not completely justified from the mathematical viewpoint. The first mathematically definition of 
quantum invariants of links and 3-manifolds was given by Reshetikhin and Turaev [2,3], who used in their 
construction the notion of quantum groups introduced shortly before that by V. Drinfeld in [4] (see also [5]) and 
M. Jimbo in [6]. In fact, a quantum group is not a group at all. Instead, it is a family of algebras, more precisely, 
of Hopf algebras, depending on a complex parameter q  and satisfying certain axioms. The quantum group 

qU g  of a semisimple Lie algebra g  is a remarkable deformation of the universal enveloping algebra of g  
(corresponding to the value 1q = ) in the class of Hopf algebras. 

This paper is organized as follows: In Section 2, we give the basic ideas about knots, tangles, the Jones 
polynomial, Lie algebra representations, and construction of quantum invariants. In Section 3, we present the 
main result along with its specialization to the Jones polynomial. 

2. Preliminary Notions 
2.1. Basic Concepts of Knots 

A knot is a circle embedded in 3
 . Knots are usually studied via projecting them on a plan; a projection with 

extra information of overcrossing and undercrossing is called the knot diagram. 
 

 overcrossing 

undercrossing              
A crossing              trivial knot         trefoil knot 
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Two knots are called isotopic if one of them can be transformed to the other by a diffeomorphism of the 
ambient space 3

 onto itself. A fundamental result about the isotopic knot diagrams is: 
Two unoriented knots 1K  and 2K  are equivalent if and only if a diagram of 1K  can be transformed into 

a diagram of 2K  by a finite sequence of ambient isotopies of the plane and three local (Reidemeister) moves: 
 

     
R1                                R2                              R3 

 
The set of all knots that are equivalent to a knot K  is called a class of K . By a knot K  we shall always 

mean a class of the knot K . 
The main question of knot theory is Which two links are equivalent and which are not? To address this 

question one needs a knot invariant, a function that gives one value on all knots that belong to a single class and 
gives different values (but not always) on knots that belong to different classes. The present work is concerned 
with this question. 

2.2. Tangles 
A tangle is a generalization of a knot which at the same time is simpler and more complicated than a knot. On 
one hand, knots are a particular case of tangles, on the other hand, knots can be represented as combinations of 
(simple) tangles. 

A tangle in a knot projection is a region in the projection plane surrounded by a circle such that the knot 
crosses the circle exactly at four places. 
 

 
A tangle 

 
The following two operations are defined on tangles: When the bottom of a tangle 1T  coincides with the top 

of another tangle 2T , the product 1 2T T⋅  is defined by putting 1T  on top of 2T . (For oriented tangles we also 
require the consistency of orientations.) 
 

 

T1= 

  

 
T2= 

  

 

T1∙T1= 

 
 

The second operation, tensor product, is defined by placing one tangle next to the other tangle (of the same 
height). 

 

1 2T T⊗ =
    

2.3. The Jones Polynomial 
In 1985, V. F. R. Jones revolutionized knot theory by defining the Jones polynomial as a knot invariant via Von 
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Neumann algebras [7]. However, in 1987 L. H. Kauffman introduced in [8] a state-sum model construction of 
the Jones polynomial that was purely combinatorial and remarkably simple; we follow this approach. 

Definition 1 [7-9] The Jones polynomial ( )KV t  of an oriented link K  is a Laurent polynomial in the 
variable t  satisfying the skein relation 

( ) ( ) ( ) ( )
0

1 1 2 1 2 ,K K Kt V t tV t t t V t
+ −

− −− = −  

and that the value of the unknot is 1. Here K+ , K− , and 0K  are three oriented links having diagrams that are 
isotopic everywhere except at one crossing where they differ as in the figure below: 
 

     
K+           K−          0K  

 
For instance, it is easy to verify that the Jones polynomial of the left-handed trefoil knot (which is denoted by 

13  in the knot table) is 
 

V  = 4 3 1t t t− − −− + + . 

2.4. Lie Algebra Representations 
Let g  be a semisimple Lie algebra and let V  be its finite-dimensional representation. One can view V  as a 
representation of the universal enveloping algebra ( )U g . It is remarkable that this representation can also be 
deformed with parameter q  to a representation of the quantum group qU g . The vector space V  remains the 
same, but the action now depends on q . For a generic value of q  all irreducible representations of qU g  can 
be obtained in this way. However, when q  is a root of unity the representation theory is different and 
resembles the representation theory of q  in finite characteristic. It can be used to derive quantum invariants of 
3-manifolds. For the purposes of knot theory it is enough to use generic values of q , that is, those which are not 
roots of unity. 

An important property of quantum groups is that every representation gives rise to a solution R  of the 
quantum Yang-Baxter equation 

( ) ( ) ( ) ( ) ( ) ( )V V V V V VR id id R R id id R R id id R⊗ ⊗ ⊗ = ⊗ ⊗ ⊗     

where R  (the R -matrix ) is an invertible linear operator :R V V V V⊗ → ⊗ , and both sides of the equation 
are understood as linear transformations V V V V V V⊗ ⊗ → ⊗ ⊗ . 

In case of Lie algebra 2=g sl  and its standard two-dimensional representation, the R -matrix has the form 

( )

1 4
1 1 1 1

1 4
1 2 2 1

1 4 1 4 3 4
2 1 1 2 2 1

1 4
2 2 2 2

e e q e e

e e q e e
R

e e q e e q q e e

e e q e e

−

− −

 ⊗ ⊗


⊗ ⊗
= 

⊗ ⊗ + − ⊗


⊗ ⊗









 

for an appropriate basis { }1 2,e e  of the space V . The inverse of R  is 

( )
1 4

1 1 1 1

1 4 3 4 1 4
1 2 2 1 1 21

1 4
2 1 1 2

1 4
2 2 2 2

e e q e e

e e q e e q q e e
R

e e q e e

e e q e e

−

−
−

−

 ⊗ ⊗


⊗ ⊗ + − + ⊗
= 

⊗ ⊗


⊗ ⊗








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2.5. Construction of Quantum Invariants 
The general procedure of constructing quantum invariants is as follows (see details in [10]). Consider a knot 
diagram in the plane and take a generic horizontal line. To each intersection point of the line with the diagram 
assign either the representation space V  or its dual *V  depending on whether the orientation of the knot at 
this intersection is directed upwards or downwards. Then take the tensor product of all such spaces over the 
whole horizontal line. If the knot diagram does not intersect the line, then the corresponding vector space is the 
ground field  . 

A portion of a knot diagram between two such horizontal lines represents a tangle T . We assume that this 
tangle is framed by the black board framing. With T  we associate a linear transformation ( )fr Tθ  from the 
vector space corresponding to the bottom of T  to the vector space corresponding to the top of T . The 
following three properties hold for the linear transformation ( )fr Tθ : 
• ( )fr Tθ  is an invariant of the isotopy class of the framed tangle T ; 
• ( ) ( ) ( )1 2 1 2

fr fr frT T T Tθ θ θ⋅ =  ; 
• ( ) ( ) ( )1 2 1 2

fr fr frT T T Tθ θ θ⊗ = ⊗ . 
 

 

T2 

T1 

V V V 

V V 

V V 

V V* 

V* 

 
( )

( )

1

2

fr

fr

V V V V
T

V V V V
T

V V

θ

θ

∗

∗

⊗ ⊗ ⊗

↑

⊗ ⊗ ⊗

↑

⊗

 

 
Now we can define a knot invariant ( )fr Kθ  regarding the knot K  as a tangle between the two lines below 

and above K . In this case ( )fr Kθ  would be a linear transformation from C to C. Since our linear 
transformations depend on the parameter q , this number is actually a function of q . 

Because of the multiplicity property ( ) ( ) ( )1 2 1 2
fr fr frT T T Tθ θ θ⋅ =   it is enough to define ( )fr Tθ  only for 

elementary tangles T  such as a crossing, a minimum or a maximum point. This is precisely where quantum 
groups come in. Given a quantum group qU g  and its finite-dimensional representation V , one can associate 
certain linear transformations with elementary tangles in a way consistent with the Turaev oriented moves [11]. 
The R -matrix appears here as the linear transformation corresponding to a positive crossing. Of course, for a 
trivial tangle consisting of a single string connecting the top and bottom, the corresponding linear operator 
should be the identity transformation. So we have the following correspondence valid for all quantum groups: 
 

 

idv* 

V 

V 

  

 

idv 

V 

V 

 
 

 

R-1 

V 

V V 

  

 

R 

V V 

 
 
Using this one can verify that frθ  remains invariant under all three Reidemeister moves, for details see [11]. 

To complete the construction of our quantum invariant we should assign appropriate operators to the 
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minimum and maximum points. These depend on all the data involved: the quantum group, the representation 
and the R -matrix. For the quantum group 2qU sl , its standard two-dimensional representation V  and the R - 
matrix, these operators are: 
 

 
V* V 

min 

 

* 1 2 1 1 2 2
1 2

1

V V q e e q e e−⊗ ⊗ + ⊗
↑ ↑


 

 
 

V* V 

min 

 

* 1 2
1 2

1

V V e e e e⊗ ⊗ + ⊗
↑ ↑


 

 
 

V* 

max 

V 
 

1 2 1 2

* 1 2 1 2
1 1 2 2

0 0q q

V V e e e e e e e e

−

↑ ↑ ↑ ↑ ↑
⊗ ⊗ ⊗ ⊗ ⊗



 

 
 

V* V 

max 

 
* 1 1 2 2

1 2 1 2

1 0 0 1

V V e e e e e e e e
↑ ↑ ↑ ↑ ↑
⊗ ⊗ ⊗ ⊗ ⊗



 

 
where { }1 2,e e  is the basis of V ∗ , dual to the basis { }1 2,e e  of V . 

In the following example we compute the quantum 2sl -invariant for the unknot. 
Example 1 Let us compute the 2sl -quantum invariant of the unknot. Represent the unknot as a product of 

two tangles and compute the composition of the corresponding transformations. 
 

 

V* V 

    



1 2 1 2

* 1 2 1 1 2 2
1 2

1

q q

V V q e e q e e

−

−

+

↑ ↑

⊗ ⊗ + ⊗

↑ ↑



 





  
 

So, ( ) 1 2 1 2unknotfr q qθ −= + . Therefore, in order to normalize our invariant so that its value on the unknot is 
equal to 1, we must divide ( )frθ ⋅  by 1 2 1 2q q−+ , and denote this normalized invariant by ( )frθ ⋅ . (We shall 
write the precise formula for ( )frθ ⋅  in the main result.) 

3. Main Result 
Here we give the general formulas of the quantum 2sl -invariants of the braid knot 1

nx  for odd n . 
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Proposition 1 The quantum invariant of 1
nx , when n  is odd, is 

( )
3 1 3 3 3 5 3 1

2 2 2 2 2
1 .

n n n n n
nx q q q q qθ

− − − + −

= − + − + + +

                    (1.1) 

Proof 1 We prove it by induction on n . 
For 1n = , we receive the following braid knot along with its tensor product. 
 

 
V* 

V* 

V* 

V* 

V* 

V* V 

V 

V 

V 

V 

V 
 

*

1
V V

V V

V V V V
id R id

V V V V

V V

∗ ∗

−
∗ ∗

∗ ∗

∗

↑

⊗

↑

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑

⊗

↑





 

 
Note that the map V V ∗→ ⊗  sends 1∈  into the tensor 1 2

1 2e e e e⊗ + ⊗ . Also, the map 

V V V V V V∗ ∗ ∗⊗ → ⊗ ⊗ ⊗  sends 1 2
1 2e e e e⊗ + ⊗  into the tensor  

1 2 1 1 1 2 1 2 1 2 2 1 1 2 2 2
1 1 1 2 2 1 2 2q e e e e q e e e e q e e e e q e e e e− −⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ . 

Now applying 1−R  to each middle factor, we get 

( ) ( )( )
( ) ( )

( )

1 2 1 1 4 1 1 2 1 1 4 3 4 1 4 2
1 1 2 1 1 2

1 2 2 1 4 1 1 2 2 1 4 2
1 2 2 2

1 2 1 1 4 1 1 2 1 1 4 2
1 1 2 1

1 2 1 3 4 1 4 2 1 2 2 1 4 1 1 2 2 1 4 2
1 2 1 2 2 2

q e q e e e q e q e e q q e e e

q e q e e e q e q e e e

q e e q e e q e e q e e

q e e q q e e q e e q e e q e e q e e

− − − −

−

− − −

− − −

⊗ ⊗ ⊗ + ⊗ ⊗ + − + ⊗ ⊗

+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

+ ⊗ ⊗ − + ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

 

Finally, the two maps at the top contract the whole tensor into the linear transformation 

( ) ( )1 2 1 4 1 2 1 2 3 4 1 4 1 2 1 2 1 4 1 2 1 4 5 4
1 .fr x q q q q q q q q q q q qθ − − − − − − − − −= + − + + = +  

Hence the unframed normalized 2sl -quantum invariant of 1x  is 

( )
( ) ( ) ( )3 3 2 1

1 1 4 3 4 1 44 2
1 1 2 1 2

3 4 1 4 3 4 1 4 0 1.

frwr K x
x q q q q q

q q

q q q q q q q

θ
θ

− − −
−

−

−

 
   = = + −  +
 

 = + − = + − = 



 

To get a clear picture, we also compute the quantum invariant of the knots 3
1x  (which is actually the left 

trefoil) and 5
1x . First of all, we proceed for 3

1x : 
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V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

  

*

1

1

V V

V V

V V

V V V V
id R id

V V V V
id R id

V V V V

V V

∗ ∗

−
∗ ∗

∗ ∗

−
∗ ∗

∗ ∗

∗

↑

⊗

↑

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑

⊗

↑





 

 
The map at the bottom sends 1 ∈  into the tensor 1 2

1 2 .e e e e⊗ + ⊗  
Now the map V V V V V V∗ ∗ ∗⊗ → ⊗ ⊗ ⊗  sends the above tensor into the tensor 

1 2 1 1 1 2 1 2 1 2 2 1 1 2 2 2
1 1 1 2 2 1 2 2 .q e e e e q e e e e q e e e e q e e e e− −⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗  

Then applying 3−R  to two tensor factors in the middle we get 

( )
( ) ( )
( ) ( )
( )

1 2 1 3 4 1
1 1

1 2 1 9 4 5 4 1 4 3 4 7 4 3 4 1 4 2
1 2 2 1

1 2 2 7 4 3 4 1 4 5 4 1 4 1
1 2 2 1

1 2 2 3 4 2
2 2 .

q e q e e e

q e q q q q e e q q q e e e

q e q q q e e q q e e e

q e q e e e

− −

− − −

−

−

⊗ ⊗ ⊗

 + ⊗ − + − + ⊗ + − − − ⊗ ⊗ 
 + ⊗ − + ⊗ + − + ⊗ ⊗ 

+ ⊗ ⊗ ⊗

 

Finally, the two maps at the top contract the whole tensor into a number 

( ) ( )
( )

1 2 3 4 1 2 1 2 9 4 5 4 1 4 3 4 1 2
1

1 2 5 4 1 4 1 2 1 2 3 4 1 2

3 4 5 4 1 4 3 4 7 4 9 4 5 4

7 4 3 4 1 4 9 4

3

2

fr q q q q q q q q q

q q q q q q q

q q q q q q q
q q q q

θ − − − − − −

− −

− − −

− −

= + − + − +

+ − + +

= − + − + − +

= + + −

 

Dividing by the normalizing factor 1 2 1 2q q−+  we get 

( )1 5 4 3 4 7 4
1 2 1 2

3
.

fr

q q q
q q
θ −

− = + −
+

 

The invariant ( )fr Kθ  remains unchanged under the second and third reidemeister moves. However it varies 
under the first reidemeister move and thus depends on the framing. One can deframe it, that is, manufacture an 
invariant of unframed knots out of it, according to the formula 

( )
( )

( )2 ,
c w K

frK q Kθ θ
− ⋅

=  

where ( )w K  is the writhe of the knot diagram and c  is the quadratic Casimir number defined by the Lie  

algebra g  and its representation. For 2sl  and the standard 2-dimensional representation 3
2

c = . Since the  
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writhe of the left trefoil is 3− , the unframed normalized quantum invariant is 

( ) ( ) ( )1 9 4 5 4 3 4 7 4 3 4
1 1 2 1 2

3
3 .q q q q q q q

q q
θ

θ −
−= = + − = + −

+
  

This can be further written as 

( )
( ) ( )

( )
3 3 1 3 3 3

3 12 2
1 1 .x q q q xθ θ

− −
 = − + +   

                               (1.2) 

For 5=n , the knot and the corresponding tensor products are: 
 

 
V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* 

V* V 

V 

V 

V 

 V 

V 

 V 

V 

 V 

 V 

V 

V 

 V 

 V 

*

1

1

1

1

1

V V

V V

V V

V V

V V

V V

V V V V
id R id

V V V V
id R id

V V V V
id R id

V V V V
id R id

V V V V
id R id

V V V V

V V

∗ ∗

−
∗ ∗

∗ ∗

−
∗ ∗

∗ ∗

−
∗ ∗

∗ ∗

−
∗ ∗

∗ ∗

−
∗ ∗

∗ ∗

∗

↑

⊗

↑

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑ ⊗ ⊗

⊗ ⊗ ⊗

↑

⊗

↑





 

 

With some computations, similar to the computations of ( )3
1xθ , we get 

( )
( ) ( )

( )
3 5 1 3 5 3

5 7 6 5 4 2 32 2
1 1 .x q q q q q q q q xθ θ

− −
 = − + − + + = − + +   

                (1.3) 

Similarly, 

( )
( ) ( )

( )
3 7 1 3 7 3

7 52 2
1 1 .x q q q xθ θ

− −
 = − + +   

                                    (1.4) 

We now assume the result (1.1) holds for n k= , that is 

( )
3 1 3 3 3 5 3 1

2 2 2 2 2
1

k k k k k
kx q q q q qθ

− − − + −

= − + − + + +

                            (1.5) 
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Now for 2n k= +  we have 

( )
( ) ( )

( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 2 1 3 2 3
2 2 2

1 1

3 2 1 3 2 3 3 1 3 3 3 5 3 7 3 1
2 2 2 2 2 2 2 2

3 2 1 3 2 3 3 2 5 3 2 7 2 3 2 1
2 2 2 2 2 2 ,

k k
k k

k k k k k k k k

k k k k k k

x q q q x

q q q q q q q q q

q q q q q q

θ θ
+ − + −

+

+ − + − − − − − + −

+ − + − + − + − + + + −

= − + +

 
= − + + − + − + + + + 

 

= − + − + + + +

 





 

and the proof is finished. 
Proposition 2 The Jones polynomial of the knot 1

nx , when n  is odd, is 



( )
1

1 3 3 3 5 3 3 1
2 2 2 2 2 .

n

n n n n n

x
V t t t t t t

− − − − − −

= − + − + + +  

Proof 2 Nothing to prove; just substitute 1t−  in place of q  in ( )1
nxθ . 
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